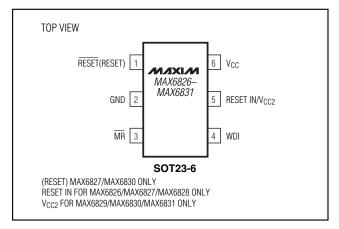


General Description

The MAX6826-MAX6831 are ultra-low-voltage microprocessor (µP) supervisory circuits designed to monitor two power supplies and have manual reset and watchdog input functions. These devices assert a system reset if any of the monitored supplies fall below the preprogrammed thresholds, and maintain reset for a minimum timeout period after the supplies rise above the threshold. Microprocessor supervisors significantly improve system reliability and accuracy compared to separate ICs or discrete components. These devices monitor primary voltages from +1.8V to +5.0V and secondary voltages from +0.9V to +2.5V. These devices are guaranteed to be in the correct state for VCC down to +1.0V.


A variety of preprogrammed reset threshold voltages are available (see Threshold Suffix Guide). The devices include manual reset and watchdog inputs. The MAX6829/MAX6830/MAX6831 provide a factorytrimmed threshold to monitor a 2nd voltage down to +0.9V. The MAX6826/MAX6829 have a push-pull RESET, the MAX6827/MAX6830 have a push-pull RESET and the MAX6828/MAX6831 have an open-drain RESET. The MAX6826/MAX6827/MAX6828 have an auxiliary monitor that allows user adjustable input to monitor voltages down to +0.6V. See Selector Guide for functions available.

Applications

Portable/Battery-Powered Equipment **Embedded Controllers** Intelligent Instruments

Automotive Systems Critical µP Monitoring Multivoltage Systems

Pin Configuration

Typical Operating Circuit appears at end of data sheet. Threshold Suffix Guide appears at end of data sheet.

Features

- ♦ Monitor Primary V_{CC} Supplies from +1.8V to +5.0V and Secondary V_{CC2} Supplies from +0.9V to +2.5V
- ♦ User Adjustable RESET IN Down to +0.63V (MAX6826/MAX6827/MAX6828)
- ♦ 140ms (min) Reset Timeout Delay
- ♦ 1.6s Watchdog Timeout Period
- ♦ Manual Reset Input
- **♦ Three Reset Output Options** Push-Pull RESET **Push-Pull RESET Open-Drain RESET**
- ♦ Guaranteed Reset Valid Down to V_{CC} = +1.0V
- ♦ Immune to Short Negative V_{CC} Transients
- ♦ No External Components
- ♦ Small 6-pin SOT23 Packages

Ordering Information

	_	
PART†	TEMP RANGE	PIN-PACKAGE
MAX6826_UT-T	-40°C to +125°C	6 SOT23-6
MAX6827_UT-T	-40°C to +125°C	6 SOT23-6
MAX6828_UT-T	-40°C to +125°C	6 SOT23-6
MAX6829UT-T	-40°C to +125°C	6 SOT23-6
MAX6830UT-T	-40°C to +125°C	6 SOT23-6
MAX6831UT-T	-40°C to +125°C	6 SOT23-6

†Insert the desired suffix letter (from Standard Versions table) into the blanks to complete the part number.

Standard Versions Table*

MAX6826/MAX6827/MAX6828							
L							
S							
R							
Z							
V							

*Samples are typically available for standard versions only. The MAX6826/MAX6827/MAX6828 require a 2.5k minimum order increment for all versions. Contact factory for availability.

Standard Versions Table continued at end of data sheet. Selector Guide appears at end of data sheet.

MIXIM

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

VCC, VCC2 to GND	0.3V to +6.0V
Open-Drain RESET	0.3V to +6.0V
Push-Pull RESET, RESET	0.3V to (V _{CC} + 0.3V)
MR, WDI, RESET IN	0.3V to (V _{CC} + 0.3V)
Input Current (V _{CC})	20mA
Output Current (RESET, RESET)	20mA
Continuous Power Dissipation (T _A =	+70°C)
6-Pin SOT23 (derate 8.7mW/°C abo	ove +70°C)696mW

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +4.5V \text{ to } +5.5V \text{ for MAX68}_L/M, V_{CC} = +2.7V \text{ to } +3.6V \text{ for MAX68}_T/S/R, V_{CC} = +2.1V \text{ to } +2.75V \text{ for MAX68}_Z/Y, V_{CC} = +1.53V \text{ to } +2.0V \text{ for MAX68}_W/V; T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise specified. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 1)}$

PARAMETER	SYMBOL	COI	MIN	TYP	MAX	UNITS	
Operating Voltage Dange	Voc	$T_A = 0$ °C to +85°C	$T_A = 0$ °C to +85°C			5.5	<u> </u>
Operating Voltage Range	Vcc	$T_A = -40^{\circ}\text{C to } + 125^{\circ}$	°C	1.2		5.5	V
		$V_{CC} = +5.5V,$	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		10	20	
V _{CC} Supply Current	loo	no load	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$			30	
MR and WDI Unconnected	Icc	$V_{CC} = +3.6V,$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		7	16	μΑ
		no load	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$			25	
V _{CC2} Supply Current		V _{CC2} ≤ +2.5V				2	μΑ
		MAX68 L	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.50	4.63	4.75	
		IVIAA00L	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	4.47	4.63	4.78	
	V _{TH}	MAX68M	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.25	4.38	4.50	V
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	4.22	4.38	4.53	
		MAX68T	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3.00	3.08	3.15	
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	2.97	3.08	3.17	
		MAX68S	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	2.85	2.93	3.00	
N D 171			$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	2.83	2.93	3.02	
V _{CC} Reset Threshold (V _{CC} Falling)		MAX68R	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	2.55	2.63	2.70	
(VCC railing)			$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	2.53	2.63	2.72	
		MAY60 7	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.25	2.32	2.38	
		MAX68Z	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	2.24	2.32	2.40	
		MAY60 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.12	2.19	2.25	
		MAX68Y	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	2.11	2.19	2.26	
		MAX68 W	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.62	1.67	1.71	
		INIWVOO" "AA	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	1.61	1.67	1.72	
		MAX68V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.52	1.58	1.62	

. ______ /N/XI/N

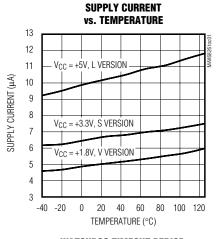
ELECTRICAL CHARACTERISTICS (continued)

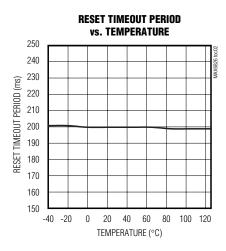
 $(V_{CC} = +4.5 \text{V to } +5.5 \text{V for MAX68_L/M}, \ V_{CC} = +2.7 \text{V to } +3.6 \text{V for MAX68__T/S/R}, \ V_{CC} = +2.1 \text{V to } +2.75 \text{V for MAX68__Z/Y}, \ V_{CC} = +1.53 \text{V to } +2.0 \text{V for MAX68_W/V}; \ T_{A} = -40 ^{\circ}\text{C to } +125 ^{\circ}\text{C}, \ \text{unless otherwise specified}. \ \text{Typical values are at } T_{A} = +25 ^{\circ}\text{C}.) \ (\text{Note 1})$

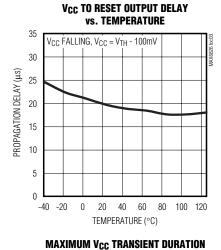
PARAMETER	SYMBOL	YMBOL CONDITIONS			TYP	MAX	UNITS
		7	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	2.244	2.313	2.381	
		Z	$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$	2.238	2.313	2.388	
		Υ	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	2.119	2.188	2.257	
		T	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$	2.113	2.188	2.263	
		W	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.615	1.665	1.715	1
		VV	$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$	1.611	1.665	1.719	1
		V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.525	1.575	1.625	1
		V	$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$	1.521	1.575	1.629	
		ī	$T_A = -40$ °C to $+85$ °C	1.346	1.388	1.429	1
V Decet Three sheld		I	$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$	1.343	1.388	1.433	
V _{CC2} Reset Threshold	V _{TH2}		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.271	1.313	1.354	V
		Н	$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$	1.268	1.313	1.358	
		0	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.077	1.110	1.143	
		G	$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$	1.074	1.110	1.146	
		F	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.017	1.050	1.083	
			$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$	1.014	1.050	1.086	1
		F	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	0.808	0.833	0.858	
		E	$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$	0.806	0.833	0.860	
		Б	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	0.762	0.788	0.813	
		D	$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$	0.761	0.788	0.815	
Reset Threshold Temperature Coefficient					60		ppm/°C
Reset Threshold Hysteresis					2 x V _{TH}		mV
DESET IN THE RESET OF THE PERSON OF THE PERS			$T_A = 0$ °C to +85°C	0.615	0.630	0.645	,,
RESET IN Threshold	VRSTINTH	V _{RSTINTH} falling	$T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$	0.610		0.650	V
RESET IN Hysteresis					2.5		mV
DECET IN L. C. L. (N. L. C.)		$T_A = -40^{\circ}C \text{ to } +85^{\circ}$	С	-25		+25	
RESET IN Input Current (Note 2)	IRSTIN	$T_A = -40^{\circ}C \text{ to } +125^{\circ}$	-100		+100	nA	
V _{CC} to Reset Output Delay	t _{RD}	V _{CC} = V _{TH} to (V _{TH}	- 100mV)		20		μs
RESET IN to Reset Output Delay		VRSTIN = VRSTINTH		15		μs	
Don't Time out Don't d		$T_A = -40^{\circ}C \text{ to } +85^{\circ}$	С	140	200	280	
Reset Timeout Period	t _{RP}	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$		100		320	ms
		V _{CC} ≥ 1.0V, I _{SINK} = T _A = 0°C to +85°C			0.3		
RESET Output LOW	V _{OL}		: 100µA, reset asserted			0.3	- v
(Push-Pull or Open-Drain)	, OL				0.3		
		V _{CC} ≥ 2.55V, I _{SINK} = 1.2mA, reset asserted V _{CC} ≥ 4.25V, I _{SINK} = 3.2mA, reset asserted					

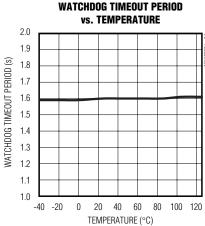
ELECTRICAL CHARACTERISTICS (continued)

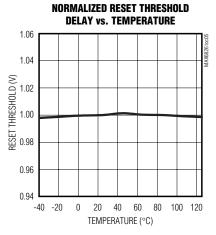
 $(V_{CC} = +4.5 \text{V to } +5.5 \text{V for MAX68_L/M}, \ V_{CC} = +2.7 \text{V to } +3.6 \text{V for MAX68__T/S/R}, \ V_{CC} = +2.1 \text{V to } +2.75 \text{V for MAX68__Z/Y}, \ V_{CC} = +1.53 \text{V to } +2.0 \text{V for MAX68_W/V}; \ T_A = -40 ^{\circ} \text{C to } +125 ^{\circ} \text{C}, \ \text{unless otherwise specified. Typical values are at } T_A = +25 ^{\circ} \text{C}.) \ (\text{Note 1})$

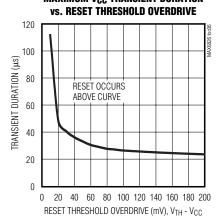

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DECET O		$V_{CC} \ge 1.8V$, $I_{SOURCE} = 200\mu A$, reset not asserted	0.8×V _{CC}				
RESET Output HIGH (Push-Pull Only)	VoH	$V_{CC} \ge 3.15V$, $I_{SOURCE} = 500\mu A$, reset not asserted	0.8×V _{CC}			V	
(i dari-i dii Oriiy)		$V_{CC} \ge 4.75V$, $I_{SOURCE} = 800\mu A$, reset not asserted	0.8×V _{CC}				
Open-Drain RESET Output Leakage Current (Note 1)	I _{LKG}	RESET not asserted			1.0	μА	
DESCRIPTION OF THE PROPERTY OF		$V_{CC} \ge 1.0V$, $I_{SOURCE} = 1\mu A$, reset asserted, $T_A = 0^{\circ}C$ to $+85^{\circ}C$	0.8×V _{CC}				
RESET Output HIGH (Push-Pull Only)	VoH	V _{CC} ≥ 1.50V, I _{SOURCE} = 100μA, reset asserted	0.8×V _{CC}			V	
(i dari-i dii Oriiy)		V _{CC} ≥ 2.55V, I _{SOURCE} = 500μA, reset asserted	0.8×V _{CC}				
		V _{CC} ≥ 4.25V, I _{SOURCE} = 800µA, reset asserted	0.8×V _{CC}				
DECET O		$V_{CC} \ge 1.8V$, $I_{SINK} = 500\mu A$, reset asserted			0.3		
RESET Output LOW (Push-Pull Only)	VoH	V _{CC} ≥ 3.15V, I _{SINK} = 1.2mA, reset asserted			0.3	V	
(radir all Grilly)		$V_{CC} \ge 4.75V$, $I_{SINK} = 3.2mA$, reset asserted			0.3		
MANUAL RESET INPUT							
MR Input voltage	VIL				$0.3 \times V_{CC}$	V	
With input voltage	V _{IH}		$0.7 \times V_{CC}$			V	
MR Minimum Input Pulse			1			μs	
MR Glitch Rejection				100		ns	
MR to Reset Delay				200		ns	
MR Pullup Resistance			25	50	75	kΩ	
WATCHDOG INPUT							
Watchdog Timeout Period	twp	$T_A = -40$ °C to $+85$ °C	1.12	1.6	2.4	S	
Wateridog Timeout Feriod	ייעט	$T_A = -40$ °C to $+125$ °C	0.80		2.60	3	
WDI Pulse Width (Note 2)	twDI		50			ns	
WDI Input Voltage	V _I L				0.3×V _{CC}	V	
WDI IIIput Voltage	VIH		0.7×V _{CC}			v	
WDI Input Current	I _{WDI}	WDI = V _{CC} , time average		120	160	μА	
WDI IIIput Guireiit	וטעעי	WDI = 0, time average	-20	-20 -15		μΛ	

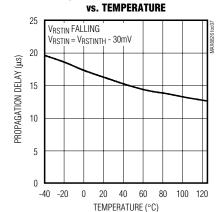

Note 1: Over-temperature limits are guaranteed by design and not production tested. Devices tested at +25°C.

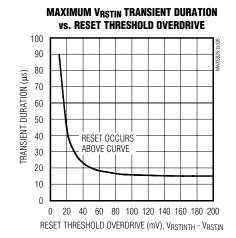

Note 2: Guaranteed by design and not production tested.

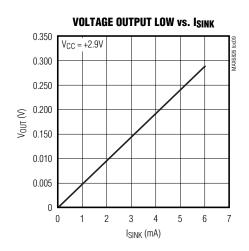

Typical Operating Characteristics

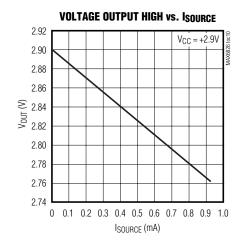

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$








VRSTIN TO RESET OUTPUT DELAY



MIXIM

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

		PIN NU	JMBER			PIN				
MAX 6826	MAX 6827	MAX 6828	MAX 6829	MAX 6830	MAX 6831	NAME	FUNCTION			
1		1	1		1	RESET	Active-Low Open-Drain or Push-Pull Reset Output. $\overline{\text{RESET}}$ changes from high to low when V_{CC1} , V_{CC2} , or RESET IN input drops below the selected reset threshold, $\overline{\text{MR}}$ is pulled low, or the watchdog triggers a reset. $\overline{\text{RESET}}$ remains low for the reset timeout period after all voltages exceed the device reset threshold, $\overline{\text{MR}}$ goes low to high, or the watchdog triggers a reset.			
	1			1		RESET	Active-High Push-Pull Reset Output. RESET changes from low to high when V _{CC1} , V _{CC2} , or RESET IN input drops below the selected reset threshold, $\overline{\text{MR}}$ is pulled low, or the watchdog triggers a reset. RESET remains HIGH for the reset timeout period after all voltages exceed the device reset threshold, $\overline{\text{MR}}$ goes low to high, or the watchdog triggers a reset.			
2	2	2	2	2	2	GND	Ground			
3	3	3	3	3	3	MR	Manual Reset Input, Active-Low, Internal $50 \text{k}\Omega$ pullup to V_{CC} . Pull low to force a reset. Reset remains active as long as $\overline{\text{MR}}$ is low and for the reset timeout period after $\overline{\text{MR}}$ goes high. Leave unconnected or connect to V_{CC} , if unused.			
4	4	4	4	4	4	WDI	Watchdog Input. If WDI remains high or low for longer than the watchdog timeout period, the internal watchdog timer runs out and a reset is triggered for the reset timeout period. The internal watchdog timer clears whenever reset is asserted, the manual reset is asserted, or WDI sees a rising or falling edge. If WDI is left unconnected or is connected to a three-stated buffer output, the watchdog feature is disabled.			

6 ______ /N/XI/V

Pin Description (continued)

		PIN NU	JMBER			PIN		
MAX 6826	MAX 6827	MAX 6828	MAX 6829	MAX 6830	MAX 6831	NAME	FUNCTION	
5	5	5				RESET IN	Input for User Adjustable RESET IN Monitor. High-impedance input for internal reset comparator. Connect this pin to an external resistor-divider network to set the reset threshold voltage. 0.63V (typ) threshold.	
			5	5	5	V _{CC2}	Factory-Trimmed V _{CC2} Monitor. Connect this pin to a secondary power-supply voltage.	
6	6	6	6	6	6	Vcc	V _{CC} Supply Voltage. Input for primary reset threshold monitor.	

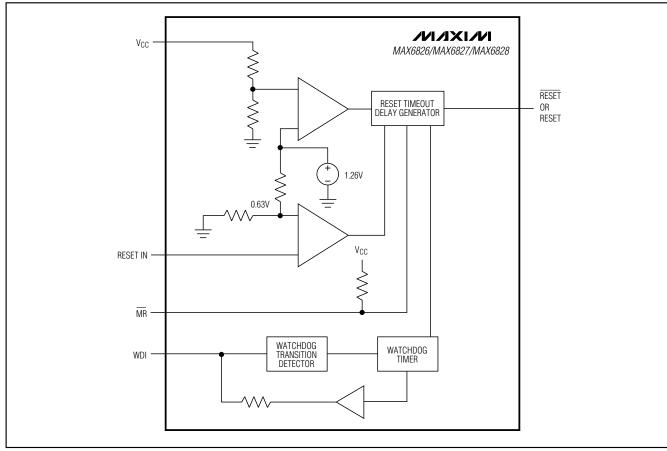


Figure 1. Functional Diagram of RESET IN

MAXIM ______ 7

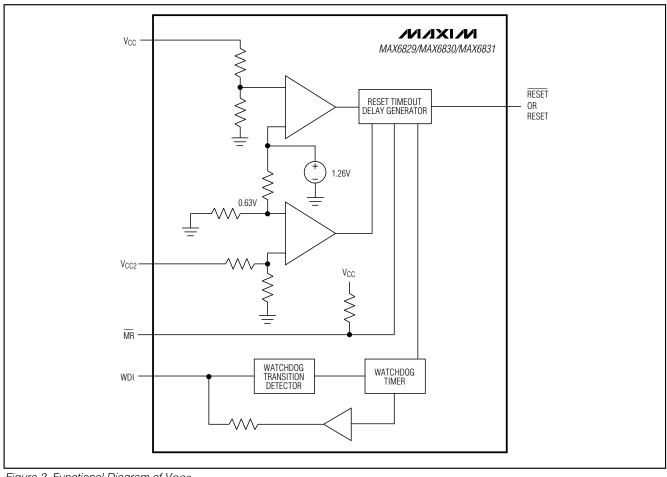


Figure 2. Functional Diagram of V_{CC2}

Detailed Description

RESET/RESET Output

A microprocessor's (µP's) reset input starts the µP in a known state. The MAX6826-MAX6831 µP supervisory circuits assert a reset to prevent code-execution errors during power-up, power-down, and brownout conditions. Whenever a monitored voltage falls below the reset threshold, the reset output asserts low for RESET and high for RESET. Once all monitored voltages exceed their reset thresholds, an internal timer keeps the reset output asserted for the specified reset timeout period (t_{RP}); after this interval, reset output returns to its original state (Figure 3).

Manual Reset Input

Many uP-based products require manual-reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts a reset. Reset remains asserted while MR is low, and for the timeout period (140ms min) after it returns high. \overline{MR} has an internal $50k\Omega$ pullup resistor, so it can be left open if not used. This input can be driven with CMOS logic levels or with open-drain/collector

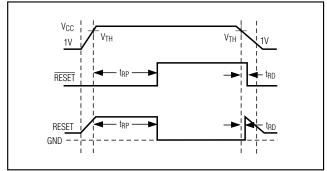


Figure 3. Reset Timing Diagram

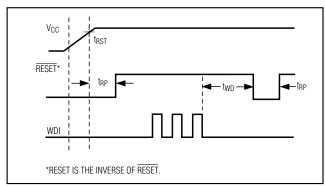


Figure 4. Watchdog Timing Relationship

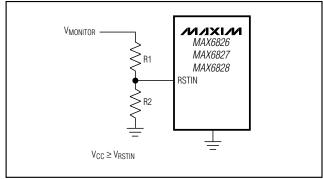


Figure 5. Monitoring a Voltage

outputs. Connect a normally open momentary switch from $\overline{\text{MR}}$ to GND to create a manual-reset function; external debounce circuitry is not required. If $\overline{\text{MR}}$ is driven from long cables or the device is used in a noisy environment, connect a $0.1\mu\text{F}$ capacitor from $\overline{\text{MR}}$ to GND to provide additional noise immunity.

Watchdog Input

The watchdog circuit monitors the μP 's activity. If the μP does not toggle (low to high or high to low) the watchdog input (WDI) within the watchdog timeout period (1.6s nominal), reset asserts for the reset timeout period. The internal 1.6s timer can be cleared by either a reset pulse or by toggling WDI. The WDI can detect pulses as short as 50ns. While reset is asserted, the timer remains cleared and does not count. As soon as reset is released, the timer starts counting (Figure 4).

Disable the watchdog function by leaving WDI unconnected or by three-stating the driver connected to WDI. The watchdog input is internally driven low during the first 7/8 of the watchdog timeout period and high for the last 1/8 of the watchdog timeout period. When WDI is left unconnected, this internal driver clears the 1.6s timer every 1.4s. When WDI is three-stated or unconnected,

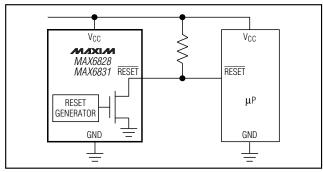


Figure 6. Interfacing Open-Drain \overline{RESET} to μPs with Bidirectional Reset I/O

the maximum allowable leakage current is 10µA and the maximum allowable load capacitance is 200pF.

Adjustable Reset Thresholds

The MAX6826/MAX6827/MAX6828 provide a user adjustable input to monitor a second voltage. The threshold voltage at RSTIN is typically 0.63V. To monitor a voltage higher than 0.63V, connect a resistor-divider to the circuit as shown in Figure 5. The threshold at VMONITOR is:

$$V_{MONITOR_TRIP} = 0.63V \left(\frac{R1 + R2}{R2}\right)$$

Note that RSTIN is powered by VCC, and its voltage must therefore remain lower than VCC.

Applications Information

Watchdog Input Current

The WDI inputs are internally driven through a buffer and series resistor from the watchdog timer (Figure 1). When WDI is left unconnected, the watchdog timer is serviced within the watchdog timeout period by a low-high-low pulse from the counter chain. For minimum watchdog input current (minimum overall power consumption), leave WDI low for the majority of the watchdog timeout period, pulsing it low-high-low once within the first 7/8 of the watchdog timeout period to reset the watchdog timer. If WDI is externally driven high for the majority of the timeout period, up to 160µA can flow into WDI.

Interfacing to µPs with Bidirectional Reset Pins

Since the $\overline{\text{RESET}}$ output on the MAX6828/MAX6831 is open drain, these devices interface easily with μPs that have bidirectional reset pins, such as the Motorola 68HC11. Connecting the μP supervisor's $\overline{\text{RESET}}$ output

directly to the microcontroller's $\overline{\text{RESET}}$ pin with a single pullup resistor allows the device to assert a reset (Figure 6).

Negative-Going Vcc Transients

These supervisors are relatively immune to short-duration, negative-going VCC transients (glitches), which usually do not require the entire system to shut down. Resets are issued to the µP during power-up, powerdown, and brownout conditions. The Typical Operating Characteristics show a graph of the Maximum VCC Transient Duration vs. Reset Threshold Overdrive, for which reset pulses are not generated. The graph was produced using negative-going VCC pulses, starting at the standard monitored voltage and ending below the reset threshold by the magnitude indicated (reset threshold overdrive). The graph shows the maximum pulse width that a negative-going VCC transient can typically have without triggering a reset pulse. As the amplitude of the transient increases (i.e., goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a VCC transient that goes 100mV below the reset threshold and lasts for 20µs or less will not trigger a reset pulse.

Ensuring a Valid RESET Output Down to VCC = 0

The MAX6826–MAX6831 are guaranteed to operate properly down to $V_{CC}=1 \mbox{V}_{CC}=1 \mbox{V}_{CC}=0$, a pulldown resistor to active-low outputs (push/pull only, Figure 7) and a pullup resistor to active-high outputs (push/pull only) will ensure that the reset line is valid while the reset output can no longer sink or source current. This scheme does not work with the open-drain outputs of the MAX6828/MAX6831. The resistor value used is not critical, but it must be small enough not to load the reset output when V_{CC} is above the reset threshold. For falling slew rates greater than $1 \mbox{V/s}$, a $100 \mbox{k}\Omega$ is adequate.

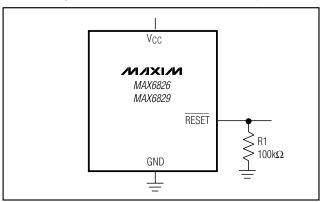


Figure 7. RESET Valid to V_{CC} = Ground Circuit

Watchdog Software Considerations

One way to help the watchdog timer monitor software execution more closely is to set and reset the watchdog input at different points in the program, rather than pulsing the watchdog input high-low-high or low-high-low. This technique avoids a stuck loop, in which the watchdog timer would continue to be reset inside the loop, keeping the watchdog from timing out.

Figure 8 shows an example of a flow diagram where the I/O driving the watchdog input is set high at the beginning of the program, set low at the beginning of every subroutine or loop, then set high again when the program returns to the beginning. If the program should hang in any subroutine, the problem would quickly be corrected, since the I/O is continually set low and the watchdog timer is allowed to time out, causing a reset or interrupt to be issued. As described in the *Watchdog Input Current* section, this scheme results in higher time average WDI input current than does leaving WDI low for the majority of the timeout period and periodically pulsing it low-high-low.

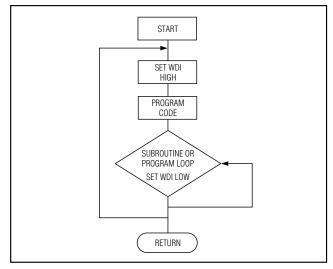


Figure 8. Watchdog Flow Diagram

Threshold Suffix Guide

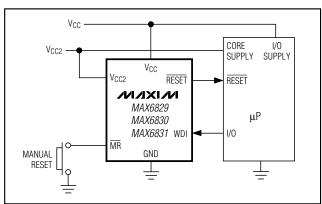
V _{CC} THRESHOLD	RESET THRESHOLD (V)	V _{CC2} THRESHOLD	RESET THRESHOLD (V)
L	4.63	Z	2.313
М	4.38	Υ	2.188
T	3.08	W	1.665
S	2.93	V	1.575
R	2.63		1.388
Z	2.32	Н	1.313
Υ	2.19	G	1.110
W	1.67	F	1.050
M	1.50	E	0.833
V	1.58	D	0.788

Selector Guide

FUNCTION	ACTIVE-LOW RESET	ACTIVE-HIGH RESET	OPEN-DRAIN RESET	WATCHDOG INPUT	MANUAL RESET INPUT	FIXED V _{CC2} MONITOR	ADJUSTABLE RESET INPUT
MAX6826	~	_	_	~	~	_	~
MAX6827	_	~	_	~	~	_	~
MAX6828	_	_	~	~	~	_	~
MAX6829	~	_	_	~	~	~	_
MAX6830	_	~	_	~	~	~	_
MAX6831	_	_	~	V	~	V	_

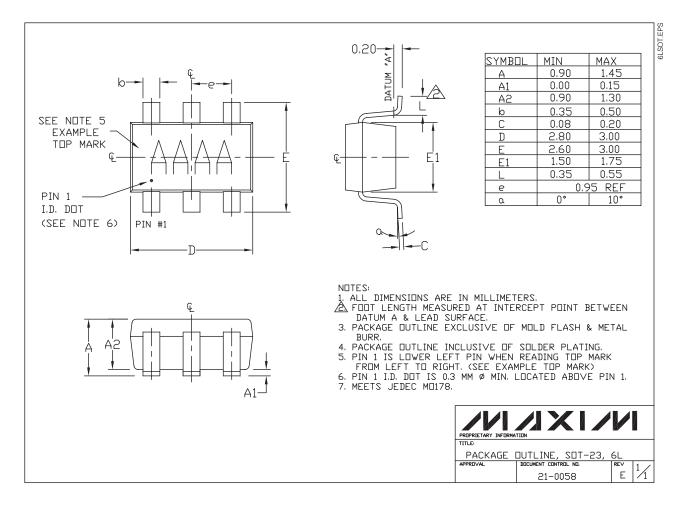
Standard Versions Table* (continued)

MAX6829/MAX6830/MAX6831							
	V _{CC2}						
3.3V	2.5V	1.8V	_				
TZ	_	_	2.5V				
SV	ZW	_	1.8V				
SH	YH	WI	1.5V				
SF	YG	VF	1.2V				
SD	YD	VD	0.9V				


*Samples are typically available for standard versions only. For the MAX6829/MAX6830/MAX6831, standard versions require a 2.5k minimum order increment, while nonstandard versions require a 10k minimum order increment and are not typically available in samples. Contact factory for availability.

Chip Information

TRANSISTOR COUNT: 750


PROCESS TECHNOLOGY: BICMOS

Typical Operating Circuit

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2002 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.