IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Abstract

General Description The MAX5953A/MAX5953B/MAX5953C/MAX5953D integrate a complete power IC solution for Powered Devices (PD) in a Power-Over-Ethernet (PoE) system, in compliance with the IEEE 802.3af standard. The MAX5953A/MAX5953B/MAX5953C/MAX5953D provide the PD with a detection signature, a classification signature, and an integrated isolation switch with programmable inrush current control. These devices also integrate a voltage-mode PWM controller with two power MOSFETs connected in a two-switch voltageclamped DC-DC converter configuration. An integrated MOSFET provides PD isolation during detection and classification. All devices guarantee a leakage current offset of less than $10 \mu \mathrm{~A}$ during the detection phase. A programmable current limit prevents high inrush current during power-on. The devices feature power-mode undervoltage lockout (UVLO) with wide hysteresis and long deglitch time to compensate for twisted-pair-cable resistive drop and to assure glitch-free transition between detection, classification, and power-on/-off phases. The MAX5953A/MAX5953C have an adjustable UVLO threshold with the default value compliant to the 802.3af standard, while the MAX5953B/MAX5953D have a lower and fixed UVLO threshold compatible with some legacy pre-802.3af power-sourcing equipment (PSE) devices. The DC-DC converters are operable in either forward or flyback configurations with a wide input voltage range from 11 V to 76 V and up to 15 W of output power. The voltage-clamped power topology enables full recovery of stored magnetizing and leakage inductive energy for enhanced efficiency and reliability. When using the high-side MOSFET, the controller can be configured as a buck converter. A look-ahead signal for driving sec-ondary-side synchronous rectifiers can be used to increase efficiency. A wide array of protection features include UVLO, over-temperature shutdown, and shortcircuit protection with hiccup current limit for enhanced performance and reliability. Operation up to 500 kHz allows for smaller external magnetics and capacitors. The MAX5953A/MAX5953B/MAX5953C/MAX5953D are available in a high-power (2.22W), $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ thermally enhanced thin QFN package.

Applications

[^0]Internet Appliances
Security Cameras
Computer Telephony

Ordering Information

PART	PIN-PACKAGE	PKG CODE
MAX5953AUTM +	48 TQFN	T4877-6
MAX5953BUTM +	48 TQFN	T4877-6
MAX5953CUTM +	48 TQFN	T4877-6
MAX5953DUTM+	48 TQFN	T4877-6
Operating junction temperature range is $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. +Denotes lead-free package.		

Pin Configuration and Typical Operating Circuit appear at end of data sheet.

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

ABSOLUTE MAXIMUM RATINGS

V+, RCLASS to $\mathrm{V}_{\text {EE }}$. 500mA
UVLO, PGOOD, PGOOD to VEE 20 mA
REGOUT to GND50 mA$\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}$0.9AContinuous Power Dissipation* $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$48-Pin TQFN $7 \mathrm{~mm} \times 7 \mathrm{~mm}$(derate $27.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).2222 mWӨJA
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Junction Temperature Range............ $.0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
*As per JEDEC 51 standard.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{I N}=\left(\mathrm{V}+-\mathrm{V}_{\mathrm{EE}}\right)=48 \mathrm{~V}, \mathrm{GATE}=\mathrm{PGOOD}=\overline{\mathrm{PGOOD}}=\right.$ unconnected, $\mathrm{GND}=\mathrm{OUT}, \mathrm{HVIN}=\mathrm{V}+, \mathrm{UVLO}=\mathrm{V}_{E E}, \mathrm{~T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $T_{J}=+25^{\circ} \mathrm{C}$. All voltages are referenced to V_{EE}, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWERED DEVICE (PD) INTERFACE							
DETECTION MODE							
Input Offset Current	IOFFSET	V IN $=1.4 \mathrm{~V}$ to 10.1V (Note 2)				10	$\mu \mathrm{A}$
Effective Differential Input Resistance (Note 3)	dR	V IN $=1.4 \mathrm{~V}$, up to 10.1 V with 1 V step		550			$\mathrm{k} \Omega$
CLASSIFICATION MODE							
Classification Current Turn-Off Threshold	VTH,CLASS	VIN rising (Note 4)		20.8	21.8	22.5	V
Classification Current	ICLASS	$\begin{aligned} & \text { VIN }=12.6 \mathrm{~V} \\ & \text { to } 20 \mathrm{~V}, \\ & \text { RDISC }= \\ & 25.5 \mathrm{k} \Omega \\ & \text { (Notes 5, 6) } \end{aligned}$	Class 0, RRCLASS $=10 \mathrm{k} \Omega$	0		2	mA
			Class 1, RRCLASS $=732 \Omega$	9.17		11.83	
			Class 2, RRCLASS $=392 \Omega$	17.29		19.71	
			Class 3, RRCLASS $=255 \Omega$	26.45		29.55	
			Class 4, RRCLASS $=178 \Omega$	36.6		41.4	
POWER MODE							
Operating Supply Voltage	VIN	$\mathrm{V}_{\text {IN }}=\left(\mathrm{V}+-\mathrm{V}_{\mathrm{EE}}\right)$				67	V
Operating Supply Current	IIN	Measure at $\mathrm{V}+$, not including RDISC,$\text { GATE }=\mathrm{V}_{\mathrm{EE}}, \mathrm{HVIN}=\mathrm{GND}=\mathrm{OUT}$			0.4	1	mA
Default Power Turn-On Voltage	VuvLO, On	VIN increasing	MAX5953A/MAX5953C	37.4	38.6	40.2	V
			MAX5953B/MAX5953D	34.3	35.4	36.9	
Default Power Turn-Off Voltage	VUVLO,OFF	VIN decreasing, MAX5953A/MAX5953C		30			V

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=\left(\mathrm{V}+-\mathrm{V}_{\mathrm{EE}}\right)=48 \mathrm{~V}, \mathrm{GATE}=\mathrm{PGOOD}=\overline{\mathrm{PGOOD}}=\right.$ unconnected, GND $=\mathrm{OUT}, \mathrm{HVIN}=\mathrm{V}+, \mathrm{UVLO}=\mathrm{V}_{\mathrm{EE}}, \mathrm{T} \mathrm{J}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$. All voltages are referenced to V_{EE}, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Default Power Turn-On/Off Hysteresis Voltage	VHYST,UVLO	MAX5953A/MAX5953C	7.1			V
		MAX5953B/MAX5953D	4			
External UVLO Programming Range	VIN,EX	MAX5953A/MAX5953C only (Note 7)	12		67	V
UVLO External Reference Voltage	VREF,UVLO	VUVLO increasing	2.400	2.460	2.522	V
UVLO External Reference Voltage Hysteresis	VHYST,UVLO	Ratio to VREF, UVLO	19.2	20	20.9	\%
UVLO Bias Current	IIn,UVLO	VUVLO $=2.460 \mathrm{~V}$	-1.5		+1.5	$\mu \mathrm{A}$
UVLO Input Ground-Sense Threshold	VTH,G,UVLO	(Note 8)	50		440	mV
UVLO Input Ground-Sense Glitch Rejection				7		$\mu \mathrm{s}$
Power Turn-Off Voltage, Undervoltage Lockout Deglitch Time	toff_DLY	VIN, Vuvio falling (Note 9)	0.32			ms
Isolation Switch n-Channel MOSFET On-Resistance	Ron, Iso	Output current $=300 \mathrm{~mA}, \mathrm{~V}_{\text {GATE }}=5.6 \mathrm{~V}$, measured between OUT and VEE		0.6	1.5	Ω
Isolation Switch n-Channel MOSFET Off-Threshold Voltage	VGSTH	VGATE - $\mathrm{V}_{\mathrm{EE}}, \mathrm{OUT}=\mathrm{V}+$, output current $<1 \mu \mathrm{~A}$	0.5			V
GATE Pulldown Switch Resistance	RG_{G}	Power-off mode, VIN $=+12 \mathrm{~V}$		38	80	Ω
GATE Charging Current	IGATE	$V_{\text {GATE }}=2 \mathrm{~V}$	4.5	10	16.5	$\mu \mathrm{A}$
GATE High Voltage	VGATE	$\mathrm{IGATE}=1 \mu \mathrm{~A}$	5.59	5.76	5.93	V
PGOOD Assertion Vout	Vouten	Vout - VEE decreasing, VGATE $=5.75 \mathrm{~V}$	1.16	1.23	1.31	V
Threshold (Note 10)	VOUTEN	Hysteresis		70		mV
PGOOD, $\overline{\text { PGOOD }}$ Assertion	SEN	$V_{\text {GATE }}$ - VEE increasing	4.62	4.76	4.91	V
VGATE Threshold	VGSEN	Hysteresis		80		mV
PGOOD, $\overline{\text { PGOOD }}$ Output Low Voltage	VOL,PGOOD	ISINK $=2 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }} \leq(\mathrm{V}+-5 \mathrm{~V})($ Note 11)			0.2	V
PGOOD Leakage Current		GATE $=$ high, V+- Vout $=67 \mathrm{~V}$ (Note 11)			1	$\mu \mathrm{A}$
$\overline{\text { PGOOD Leakage Current }}$		$\begin{aligned} & \text { GATE }=V_{E E}, \overline{\text { GGOOD }}-V_{E E}=67 \mathrm{~V} \\ & (\text { Note 11) } \end{aligned}$			1	$\mu \mathrm{A}$

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

ELECTRICAL CHARACTERISTICS (DC-DC Controller)

(All voltages referenced to GND, unless otherwise noted. $\mathrm{VHVIN}=+48 \mathrm{~V}$, $\mathrm{CINBIAS}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {REGOUT }}=2.2 \mu \mathrm{~F}$, RRTCT $=25 \mathrm{k} \Omega, \mathrm{C}_{\text {RTCT }}=$ 100 pF, CBST $=0.22 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{CSS}}=\mathrm{V}_{C S}=0 \mathrm{~V}, \mathrm{~V}_{\text {RAMP }}=\mathrm{V}_{\text {DCUVLO }}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
Input Supply Range	VHVIN		$11 \quad 76$	V
OSCILLATOR (RTCT)				
PWM Frequency	fs		250	kHz
Maximum PWM Duty Cycle	Dmax		47	\%
Maximum RTCT Frequency	frtctmax	(Note 12)	1	MHz
RTCT Peak Trip Level	VTH,RTCT		$0.51 \times V_{\text {REGOUT }}$	V
RTCT Valley Trip Level	$\mathrm{V}_{\text {TL, RTCT }}$		1	V
RTCT Input Bias Current	IIN,RTCT		± 1	$\mu \mathrm{A}$
RTCT Discharge MOSFET RDS(ON)	RDIS,RTCT	Sinking 50mA	$35 \quad 85$	Ω
RTCT Discharge Pulse Width			50	ns

LOOK-AHEAD LOGIC (PPWM)

PPWM to Output Propagation Delay	tPPWM	VPPWM rising to VXFRMRL falling	110	ns
PPWM Output High	VOH,PPWM	Sourcing 2mA	7.0	11.0
PPWM Output Low	VOL,PPWM	Sinking 2mA	V	

PWM COMPARATOR (OPTO, RAMP, RCFF)

Common-Mode Input Range	VCM_PWM		0	5.5
Input Offset Voltage			V	
Input Bias Current			-2	mV
RAMP to XFRMRL Propagation Delay	tcomPARATOR	From VRAMP (50mV overdrive) rising to VXFRMRL rising	10	HA
Minimum OPTO Voltage		VCSS $=0 \mathrm{~V}$, OPTO sinking 2mA	ns	
Minimum RCFF Voltage		RCFF sinking 2mA	1.47	V

REGOUT LDO (REGOUT)

REGOUT Voltage Set Point	VREGOUT	INBIAS unconnected, $\mathrm{V}_{\mathrm{HVIN}}=11 \mathrm{~V}$ to 76 V	8.3	8.75	9.2	V
		VINBIAS $=\mathrm{V}_{\text {HVIN }}=11 \mathrm{~V}$ to 76 V	9.5	10.6	11.0	
REGOUT Load Regulation		INBIAS unconnected, V HVIN $=15 \mathrm{~V}$, IREGOUT $=0$ to 30 mA			0.25	V
		$\begin{aligned} & \text { VINBIAS }=\mathrm{V}_{\mathrm{HVIN}}=15 \mathrm{~V}, \\ & \text { IREGOUT }=0 \text { to } 30 \mathrm{~mA} \end{aligned}$			0.25	
REGOUT Dropout Voltage		INBIAS unconnected, IREGOUT $=30 \mathrm{~mA}$			1.25	V
		VINBIAS $=\mathrm{V}_{\text {HVIN }}$, IREGOUT $=30 \mathrm{~mA}$			1.25	
REGOUT Undervoltage Lockout Threshold		REGOUT rising	6.6	7.0	7.4	V
REGOUT Undervoltage Lockout Threshold Hysteresis		REGOUT falling		0.7		V

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

ELECTRICAL CHARACTERISTICS (DC-DC Controller) (continued)

(All voltages referenced to GND, unless otherwise noted. $\mathrm{V}_{\mathrm{HVIN}}=+48 \mathrm{~V}, \mathrm{C}_{\text {INBIAS }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {REGOUT }}=2.2 \mu \mathrm{~F}, \mathrm{R}_{\text {RTCT }}=25 \mathrm{k} \Omega, \mathrm{C}_{\text {RTCT }}=$ $100 \mathrm{pF}, \mathrm{C}_{\text {BST }}=0.22 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{CSS}}=\mathrm{V}_{\mathrm{CS}}=0 \mathrm{~V}, \mathrm{~V}_{\text {RAMP }}=\mathrm{V}_{\text {DCUVLO }}=3 \mathrm{~V}, \mathrm{TJ}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $T_{J}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
SOFT-START (CSS)					
Soft-Start Current	ICSS	$\mathrm{V}_{\text {css }}=0 \mathrm{~V}$	33		$\mu \mathrm{A}$
INTEGRATING FAULT PROTECTION					
FLTINT Source Current	IFLTINT		80		$\mu \mathrm{A}$
FLTINT Trip Point		$V_{\text {FLTINT }}$ rising	2.7		V
FLTINT Hysteresis			0.75		V

On-Resistance	RON,POWER	$\begin{aligned} & \mathrm{V}_{\text {DRVIN }}=\mathrm{V}_{\mathrm{BST}}=9 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{XFRMRH}}=\mathrm{V}_{\text {SRC }}=0 \mathrm{~V}, \mathrm{IDS}=50 \mathrm{~mA} \end{aligned}$		0.4	0.8	Ω
Off-State Leakage Current			-5		+10	$\mu \mathrm{A}$
Total Gate Charge Per Power FET				15		nC

HIGH-SIDE DRIVER

Low to High Latency	tLH-HS	Driver delay until FET VGS reaches 0.9 x (VBST - VXFRMRH) and is fully on	80	ns
High to Low Latency	thL-HS	Driver delay until FET VGS reaches 0.1 x (VBST - VXFRMRH) and is fully off	40	ns
Output Drive Voltage	VBST	BST to XFRMRH with high side on	8	V
LOW-SIDE DRIVER				
Low to High Latency	tLH-LS	Driver delay until FET VGS reaches $0.9 \times$ VDRVIN and is fully on	80	ns
High to Low Latency	thl-LS	Driver delay until FET VGS reaches 0.1 x VDRVIN and is fully off	40	ns

CURRENT-LIMIT COMPARATOR (CS)

Current-Limit Threshold Voltage	VIIIM		140	156	172
Current-Limit Input Bias Current	IBILIM	$0<V_{C S}<0.3 V$	-2	+2	$\mu \mathrm{~A}$
Propagation Delay to XFRMRL	tdILIM	From VCS rising (10mV overdrive) to VXFRMRL rising	160	ns	

BOOST VOLTAGE CIRCUIT (See Figure 9, QB)

Driver Output Delay	tPPWMD		200	ns	
One-Shot Pulse Width	tPWQB		300	ns	
QB RDSON		Sinking 20mA	30	60	
Ω					
THERMAL SHUTDOWN	TSH	Temperature rising	+160	${ }^{\circ} \mathrm{C}$	
Thutdown Temperature	TH_{H}		20	${ }^{\circ} \mathrm{C}$	

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

ELECTRICAL CHARACTERISTICS (DC-DC Controller) (continued)

(All voltages referenced to GND, unless otherwise noted. $\mathrm{VHVIN}=+48 \mathrm{~V}$, $\mathrm{CINBIAS}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {REGOUT }}=2.2 \mu \mathrm{~F}$, RRTCT $=25 \mathrm{k} \Omega, \mathrm{C}_{\text {RTCT }}=$ $100 \mathrm{pF}, \mathrm{C}_{\text {BST }}=0.22 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{CSS}}=\mathrm{V}_{\mathrm{CS}}=0 \mathrm{~V}, \mathrm{~V}_{\text {RAMP }}=\mathrm{V}_{\text {DCUVLO }}=3 \mathrm{~V}, \mathrm{TJ}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $T_{J}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
UNDERVOLTAGE LOCKOUT (DCUVLO)						
Threshold Voltage	VREF,DCUVLO	VDCUVLO rising	1.14	1.26	1.38	V
Hysteresis	VHYS,DCUVLO			140		mV
Input Bias Current	İN,DCUVLO	$\mathrm{V}_{\text {DCUVLO }}=3 \mathrm{~V}$	-100		+100	nA
SUPPLY CURRENT						
Supply Current		$\begin{aligned} & \text { From } \mathrm{V}_{\text {HVIN }}=11 \mathrm{~V} \text { to } 76 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{CSS}}=0 \mathrm{~V}, \mathrm{~V}_{\text {INBIAS }}=11 \mathrm{~V} \end{aligned}$		0.7	1.5	mA
		From VINBIAS $=11 \mathrm{~V}$ to 76 V , $\mathrm{V}_{\mathrm{CSS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{HVIN}}=76 \mathrm{~V}$		4.4	6.4	
		From $\mathrm{V}_{\text {HVIN }}=76 \mathrm{~V}, \mathrm{~V}$ OPIO $=4 \mathrm{~V}$		7		
Standby Supply Current		VDCUVLO $=0 \mathrm{~V}$			1	mA

Note 1: Limits at $0^{\circ} \mathrm{C}$ are guaranteed by design, unless otherwise noted.
Note 2: The input offset current is illustrated in Figure 1.
Note 3: Effective differential input resistance is defined as the differential resistance between $\mathrm{V}+$ and $\mathrm{V}_{\text {EE }}$ without any external resistance.
Note 4: Classification current is turned off whenever the IC is in power mode.
Note 5: See Table 2 in the Classification Mode section. RDISC and RRCLASS must be $1 \%, 100 \mathrm{ppm}$ or better. ICLASS includes the IC bias current and the current drawn by RDISC.
Note 6: See the Thermal Dissipation section.
Note 7: When UVLO is connected to the midpoint of an external resistor-divider with a series resistance of $25.5 \mathrm{k} \Omega$ ($\pm 1 \%$), the turnon threshold set point for the power mode is defined by the external resistor-divider. Make sure the voltage on UVLO does not exceed its maximum rating of 8 V when $\mathrm{V}_{\mathbb{I N}}$ is at the maximum voltage.
Note 8: When VuVLO is below $\mathrm{V}_{T H, G, U V L O}$, the MAX5953A/MAX5953C set the turn-on voltage threshold internally (VUVLO,ON).
Note 9: An input voltage or VUVLO glitch below their respective thresholds shorter than or equal to tOFF_DLY does not cause the MAX5953A/MAX5953B/MAX5953C/MAX5953D to exit power-on mode (as long as the input voltage remains above an operable voltage level of 12 V).
Note 10: Guaranteed by design, not tested in production for MAX5953B/MAX5953D.
Note 11: PGOOD references to OUT while $\overline{P G O O D}$ references to $V_{E E}$.
Note 12: Output switching frequency is $1 / 2$ oscillator frequency.

Figure 1. Effective Differential Input Resistance/Offset Current

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Typical Operating Characteristics

$\left(V_{I N}=\left(V+-V_{E E}\right)=48 \mathrm{~V}, \mathrm{GATE}=\mathrm{PGOOD}=\right.$ unconnected, GND connected to OUT, HVIN connected to $\mathrm{V}+, \mathrm{UVLO}=\mathrm{V}_{\mathrm{EE}}, \mathrm{CINBIAS}=1 \mu \mathrm{~F}$, CREGOUT $=2.2 \mu F$, RRTCT $=25 \mathrm{k} \Omega$, CRTCT $=100 \mathrm{pF}, \mathrm{CBST}^{2}=0.22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$. All voltages are referenced to V_{EE}, unless otherwise noted.)

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

$\left(\mathrm{V}_{I N}=\left(\mathrm{V}+-\mathrm{V}_{\mathrm{EE}}\right)=48 \mathrm{~V}, \mathrm{GATE}=\mathrm{PGOOD}=\right.$ unconnected, GND connected to OUT, HVIN connected to $\mathrm{V}+, \mathrm{UVLO}=\mathrm{V}_{\mathrm{EE}}, \mathrm{CINBIAS}=1 \mu \mathrm{~F}$, CREGOUT $=2.2 \mu \mathrm{~F}$, RRTCT $=25 \mathrm{k} \Omega$, CRTCT $=100 \mathrm{pF}, \mathrm{CBST}=0.22 \mu \mathrm{~F}, \mathrm{TJ}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$. All voltages are referenced to V_{EE}, unless otherwise noted.)

regout voltage vs. INPUT VOLTAGE

REGOUT VOLTAGE
vs. INPUT VOLTAGE

HVIN INPUT CURRENT
vs. TEMPERATURE

REGOUT VOLTAGE
vs. TEMPERATURE

REGOUT VOLTAGE
vs. TEMPERATURE

HVIN AND INBIAS INPUT CURRENT vs. TEMPERATURE

REGOUT VOLTAGE
vs. LOAD CURRENT

REGOUT VOLTAGE vs. LOAD CURRENT

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Typical Operating Characteristics (continued)

$\left(V_{I N}=\left(\mathrm{V}+-\mathrm{V}_{\mathrm{EE}}\right)=48 \mathrm{~V}, \mathrm{GATE}=\mathrm{PGOOD}=\right.$ unconnected, GND connected to OUT, HVIN connected to $\mathrm{V}+, \mathrm{UVLO}=\mathrm{V}_{\mathrm{EE}}, \mathrm{CINBIAS}=1 \mu \mathrm{~F}$, CREGOUT $=2.2 \mu \mathrm{~F}$, RRTCT $=25 \mathrm{k} \Omega$, CRTCT $=100 \mathrm{pF}, \mathrm{CBST}=0.22 \mu \mathrm{~F}, \mathrm{TJ}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$. All voltages are referenced to V_{EE}, unless otherwise noted.)

FLTINT CURRENT
vs. TEMPERATURE

CURRENT-LIMIT COMPARATOR THRESHOLD vs. TEMPERATURE

FLTINT SHUTDOWN VOLTAGE
vs. TEMPERATURE

PPWM TO XFRMRL SKEW vs. TEMPERATURE

POWER MOSFETS RDS(ON) vs. TEMPERATURE

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

PIN	NAME	FUNCTION
$\begin{gathered} 1,2,3,5,7,12,13,14,17 \\ 19,35,38,46,47,48 \end{gathered}$	N.C.	No Connection. Not internally connected. Make no electrical connection to these pins.
4	V+	Positive Input Power. Referenced to V_{EE}.
$\begin{gathered} 6 \\ \text { (MAX5953A/MAX5953C) } \end{gathered}$	UVLO	Undervoltage Lockout Programming Input for PD Interface. UVLO is referenced to V_{EE}. When UVLO is above its threshold, the device enters the power mode. Connect UVLO to $V_{E E}$ to use the default undervoltage lockout threshold. Connect UVLO to the center of an external resistor-divider between $\mathrm{V}+$ and $\mathrm{V}_{E E}$ to define a threshold externally. The series resistance value of the external resistors must add to $25.5 \mathrm{k} \Omega(\pm 1 \%)$ and replaces the detection resistor. To keep the device in undervoltage lockout, drive UVLO between $V_{T H}$, U,UVLO and $V_{\text {REF,UVLO }}$.
$\begin{gathered} 6 \\ \text { (MAX5953B/MAX5953D) } \end{gathered}$	N.C.	No Connection. Not internally connected. Make no electrical connection to this pin.
8	RCLASS	Classification Setting for PD Interface. RCLASS is referenced to V_{EE}. Add a resistor from RCLASS to VEE to set a PD class (see Tables 1 and 2).
9	GATE	Gate of Internal Isolation n-Channel Power MOSFET. GATE is referenced to VEE. GATE sources $10 \mu \mathrm{~A}$ when the device enters power mode. Connect an external 100 V ceramic capacitor from GATE to OUT to program the inrush current. Drive GATE to VEE to turn off the internal MOSFET. The detection and classification functions operate normally when GATE is driven to $V_{E E}$.
10, 11	V_{EE}	Negative Input Power. Source of the integrated isolation n-channel power MOSFET.
15, 16	OUT	Output Voltage. OUT is referenced to $\mathrm{V}_{\text {EE }}$. OUT is connected to the drain of the integrated isolation n-channel power MOSFET. Connect OUT to GND.
18 (MAX5953A/MAX5953B)	PGOOD	Active-High, Open-Drain Power-Good Indicator Output for PD Interface. PGOOD is referenced to OUT. PGOOD goes high impedance when VOUT is within 1.2 V of $\mathrm{V}_{\text {EE }}$ and when $\mathrm{V}_{\text {GATE }}$ is 5 V above V_{EE}. Otherwise, PGOOD is internally pulled to OUT (given that Vout is at least 5 V below $\mathrm{V}+$). PGOOD can be connected directly to CSS or DCUVLO to enable/disable the DC-DC converter.
$\begin{gathered} 18 \\ \text { (MAX5953C/MAX5953D) } \end{gathered}$	$\overline{\text { PGOOD }}$	Active-Low, Open-Drain Power-Good Indicator Output for PD Interface. $\overline{\text { PGOOD }}$ is referenced to $V_{E E} . \overline{P G O O D}$ is pulled to $V_{E E}$ when $V_{O U T}$ is within 1.2 V of $\mathrm{V}_{E E}$ and when $V_{G A T E}$ is 5 V above V_{EE}. Otherwise, $\overline{\mathrm{PGOOD}}$ goes high impedance.
20	CS	Current-Sense Input for PWM Controller. CS is referenced to PGND. The current-limit threshold is internally set to 156 mV relative to PGND. The device has an internal noise filter. If necessary, connect an external RC filter from CS to PGND for additional filtering.
21	PPWM	PWM Pulse Output. Referenced to GND. PPWM leads the internal power MOSFET pulse by approximately 100ns.
22	GND	Signal Ground of PWM Controller. Connect GND to PGND.
23	PGND	Power Ground of the DC-DC Converter Power Stage. Connect PGND to GND.
24	CSS	Soft-Start Timing Capacitor Connection for PWM Controller. CSS is referenced to GND. Connect a $0.01 \mu \mathrm{~F}$ or greater ceramic capacitor from CSS to GND. Connect to PGOOD to automatically enable the PWM controller from the PD interface.

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Pin Description (continued)

PIN	NAME	FUNCTION
25	OPTO	PWM Comparator Inverting Input. OPTO is referenced to GND. Connect the collector of the optotransistor to OPTO and a pullup resistor to REGOUT.
26, 27	SRC	Source Connection of Low-Side Power MOSFET in the Two-Switch Power Stage of the DCDC Converter. Connect SRC to PGND with a low-value resistor for current limiting.
28, 29	XFRMRL	Low-Side Connection for the Isolation Transformer. Drain terminal of low-side power MOSFET in the two-switch power stage of the DC-DC converter.
30	DRVIN	Supply Input for the Gate-Driver of Internal Power MOSFETs. DRVIN is referenced to PGND. Bypass DRVIN with at least $0.1 \mu \mathrm{~F}$ to PGND. Connect DRVIN to REGOUT.
31,32	XFRMRH	High-Side Connection for the Isolation Transformer. Source connection of high-side power MOSFET in the two-switch power stage of the DC-DC converter.
33, 34	DRNH	Drain Connection of High-Side MOSFET in the Two-Switch Power Stage of the DC-DC Converter. Connect DRNH to the most positive rail of the input supply. Bypass DRNH appropriately to handle the heavy switching current through the transformer.
36	BST	Boost Input for the DC-DC Converter. BST is the boost connection point for the high-side MOSFET driver. Connect a minimum $0.1 \mu \mathrm{~F}$ capacitor from BST to XFRMRH with short and wide PC board traces.
37	DCUVLO	DC-DC Converter Undervoltage Lockout Input. DCUVLO is referenced to GND. Connect a resistor-divider from HVIN to DCUVLO to GND to set the UVLO threshold.
39	HVIN	DC-DC Converter Positive Input Power Supply. HVIN is referenced to GND. Connect HVIN to $\mathrm{V}+$.
40	INBIAS	Input from the Rectified Bias Winding to the DC-DC Converter. INBIAS is referenced to GND. INBIAS is the input to the internal linear voltage regulator (REGOUT).
41	REGOUT	Internal Regulator Output. REGOUT is used for the DC-DC converter gate driver. REGOUT is referenced to GND. VREGOUT is always present as long as HVIN is powered with a voltage above the DCUVLO threshold. Bypass REGOUT to GND with a minimum $2.2 \mu \mathrm{~F}$ ceramic capacitor.
42	RTCT	Oscillator Frequency Set Input for the PWM Controller. RTCT is referenced to GND. Connect a resistor from RTCT to REGOUT and a ceramic capacitor from RTCT to GND to set the oscillator frequency.
43	FLTINT	Fault Integration Input for PWM Controller. FLTINT is referenced to GND. During persistent current-limit faults, a capacitor connected to FLTINT is charged with an internal $80 \mu \mathrm{~A}$ current source. Switching is terminated when VFLTINT reaches 2.7V. An external resistor connected in parallel discharges the capacitor. Switching resumes when VFLTINT drops to 1.9 V .
44	RCFF	Feed-Forward Input for PWM Controller. RCFF is referenced to GND. To generate the PWM ramp, connect a resistor from RCFF to HVIN and a capacitor from RCFF to GND.
45	RAMP	Ramp Sense Input for PWM Controller. Connect RAMP to RCFF.
-	EP	Exposed Paddle. EP is internally unconnected and must be connected to $V_{E E}$ externally. To improve power dissipation, solder the exposed paddle to a copper pad on the PC board.

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

 Typical Application Circuit

Figure 2. RJ-45 Connector, PoE Magnetic, and Input Diode Bridges
\qquad

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

MAX5953A/MAX5953B/MAX5953C/MAX5953D

Figure 3. Typical Application Circuit

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

MAX5953A/MAX5953B/MAX5953C/MAX5953D

Figure 4. For higher power applications, the MAX5953A/MAX5953B/MAX5953C/MAX5953D can be used in a two-switch forward converter configuration

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Detailed Description

PD Interface

The MAX5953A/MAX5953B/MAX5953C/MAX5953D include complete interface function for a PD to comply with the IEEE 802.3af standard in a PoE system. They provide the PD with a detection signature, a classification signature, and an integrated isolation switch with programmable inrush current control. An integrated MOSFET provides PD isolation during detection and classification. All devices guarantee a leakage current offset of less than 10 A d during the detection phase. A programmable current limit prevents high inrush current during power-on. The device features power-mode UVLO with wide hysteresis and long deglitch time to compensate for twisted-pair-cable resistive drop and to assure glitch-free transition between detection, classification, and power-on/-off phases. The MAX5953A/ MAX5953C have an adjustable UVLO threshold with the default value compliant to the 802.3af standard, while the MAX5953B/MAX5953D have a lower and fixed UVLO threshold compatible with some legacy pre-802.3af PSE.

Table 1. PD Power Classification/ RRCLASS Selection

CLASS	USAGE	RRCLASS $(\boldsymbol{\Omega})$	MAXIMUM POWER USED BY PD (W)
0	Default	10 k	0.44 to 12.95
1	Optional	732	0.44 to 3.84
2	Optional	392	3.84 to 6.49
3	Optional	255	6.49 to 12.95
4	Not Allowed	178	Reserved *

*Class 4 reserved for future use.

Table 2. Setting Classification Current

Operating Modes
Depending on the input voltage ($\mathrm{V}_{\text {IN }}=\mathrm{V}_{+}-\mathrm{V}_{\mathrm{EE}}$), the PD front-end section of the MAX5953A/MAX5953B/ MAX5953C/MAX5953D operate in three different modes: PD detection signature, PD classification, and PD power. All voltage thresholds are designed to operate with or without the optional diode bridge while still complying with the IEEE 802.3af standard (see Figure 2).

Detection Mode (1.4V $\left.\leq V_{I N} \leq 10.1 V\right)$ In detection mode, the power source equipment (PSE) applies two voltages on V IN in the range of 1.4 V to 10.1 V (1 V step minimum), and records the corresponding current measurements at those two points. The PSE then computes $\Delta \mathrm{V} / \Delta \mathrm{l}$ to ensure the presence of the $25.5 \mathrm{k} \Omega$ signature resistor. In this mode, most interface circuitry of the MAX5953A/MAX5953B/MAX5953C/MAX5953D is off and the offset current is less than $10 \mu \mathrm{~A}$.

Classification Mode (12.6V $\leq V_{I N} \leq 20 \mathrm{~V}$) In the classification mode, the PSE classifies the PD based on the power consumption required by the PD. This allows the PSE to efficiently manage power distribution. The IEEE 802.3af standard defines five different classes as shown in Table 1. An external resistor (RRCLASS) connected from RCLASS to VEE sets the classification current.
The PSE determines the class of a PD by applying a voltage at the PD input and measuring the current sourced out of the PSE. When the PSE applies a voltage between 12.6 V and 20 V , the IC exhibits a current characteristic with values indicated in Table 2. The PSE uses the classification current information to classify the power requirement of the PD. The classification current includes the current drawn by the $25.5 \mathrm{k} \Omega$ detection signature resistor and the supply current of the IC so the total current drawn by the PD is within the IEEE 802.3af standard figures. The classification current is turned off whenever the device is in power mode.

CLASS	Rrclass (Ω)	VIN* (V)	CLASS CURRENT SEEN AT VIN (mA)		IEEE 802.3af PD CLASSIFICATION CURRENT SPECIFICATION (mA)	
			MIN	MAX	MIN	MAX
0	10k	12.6 to 20	0	2.00	0	4
1	732	12.6 to 20	9.17	11.83	9	12
2	392	12.6 to 20	17.29	19.71	17	20
3	255	12.6 to 20	26.45	29.55	26	30
4	178	12.6 to 20	36.60	41.40	36	44

[^1]
IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Abstract

Power Mode During power mode, when VIN rises above the undervoltage lockout threshold (VUVLO,ON), the IC gradually turns on the internal n-channel MOSFET Q1 (see Figure 8). The IC charges the gate of Q1 with a constant current source ($10 \mu \mathrm{~A}$, typ). The drain-to-gate capacitance of Q1 limits the voltage rise rate at the drain of the MOSFET, thereby limiting the inrush current. To further reduce the inrush current, add external drain-to-gate capacitance (see the Inrush Current Limit section). When the drain of Q1 is within 1.2 V of its source voltage and its gate-tosource voltage is above 5V, the MAX5953A/MAX5953B assert the PGOOD output (MAX5953C/MAX5953D assert the $\overline{\text { PGOOD }}$ output). The IC has a wide UVLO hysteresis and turn-off deglitch time to compensate for the high impedance of the twisted-pair cable.

Abstract

Undervoltage Lockout for PD Interface The IC operates up to a 67 V supply voltage with a default UVLO turn-on (VuVLo,on) set at 38.6V (MAX5953A/ MAX5953C) or 35.4 V (MAX5953B/MAX5953D) and a UVLO turn-off (VUVLO,OFF) set at 30V. The MAX5953A/ MAX5953C have an adjustable UVLO threshold using a resistor-divider connected to UVLO (see Figure 3). When the input voltage goes below the UVLO threshold for more than toFF_DLY, the MOSFET turns off. To adjust the UVLO threshold, connect an external resistor-divider from V+ to UVLO to VEE. Use the following equations to calculate R1 and R2 for a desired

 UVLO threshold:$$
\begin{gathered}
\mathrm{R} 2=25.5 \mathrm{k} \Omega \times \frac{\mathrm{V}_{\mathrm{REF}, \mathrm{UVLO}}}{\mathrm{~V}_{\text {IN,EX }}} \\
\mathrm{R} 1=25.5 \mathrm{k} \Omega-\mathrm{R} 2
\end{gathered}
$$

where VIN,EX is the desired UVLO threshold. Since the resistor-divider replaces the $25.5 \mathrm{k} \Omega$ PD detection resistor, ensure that the sum of R1 and R2 equals $25.5 \mathrm{k} \Omega$ $\pm 1 \%$. When using the external resistor-divider, MAX5953A/ MAX5953C have an external reference voltage hysteresis of 20% (typ). In other words, when UVLO is programmed externally, the turn-off threshold is 80% (typ) of the new UVLO threshold.

Inrush Current Limit

The IC charges the gate of the internal MOSFET with a constant current source ($10 \mu \mathrm{~A}, \mathrm{typ}$). The drain-to-gate capacitance of the MOSFET limits the voltage rise rate at the drain, thereby limiting the inrush current. Add an external capacitor from GATE to OUT to further reduce the inrush current. Use the following equation to calculate the inrush current:

$$
I_{\text {INRUSH }}=I_{G} \times \frac{C_{\text {OUT }}}{C_{G A T E}}
$$

The recommended typical inrush current for a PoE application is 100 mA .

PGOOD/PGOOD Output

PGOOD is an open-drain, active-high logic output. PGOOD goes high impedance when VOUT is within 1.2 V of $\mathrm{V}_{E E}$ and when $G A T E$ is 5 V above $\mathrm{V}_{E E}$. Otherwise, PGOOD is pulled to Vout (given that Vout is at least 5 V below $\mathrm{V}+$). Connect PGOOD directly to CSS to enable/disable the DC-DC converter. PGOOD is an open-drain, active-low logic output. $\overline{P G O O D}$ is pulled to $V_{E E}$ when Vout is within 1.2 V of V_{EE} and when GATE is 5 V above VEE. Otherwise, $\overline{\mathrm{PGOOD}}$ goes high impedance. Connect a $100 \mathrm{k} \Omega$ pullup resistor from $\overline{P G O O D}$ to $\mathrm{V}+$ if needed.

Thermal Dissipation
Thermal shutdown limits total power dissipation in the IC. If the junction temperature exceeds $+160^{\circ} \mathrm{C}$, thermal shutdown is enabled to turn off the MAX5953A/ MAX5953B/MAX5953C/MAX5953D, allowing the IC to cool. The IC turns on after the junction temperature cools by $20^{\circ} \mathrm{C}$.

DC-DC Converter The MAX5953A/MAX5953B/MAX5953C/MAX5953D isolated PWM power ICs feature integrated switching power MOSFETs connected in a voltage-clamped, two-transistor, power-circuit configuration. These devices can be used in both forward and flyback configurations with a wide 11 V to 76 V input voltage range. The voltageclamped power topology enables full recovery of stored magnetizing and leakage inductive energy for enhanced efficiency and reliability. A look-ahead signal for driving secondary-side synchronous rectifiers can be used to increase efficiency. A wide array of protection features include UVLO, overtemperature shutdown, and short-circuit protection with hiccup current-limit for enhanced performance and reliability. Operation up to 500 kHz allows smaller external magnetics and capacitors.

Power Topology

The two-switch forward-converter topology offers outstanding robustness against faults and transformer saturation while affording efficient use of 0.4Ω power MOSFETs. Voltage-mode control with feed-forward compensation allows the rejection of input supply disturbances within a single cycle similar to that of currentmode controlled topologies.

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

The two-switch power topology recovers energy stored in both the magnetizing and the parasitic leakage inductances of the transformer. The Typical Application Circuit, Figure 3, shows the schematic diagram of a -48 V input flyback converter using the MAX5953A. Figure 4 shows the schematic diagram of a -48 V input forward converter and a 5V, 3A output isolated power supply.

Voltage-Mode Control and the PWM Ramp For voltage-mode control, the feed-forward PWM ramp is generated at RCFF. From RCFF, connect a capacitor to GND and a resistor to HVIN. The ramp generated is applied to the noninverting input of the PWM comparator at RAMP and has a minimum voltage of approximately 2 V . The slope of the ramp is determined by the voltage at HVIN and affects the overall loop gain. The ramp peak must remain below the 5.5 V dynamic range of RCFF. Assuming the maximum duty cycle approaches 50% at a minimum input voltage (PWM UVLO turnon threshold), use the following formula to calculate the minimum value of either the ramp capacitor or resistor:

$$
R_{\text {RCFF }} \times C_{\text {RCFF }} \geq \frac{V_{I N, E X}}{2 \times f_{S} \times V_{R(P-P)}}
$$

where fs is the switching frequency, $\mathrm{V}_{R(P-P)}$ is the peak-to-peak ramp voltage (2V, typ). Select RRCFF resistance value between $200 \mathrm{k} \Omega$ and $600 \mathrm{k} \Omega$.
Maximize the signal-to-noise ratio by setting the ramp peak as high as possible. Calculate the low-frequency, small-signal gain of the power stage (the gain from the inverting input of the PWM comparator to the output) using the following formula:

$$
\text { GPS }=\text { NSP } \times \text { RRCFF } \times \text { CRCFF } \times f S
$$

where NSP is the secondary to primary power transformer turns ratio.

Secondary-Side Synchronization

The MAX5953A/MAX5953B/MAX5953C/MAX5953D provide convenient synchronization for optional sec-ondary-side synchronous rectifiers. Figure 5 shows the connection diagram with a high-speed optocoupler. Choose an optocoupler with a propagation delay of less than 80 ns . The synchronizing pulse is generated approximately 110 ns ahead of the main pulse that drives the two power MOSFETs.

Undervoltage Lockout for DC-DC Converter

Connect PGOOD to DCUVLO to ensure the PD interface is ready prior to the DC-DC converter. The DCUVLO block monitors the input voltage at HVIN through an
external resistive divider (R16 and R17) connected to DCUVLO (see Figure 3). Use the following equation to calculate R16 and R17:

$$
V_{\text {DCUVLOIN }}=V_{\text {DCUVLO }} \times\left(1+\frac{R 16}{R 17}\right)
$$

where VDCUVLOIN is the desired input voltage lockout level and VDCUVLO is the undervoltage lockout threshold (1.25V, typ). Select the R17 resistance value between $100 \mathrm{k} \Omega$ and $500 \mathrm{k} \Omega$.

Optocoupled Feedback

Isolated voltage feedback is achieved by using an optocoupler as shown in Figure 3. Connect the collector of the optotransistor to OPTO and a pullup resistor between OPTO and REGOUT.

Internal Regulators
As soon as power is provided to HVIN, internal power supplies power the DCUVLO detection circuitry. REGOUT is used to drive the internal power MOSFETs. Bypass REGOUT to GND with a minimum $2.2 \mu \mathrm{~F}$ ceramic capacitor. The HVIN LDO steps down VHVIN to a nominal output voltage (VREGOUT) of 8.75 V . A second parallel LDO powers REGOUT from INBIAS. A tertiary winding connected through a diode to INBIAS powers up REGOUT once switching commences. This powers REGOUT to 10.5 V (typ) and shuts off the current flowing from HVIN to REGOUT. This results in a lower onchip power dissipation and higher efficiency.

Figure 5. Secondary-Side Synchronous Rectifier Driver Using a High-Speed Optocoupler

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Soft-Start

Program the MAX5953A/MAX5953B/MAX5953C/ MAX5953D soft-start with an external capacitor (Ccss) connected between CSS and GND. When the device turns on, Ccss charges with a constant current of $33 \mu \mathrm{~A}$, ramping up to 7.3 V . During this time, the feedback input (OPTO) is clamped to V CSs +0.6 V . This initially holds the duty cycle lower than the value the regulator imposes, thus preventing voltage overshoot at the output. When the IC turns off, the soft-start capacitor internally discharges to GND.

Oscillator

The oscillator is externally programmable through a resistor connected from RTCT to REGOUT and a capacitor connected from RTCT to GND. The PWM frequency is one-half the frequency seen at RTCT with a 50% duty cycle. Use the following formula to calculate the oscillator components:

$$
R_{\text {RTCT }} \cong \frac{1}{2 f_{s}\left(C_{\text {RTCT }}+C_{\text {PCB }}\right) \ln \left(\frac{V_{\text {REGOUT }}}{V_{\text {REGOUT }}-V_{T H, R T C T}}\right)}
$$

where CPCB is the stray capacitance on the PC board (14pF, typ), VTH,RTCT is the RTCT peak trip level, and fs is the switching frequency.

Integrating Fault Protection

The integrating fault protection feature allows the IC to ignore transient overcurrent conditions for a programmable amount of time, giving the power-supply time to behave like a current source to the load. This can happen, for example, under load-current transients when the control loop requests maximum current to keep the output voltage from going out of regulation. The ignore time is programmed externally by connecting a capacitor from FLTINT to GND. Under sustained overcurrent faults, the voltage across this capacitor ramps up toward the FLTINT shutdown threshold (2.7V, typ). When Vfltint reaches the shutdown threshold, the power supply shuts down. A high-value bleed resistor connected in parallel with the FLTINT capacitor allows the capacitor to discharge toward the restart threshold (1.9V, typ). FLTINT drops to the restart threshold allowing for soft-starting the supply again.
The fault integration circuit works by forcing an $80 \mu \mathrm{~A}$ current into FLTINT for one clock cycle every time the current-limit comparator ILIM (Figure 9) trips. Use the following formula to calculate the approximate capacitor needed for the desired shutdown time:

$$
\mathrm{C}_{\text {FLTINT }} \cong \frac{\mathrm{I}_{\mathrm{FLTINT}} \times \mathrm{t}_{\mathrm{SH}}}{1.4}
$$

where IFLTIN is typically $80 \mu \mathrm{~A}$, and tSH is the desired ignore time during which current-limit events from the current-limit comparator are ignored.
This is an approximate formula; some testing may be required to fine tune the actual value of the capacitor.
Calculate the approximate bleed resistor needed for the desired recovery time using the following formula:

$$
R_{\text {FLTINT }} \cong \frac{t_{\text {RT }}}{C_{\text {FLTINT }} \times 0.3514}
$$

where tRT is the desired recovery time.
Choose tRT $\geq 10 \times \mathrm{tSH}$. Typical values for tSH can range from a few hundred microseconds to a few milliseconds.

Shutdown

Shut down the controller section of the IC by driving DCUVLO to GND using an open-collector or open-drain transistor connected to GND. The DC-DC converter section shuts down if REGOUT is below its DCUVLO level.

Current-Sense Comparator

The current-sense (CS) comparator and its associated logic limit the peak current through the internal MOSFET. Current is sensed at CS as a voltage across a sense resistor between the source of the MOSFET and GND. The power MOSFET switches off when the voltage at CS reaches 156 mV . Select the current-sense resistor, RSENSE, according to the following equation:

$$
\text { RSENSE }=0.156 \mathrm{~V} / \text { LLimPrimary }
$$

where ILimPrimary is the maximum peak primary-side current.
To reduce switching noise, connect CS to an external RC lowpass filter for additional filtering (Figure 3).

Applications Information

Design Example
 Design Example 1: PD with three-output flyback DCDC converter

Figure 6 shows an isolated three-output flyback DC-DC converter. It provides output voltages of 10 V at 30 mA , 5.1 V at 1.8 A , and 2.55 V at 5.4 A .

Design Example 2: PD with nonisolated step-down (buck) converter
Figure 7 shows a buck converter with 12V, 0.75A output. Caution: this converter does not have active current limit.

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

MAX5953A/MAX5953B/MAX5953C/MAX5953D

Figure 6. PD with Three-Output Flyback DC-DC Converter

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Figure 7. PD with Nonisolated Step-Down (Buck) Converter

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Table 3. Component Suppliers

COMPONENT	SUPPLIERS	
Power FETS	International Rectifier	www.irf.com
	Fairchild	www.fairchildsemi.com
	Vishay-Siliconix	www.vishay.com/brands/siliconix/main.html
Current-Sense Resistors	Dale-Vishay	www.vishay.com/brands/dale/main.html
	IRC	www.irctt.com/pages/index.cfm
Diodes	ON Semi	www.onsemi.com
	General Semiconductor	www.gensemi.com
	Central Semiconductor	www.centralsemi.com
Capacitors	Sanyo	www.sanyo.com
	Taiyo Yuden	www.t-yuden.com
	AVX	www.avxcorp.com
Magnetics	Coiltronics	www.cooperet.com
	Coilcraft	www.pulseeng.com
	Pulse Engineering	

Layout Recommendations
All connections carrying pulsed currents must be very short, as wide as possible, and have a ground plane as a return path. The inductance of these connections must be kept to a minimum due to the high di/dt of the currents in high-frequency-switching power converters.

Current loops must be analyzed in any layout proposed, and the internal area kept to a minimum to reduce radiated EMI. Ground planes must be kept as intact as possible.

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Figure 8. Powered Device Interface Block Diagram
\qquad

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Block Diagrams (continued)

Figure 9. DC-DC Converter Block Diagram (Voltage-Mode PWM Controller and Two-Switch Power Stage)

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

 Typical Operating Circuit
\qquad

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Pin Configuration

Selector Guide \qquad Chip Information

PART	PGOOD or PGOOD	UVLO
MAX5953A	PGOOD	Adjustable
MAX5953B	PGOOD	Fixed
MAX5953C	$\overline{\text { PGOOD }}$	Adjustable
MAX5953D	$\overline{\text { PGOOD }}$	Fixed

PROCESS: BiCMOS

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

IEEE 802.3af PD Interface and PWM Controllers with Integrated Power MOSFETs

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

[^0]: IEEE 802.3af Powered Devices
 IP Phones
 Wireless Access Nodes

[^1]: *VIN is measured across the MAX5953A/MAX5953B/MAX5953C/MAX5953D input pins ($V+-V_{E E}$), which do not include the diode bridge voltage drop.

