

Quad Network Power Controller for Power-Over-LAN

Abstract

General Description The MAX5945 quad network power controller is designed for use in IEEE 802.3af-compliant power-sourcing equipment (PSE). The device provides power devices (PD) discovery, classification, current-limit, and both DC and AC load disconnect detections. The MAX5945 can be used in either endpoint PSE (LAN switches/routers) or midspan PSE (power injector) applications. The MAX5945 is pin and function compatible with LTC4259A. The MAX5945 can operate autonomously or be controlled by software through an $\mathrm{I}^{2} \mathrm{C}^{*}$-compatible interface. Separate input and output data lines (SDAIN and SDAOUT) allow usage with optocouplers. The MAX5945 is a slave device. Its four address inputs allow 16 unique MAX5945 addresses. A separate INT output and four independent shutdown inputs ($\overline{\mathrm{SHD}}$ _) allow fast response from a fault to port shutdown. A $\overline{R E S E T}$ input allows hardware reset of the device. A special watchdog feature allows the hardware to gracefully take over control if the software crashes. A cadence timing feature allows the MAX5945 to be used in midspan systems. The MAX5945 is fully software configurable and programmable. A class-overcurrent detection function enables system power management to detect if a PD draws more current than the allowable amount for its class. Other features are input under/overvoltage lockout, overtemperature protection, output-voltage slew-rate limit during startup, power-good, and fault status. The MAX5945's programmability includes gate-charging current, currentlimit threshold, startup timeout, overcurrent timeout, autorestart duty cycle, PD disconnect AC detection threshold, and PD disconnect detection timeout. The MAX5945 is available in a 36 -pin SSOP package and is rated for both extended $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ and commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ temperature ranges.

Applications
Power-Sourcing Equipment (PSE)
Power-Over-LAN/Power-Over-Ethernet Switches/Routers
Midspan Power Injectors
*Purchase of ${ }^{2}{ }^{2}$ C components from Maxim Integrated Products, Inc. or one of its sublicensed Associated Companies, conveys a license under the Philips ${ }^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} C$ system, provided that the system conforms to the $1^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Typical Operating Circuits appear at end of data sheet.

Features

- IEEE 802.3af Compliant
- Pin and Function Compatible with LTC4259A
- Controls Four Independent, -48V-Powered Ethernet Ports in Either Endpoint or Midspan PSE Applications
- Wide Digital Power Input, VdIG, Common-Mode Range: VEE to (AGND + 7.7V)
- PD Violation of Class Current Protection
- PD Detection and Classification
- Provides Both DC and AC Load Removal Detections
- I^{2} C-Compatible, 3-Wire Serial Interface
- Fully Programmable and Configurable Operation Through I ${ }^{2}$ C Interface
- Current Foldback and Duty-CycleControlled/Programmable Current Limit
- Short-Circuit Protection with Fast Gate Pulldown
- Direct Fast Shutdown Control Capability
- Programmable Direct Interrupt Output
- Watchdog Mode Enable Hardware Graceful Takeover

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5945CAX**	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	36 SSOP
MAX5945EAX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 SSOP

${ }^{* *}$ Future product-contact factory for availability.
Pin Configuration

Quad Network Power Controller for Power-Over-LAN

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to V_{EE}, unless otherwise noted.)
AGND, DGND, DET_, VDD, RESET, A3, A2, A1, A0, SHD_,
OSC_IN, SCL, SDAIN, OUT_ and AUTO............-0.3V to +80 V GATE_(internally clamped, Note 1)....................-0.3V to +11.4 V
SENSE_ ..-0.3V to +24V
VDD, $\overline{R E S E T}, A 3, A 2, A 1, A 0, \overline{S H D}_{-}, O S C _I N, S C L, S D A I N$ and
AUTO to DGND
.-0.3 V to +7 V
INT and SDAOUT to DGND....................................-0.3V to +12 V
Maximum Current into INT, SDAOUT, DET \qquad .80 mA

Note 1: GATE_ is internally clamped to 11.4 V above $\mathrm{V}_{\text {EE }}$. Driving GATE_ higher than 11.4 V above $\mathrm{V}_{\text {EE }}$ may damage the device.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(AGND $=+32 \mathrm{~V}$ to $+60 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$ to $\mathrm{DGND}=+3.3 \mathrm{~V}$, all voltages are referenced to V_{EE}, unless otherwise noted. Typical values are at AGND $=+48 \mathrm{~V}, \mathrm{DGND}=+48 \mathrm{~V}, \mathrm{~V} D=(\mathrm{DGND}+3.3 \mathrm{~V}), \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Currents are positive when entering the pin and negative otherwise.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
POWER SUPPLIES							
Operating Voltage Range	$V_{\text {AGND }}$	$V_{\text {AGND }}-\mathrm{V}_{\text {EE }}$		32		60	V
	VDGND			0		60	
	$V_{D D}$	$V_{\text {DD }}$ to $\mathrm{V}_{\text {DGND }}, \mathrm{V}_{\text {DGND }}=\mathrm{V}_{\text {AGND }}$		1.71		5.50	
		$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {DGND }}, \mathrm{V}_{\text {DGND }}=\mathrm{V}_{\text {EE }}$		3.0		5.5	
Supply Currents	Iee	OUT_ = VEE, SENSE_ = VEE, DET_ = AGND, all logic inputs open, $\mathrm{SCL}=\mathrm{SDAIN}=\mathrm{V}_{\mathrm{DD}}$, INT and SDAOUT open; measured at AGND in power mode after GATE_ pullup			4.2	6.8	mA
	IDIG	All logic inputs high, measured at $V_{\text {DD }}$			2.7	5.6	
GATE DRIVER AND CLAMPING							
GATE_Pullup Current	IPU	Power mode, gate drive on, $\mathrm{V}_{\mathrm{GATE}}=\mathrm{V}_{\mathrm{EE}}$ (Note 2)		-40	-50	-60	$\mu \mathrm{A}$
Weak GATE_Pulldown Current	IPDW	$\overline{S H D}_{-}=$DGND, $\mathrm{V}_{\mathrm{GATE}}^{-}=\mathrm{V}_{\mathrm{EE}}+5 \mathrm{~V}$		30	40	50	$\mu \mathrm{A}$
Maximum Pulldown Current	IPDS	$\mathrm{V}_{\text {SENSE }}=1 \mathrm{~V}, \mathrm{~V}_{\text {GATE_- }}=\mathrm{V}_{\text {EE }}+2 \mathrm{~V}$			100		mA
External Gate Drive	VGS	$\mathrm{V}_{\text {GATE }}-\mathrm{V}_{\text {EE }}$, power mode, gate drive on		9	10	11	V
CURRENT LIMIT							
Current-Limit Clamp Voltage	VSU_LIM	Maximum VSENSE_ allowed during current limit, Vout_ = VEE (Note 3)		202	212	220	mV
Overcurrent Threshold After Startup	VFLT_LIM	Overcurrent VSENSE_ threshold allowed for $\mathrm{t} \leq \mathrm{t}$ FAULT after startup; VOUT_ = VEE	Default, class 0, class 3, class 4	178.5		196	mV
			Class 1	49		61	
			Class 2	90		104	
Foldback Initial OUT_ Voltage	VFLBK_ST	Vout_ - VEE, above which the current-limit trip voltage starts folding back			30		V
Foldback Final OUT_ Voltage	VFLBK_END	Vout_ - VEE, above which the current-limit trip voltage reaches VTH_FB			50		V

Quad Network Power Controller for Power-Over-LAN

ELECTRICAL CHARACTERISTICS (continued)

(AGND $=+32 \mathrm{~V}$ to $+60 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$ to $\mathrm{DGND}=+3.3 \mathrm{~V}$, all voltages are referenced to V_{EE}, unless otherwise noted. Typical values are at AGND $=+48 \mathrm{~V}, \mathrm{DGND}=+48 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=(\mathrm{DGND}+3.3 \mathrm{~V}), \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Currents are positive when entering the pin and negative otherwise.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Minimum Foldback CurrentLimit Threshold	VTH_FB	$\mathrm{V}_{\text {OUT_ }}=\mathrm{V}_{\text {AGND }}$		64		mV
SENSE_ Input Bias Current		$\mathrm{V}_{\text {SENSE__ }}=\mathrm{V}_{\text {EE }}$			-2	$\mu \mathrm{A}$
SUPPLY MONITORS						
$V_{\text {EE }}$ Undervoltage Lockout	VEEUVLO	$\mathrm{V}_{\text {AGND }}-\mathrm{V}_{\mathrm{EE}}$, (V $\left.\mathrm{V}_{\text {AGND }}-\mathrm{V}_{\text {EE }}\right)$ increasing	27	28.5	30	V
$V_{E E}$ Undervoltage-Lockout Hysteresis	VEEUVLOH			3		V
$V_{E E}$ Overvoltage	VEE_OV	$\left(V_{A G N D}-V_{E E}\right)>V_{\text {EE_ }} O V, V_{\text {AGND }}$ increasing	61	62.5	64	V
Vee Overvoltage Hysteresis	Vovi			1		V
VEE Undervoltage	VEE_UV	$\left(V_{\text {AGND }}-V_{E E}\right)<\mathrm{V}_{\text {EE_U }}$ UV, $\mathrm{V}_{\text {AGND }}$ decreasing	39	40	41	V
$V_{\text {DD }}$ Overvoltage	VDD_OV	$\left(V_{D D}-V_{\text {DGND }}\right)>\mathrm{V}_{\text {DD }}$ OV, $\mathrm{V}_{\text {DD }}$ increasing	3.57	3.71	3.90	V
VDD Undervoltage	VDD_UV	$\left(V_{D D}-V_{\text {DGND }}\right)$ < VDD_UV, VDD decreasing	2.55	2.82	2.97	V
VDD Undervoltage Lockout	VDDUVLO	Device operates when (VDD - VDGND) > VDDUVLO, VDD increasing			1.7	V
VDD Undervoltage-Lockout Hysteresis	VDDHYS			120		mV
Thermal-Shutdown Threshold	TSHD	Ports shut down and device resets if its junction temperature exceeds this limit, temperature increasing		+150		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis	TSHDH			20		${ }^{\circ} \mathrm{C}$
OUTPUT MONITOR						
OUT_ Input Current	IBOUT	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {AGND }}$, all modes			2	$\mu \mathrm{A}$
Idle Pullup Current at OUT_	IDIS	OUT_ discharge current, detection and classification off, port shutdown, $\text { VOUT_ }_{-}=\text {V }_{\text {AGND }}-2.8 \mathrm{~V}$	200		260	$\mu \mathrm{A}$
PGOOD High Threshold	PGTH	VoUt_ - VEE, OUT_ decreasing	1.8	2.0	2.2	V
PGOOD Hysteresis	PGHYS			220		mV
PGOOD Low-to-High Glitch Filter	tPGOOD	Minimum time PGOOD has to be high to set bit in register 10h	2		4	ms
LOAD DISCONNECT						
DC Load Disconnect Threshold	V ${ }_{\text {DCTH }}$	Minimum VSENSE allowed before disconnect (DC disconnect active), Vout_ = VEE	3	4	5	mV

Quad Network Power Controller for Power-Over-LAN

ELECTRICAL CHARACTERISTICS (continued)

(AGND $=+32 \mathrm{~V}$ to $+60 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$ to $\mathrm{DGND}=+3.3 \mathrm{~V}$, all voltages are referenced to V_{EE}, unless otherwise noted. Typical values are at AGND $=+48 \mathrm{~V}, \mathrm{DGND}=+48 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=(\mathrm{DGND}+3.3 \mathrm{~V}), \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Currents are positive when entering the pin and negative otherwise.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
AC Load Disconnect Threshold (Note 4)	$I_{\text {ACTH }}$	Current into DET_, ACD_EN_ bit = high, OSC_IN = 2.2V		300	325	350	$\mu \mathrm{A}$
Oscillator Buffer Gain	Aosc	```VDET_/ VOSC_IN, ACD_EN_ bit = high, CDET = 400nF```		2.92	2.98	3.04	V/V
OSC_IN Fail Threshold (Note 5)	VOSC_FAIL	Port will not power on if VOSC_IN < VOSC_FAIL and ACD_EN_ bit = high		1.8	1.9	2.1	V
OSC_IN Input Resistance	Zosc	OSC_IN input impedance when all the ACD_EN_ are active		100			k Ω
OSC_IN Input Capacitance	Cosc_IN				5		pF
Load Disconnect Timer	tDISC	Time from VSENSE < VDCTH or current into DET_ $<I_{\text {ACTH }}$ to gate shutdown (Note 6)		300		400	ms
DETECTION							
Detection Probe Voltage (First Phase)	VDPH1	VAGND - V DET__ $^{\text {during the first detection phase }}$		3.8	4	4.2	V
Detection Probe Voltage (Second Phase)	VDPH2	VAGND - VDET_ during the second detection phase		9.0	9.3	9.6	V
Current-Limit Protection	IDLIM	$V_{\text {DET_ }}=V_{\text {AGND }}$, during detection, measure current through DET_		1.5	1.75	2.0	mA
Short-Circuit Threshold	VDCP	If $\mathrm{V}_{\text {AGND }}-\mathrm{V}_{\text {OUT }}$ < $\mathrm{V}_{\text {DCP }}$ after the first detection phase a short circuit to AGND is detected			1.62		V
Open-Circuit Threshold	ID_OPEN	First point measurement current threshold for open condition			12.5		$\mu \mathrm{A}$
Resistor Detection Window	RDOK	(Note 7)		18.6		26.5	k Ω
Resistor Rejection Window	RDbad	Detection rejects lower values				16	
		Detection rejects higher values		30			
CLASSIFICATION							
Classification Probe Voltage	$V_{C L}$	$V_{\text {AGND }}-V_{\text {DET__ }}$ during classification		16		20	V
Current-Limit Protection	ICILIM	$V_{D E T}=V_{A G N D}$, during classification, measure current through DET_		50		75	mA
Classification Current Thresholds	ICL	Classification current thresholds between classes	Class 0, class 1	5.5	6.5	7.5	mA
			Class 1, class 2	13.5	14.5	15.5	
			Class 2, class 3	21.5	23	24.5	
			Class 3, class 4	31	33	35	
			>Class 4	45	48	51	
DIGITAL INPUTS/OUTPUTS (REFERRED to DGND)							
Digital Input Low	$\mathrm{V}_{\text {IL }}$					0.9	V
Digital Input High	V_{IH}			2.4			V

Quad Network Power Controller for Power-Over-LAN

ELECTRICAL CHARACTERISTICS (continued)

(AGND $=+32 \mathrm{~V}$ to $+60 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$ to $\mathrm{DGND}=+3.3 \mathrm{~V}$, all voltages are referenced to V_{EE}, unless otherwise noted. Typical values are at $A G N D=+48 \mathrm{~V}$, DGND $=+48 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=(\mathrm{DGND}+3.3 \mathrm{~V}), \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Currents are positive when entering the pin and negative otherwise.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Internal Input Pullup/Pulldown Resistor	RDin	Pullup (pulldown) resistor to VDD (DGND) to set default level		25	50	75	k Ω
Open-Drain Output Low Voltage	Vol	$\mathrm{ISINK}=15 \mathrm{~mA}$				0.4	V
Open-Drain Leakage	IOL	Open-drain high impedance, $\mathrm{V}_{\mathrm{O}}=3.3 \mathrm{~V}$				2	$\mu \mathrm{A}$
TIMING							
Startup Time	tstart	Time during which a current limit set by VSU_LIM is allowed, starts when the GATE_ is turned on (Note 8)		50	60	70	ms
Fault Time	trault	Maximum allowed time for an overcurrent condition set by VFLT_LIM after startup (Note 8)		50	60	70	ms
Port Turn-Off Time	toff	Minimum delay between any port turning off, does not apply in the case of a reset		0.5	0.75	1.0	ms
Detection Time	tDET	Maximum time allowed before detection is completed				320	ms
Midspan Mode Detection Delay	tDMID			2.0		2.4	S
Classification Time	tclass	Time allowed for classification				40	ms
Veeuvio Turn-On Delay	tDLY	Time $\mathrm{V}_{\text {AGND }}$ must be above the $\mathrm{V}_{\text {EEUVLO }}$ thresholds before the device operates		2		4	ms
Restart Timer	trestart	Time a port has to wait before turning on after an overcurrent fault, RSTR_EN bit = high	RSTR bits $=00$		$16 x$ tFAULT		ms
			RSTR bits $=01$		$\begin{gathered} 32 \times \\ \text { tFAULT } \end{gathered}$		
			RSTR bits $=10$		$\begin{gathered} 64 \times \\ \text { tFAULT } \end{gathered}$		
			RSTR bits $=11$		0		
Watchdog Clock Period	twD	Rate of decrement of the watchdog timer			164		ms
TIMING CHARACTERISTICS for 2-WIRE FAST MODE (Figures 5 and 6)							
Serial Clock Frequency	fSCL	(Note 9)				400	kHz
Bus Free Time Between a STOP and a START Condition	tBuF	(Note 9)		1.2			$\mu \mathrm{s}$
Hold Time for Start Condition	thD, STA	(Note 9)		0.6			$\mu \mathrm{s}$
Low Period of the SCL Clock	tLow	(Note 9)		1.2			$\mu \mathrm{s}$
High Period of the SCL Clock	tHIGH	(Note 9)		0.6			$\mu \mathrm{s}$

Quad Network Power Controller for Power-Over-LAN

ELECTRICAL CHARACTERISTICS (continued)

(AGND $=+32 \mathrm{~V}$ to $+60 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}$ to $\mathrm{DGND}=+3.3 \mathrm{~V}$, all voltages are referenced to V_{EE}, unless otherwise noted. Typical values are at $\mathrm{AGND}=+48 \mathrm{~V}, \mathrm{DGND}=+48 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=(\mathrm{DGND}+3.3 \mathrm{~V}), \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Currents are positive when entering the pin and negative otherwise.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Setup Time for a Repeated START Condition (Sr)	tSU, STA	(Note 9)	0.6		$\mu \mathrm{s}$
Data Hold Time	thD, DAT	(Note 9)	0	150	ns
Data Setup Time	tsu, DAT	(Note 9)	100		ns
Rise Time of Both SDA and SCL Signals, Receiving	tR	(Note 9)	$20+0.1 C_{B}$	300	ns
Fall Time of SDA Transmitting	tF	(Note 9)	$20+0.1 C_{B}$	300	ns
Setup Time for STOP Condition	tsu, STO	(Note 9)	0.6		$\mu \mathrm{s}$
Capacitive Load for Each Bus Line	Св	(Note 9)		400	pF
Pulse Width of Spike Suppressed	tSP	(Note 9)		50	ns

Note 2: Default values. The charge/discharge currents are programmable through the serial interface (see the Register Map and Description section).
Note 3: Default values. The current-limit thresholds are programmed through the $\mathrm{I}^{2} \mathrm{C}$-compatible serial interface (see the Register Map and Description section).
Note 4: This is the default value. Threshold can be programmed through serial interface R23h[2:0].
Note 5: AC disconnect works only if $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{DGND}} \geq 3 \mathrm{~V}$.
Note 6: tDISC can also be programmed through the serial interface (R29h) (see the Register Map and Description section).
Note 7: R D $_{\text {= (VOUT_2 }}$ - VOUT_1) / (IDET_2 - $I_{\text {DET_1 }} 1$. VOUT_1, VOUT_2, $I_{\text {DET_2 }}$ and $I_{\text {DET_1 }}$ represent the voltage at OUT_ and the current at DET_ during phase 1 and 2 of the detection.
Note 8: Default values. The startup and fault times can also be programmed through the $\mathrm{I}^{2} \mathrm{C}$ serial interface (see the Register Map and Description section).
Note 9: Guaranteed by design. Not subject to production testing.

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{EE}}=-48 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{AUTO}=\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \overline{\mathrm{RESET}}=\overline{\mathrm{SHD}}=\right.$ unconnected, RSENSE $=0.5 \Omega$, all registers $=$ default setting, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

6

Quad Network Power Controller for Power-Over-LAN

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{EE}}=-48 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{AUTO}=\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \overline{\mathrm{RESET}}=\overline{\mathrm{SHD}} \mathrm{I}_{-}=\right.$unconnected, RSENSE $=0.5 \Omega$, all registers $=$ default setting, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Quad Network Power Controller for Power-Over-LAN

Typical Operating Characteristics (continued)

$\left(V_{E E}=-48 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{AUTO}=\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \overline{\mathrm{RESET}}=\overline{\mathrm{SHD}} \mathrm{I}_{-}=\right.$unconnected, RSENSE $=0.5 \Omega$, all registers $=$ default setting,

 $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SHORT-CIRCUIT RESPONSE TIME

ZERO-CURRENT DETECTION WAVEFORM

Quad Network Power Controller for Power-Over-LAN

Typical Operating Characteristics (continued)
$\left(V_{E E}=-48 \mathrm{~V}, \mathrm{~V} D=+3.3 \mathrm{~V}, \mathrm{AUTO}=\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \overline{\mathrm{RESET}}=\overline{\mathrm{SHD}}{ }_{-}=\right.$unconnected, RSENSE $=0.5 \Omega$, all registers $=$ default setting, $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

STARTUP IN MIDSPAN MODE WITH VALID PD ($25 \mathrm{k} \Omega$ AND 0.14 F)

Quad Network Power Controller for Power-Over-LAN

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{EE}}=-48 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{AUTO}=\mathrm{AGND}=\mathrm{DGND}=0 \mathrm{~V}, \overline{\mathrm{RESET}}=\overline{\mathrm{SHD}}-=\right.$ unconnected, RSENSE $=0.5 \Omega$, all registers $=$ default setting, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

DETECTION WITH OUTPUT SHORTED

DETECTION WITH INVALID PD (OPEN CIRCUIT, USING TYPICAL OPERATING CIRCUIT 2)

$100 \mathrm{~ms} /$ div

$400 \mathrm{~ms} / \mathrm{div}$

DETECTION WITH INVALID PD (OPEN CIRCUIT, USING TYPICAL OPERATING CIRCUIT 1)

STARTUP WITH DIFFERENT PD CLASSES

Quad Network Power Controller for Power-Over-LAN

Pin Description

PIN	NAME	FUNCTION
1	$\overline{\text { RESET }}$	Hardware Reset. Pull $\overline{\text { RESET }}$ low for at least $300 \mu \mathrm{~s}$ to reset the device. All internal registers reset to their default value. The address (A0-A3), and AUTO and MIDSPAN input logic levels latch on during low-to-high transition of RESET. Internally pulled up to V_{DD} with $50 \mathrm{k} \Omega$ resistor.
2	MIDSPAN	MIDSPAN Mode Input. An internal 50k Ω pulldown resistor to DGND sets the default mode to endpoint PSE operation (power-over-signal pairs). Pull MIDSPAN TO VDIG to set MIDSPAN operation. The MIDSPAN value latches after the IC is powered up or reset (see the PD Detection section).
3	$\overline{\text { INT }}$	Open-Drain Interrupt Output. INT goes low whenever a fault condition exists. Reset the fault condition using software or by pulling RESET low (see the Interrupt section of the Detailed Description for more information about interrupt management).
4	SCL	Serial Interface Clock Line
5	SDAOUT	Serial Output Data Line. Connect the data line optocoupler input to SDAOUT (see the Typical Application Circuit). Connect SDAOUT to SDAIN if using a 2 -wire $I^{2} \mathrm{C}$-compatible system.
6	SDAIN	Serial Interface Input Data Line. Connect the data line optocoupler output SDAIN (see the Typical Application Circuit). Connect SDAIN to SDAOUT if using a 2 -wire wire I ${ }^{2} \mathrm{C}$-compatible system.
7-10	A3, A2, A1, A0	Address Bits. A3, A2, A1, and A0 form the lower part of the device's address. Address inputs default high with an internal $50 \mathrm{k} \Omega$ pullup resistor to V_{DD}. The address values latch when V_{DD} or $\mathrm{V}_{E E}$ ramps up and exceeds its UVLO threshold or after a reset. The 3 MSB bits of the address are set to 010.
11-14	DET1, DET2, DET3, DET4	Detection and Classification Voltage Outputs. Use DET1 to set the detection and classification probe voltages on port 1. Use DET1 for the AC voltage sensing of port 1 when using the AC disconnect scheme (see the Typical Application Circuit).
15	DGND	Connect to Digital Ground
16	VDD	Positive Digital Supply. Connect to digital supply (referenced to DGND).
17-20	$\overline{\overline{\mathrm{SHD1}}, \overline{\mathrm{SHD2}}} \overline{\overline{\mathrm{SHD} 3}}, \overline{\mathrm{SHD}}$	Port Shutdown Inputs. Pull $\overline{\text { SHD_ }}$ low to turn off the external FET on port_. Internally pulled up to VDD with a $50 \mathrm{k} \Omega$ resistor.
21	AGND	Analog Ground. Connect to the high-side analog supply.
$\begin{aligned} & 22,25, \\ & 29,32 \end{aligned}$	SENSE4, SENSE3, SENSE2, SENSE1	MOSFET Source Current-Sense Negative Inputs. Connect to the source of the power MOSFET and connect a current-sense resistor between SENSE_ and VEE (see the Typical Application Circuit).
$\begin{aligned} & \hline 23,26, \\ & 30,33 \end{aligned}$	GATE4, GATE3, GATE2, GATE1	Port_ MOSFET Gate Drivers. Connect GATE_ to the gate of the external FET (see the Typical Application Circuit).
$\begin{aligned} & 24,27, \\ & 31,34 \end{aligned}$	OUT4, OUT3, OUT2, OUT1	MOSFET Drain-Output Voltage Senses. Connect OUT_ to the power MOSFET drain through a resistor (100Ω to $100 \mathrm{k} \Omega$). The low leakage at OUT_ limits the drop across the resistor to less than 100 mV (see the Typical Application Circuit).
28	VEE	Low-Side Analog Supply Input. Connect the low-side analog supply to $\mathrm{V}_{\mathrm{EE}}(-48 \mathrm{~V})$. Bypass with a $1 \mu \mathrm{~F}$ capacitor between AGND and V_{EE}.
35	AUTO	AUTO or SHUTDOWN Mode Input. Force high to enter AUTO mode after a reset or power-up. Drive low to put the MAX5945 into SHUTDOWN mode. In SHUTDOWN mode, software controls the operational modes of the MAX5945. A 50k Ω internal pulldown resistor defaults AUTO low. AUTO latches when $V_{D D}$ or $V_{E E}$ ramps up and exceeds its UVLO threshold or when the device resets. Software commands can take the MAX5945 out of AUTO while AUTO is high.
36	OSC_IN	Oscillator Input. AC-disconnect detection function uses OSC_IN. Connect a $100 \mathrm{~Hz} \pm 10 \%, 2 V_{\text {P-P }}$ $\pm 5 \%,+1.2 \mathrm{~V}$ offset sine wave to OSC_IN. If the oscillator positive peak falls below the OSC_FAIL threshold of 2 V , the ports that have the AC function enabled shut down and are not allowed to power up. When not using the AC-disconnect detection function, leave OSC_IN unconnected.

Quad Network Power Controller for Power-Over-LAN

Figure 1. MAX5945 Functional Diagram

Detailed Description

The MAX5945 four-port network power controller controls -32 V to -60 V negative supply rail systems. Use the MAX5945, which is compliant with the IEEE 802.3af standard for PSE in power-over-LAN applications. The MAX5945 provides PD discovery, classification, current limit, both DC and AC load disconnect detections, and other necessary functions for an IEEE 802.3af-compli-
ant PSE. The MAX5945 can be used in either endpoint PSE (LAN switch/router) or midspan PSE (power injector) applications.
The MAX5945 is fully software-configurable and programmable with more than 25 internal registers. The device features an $1^{2} \mathrm{C}$-compatible, 3 -wire serial interface and a class-overcurrent detection. The class-overcurrent detection function enables system power man-

Quad Network Power Controller for Power-Over-LAN

agement where it detects a PD that draws more current than the allowable amount for its class. The MAX5945's extensive programmability enhances system flexibility and allows for uses in other applications.
The MAX5945 has four different operating modes: auto mode, semi-auto mode, manual mode, and shutdown mode (see the Operation Modes section). A special watchdog feature allows the hardware to gracefully take over control if the software/firmware crashes. A cadence timing feature allows the MAX5945 to be used in midspan systems.
The MAX5945 provides input undervoltage lockout, input undervoltage detection, input overvoltage lockout, overtemperature protection, output-voltage slew-rate limit during startup, power-good status, and fault status. The MAX5945's programmability includes gate-charging current, current-limit threshold, startup timeout, overcurrent timeout, autorestart duty cycle, PD disconnect AC detection threshold and PD disconnect detection timeout.
The MAX5945 communicates with the system microcontroller through an $1^{2} \mathrm{C}$-compatible interface. The MAX5945 features separate input and output data lines (SDAIN and SDAOUT) for use with optocoupler isolation. The MAX5945 is a slave device. Its four address inputs allow 16 unique MAX5945 addresses. A separate INT output and four independent shutdown inputs ($\overline{\mathrm{SHD}}$ _) allow fast interrupt signals between the MAX5945 and the microcontroller. A RESET input allows hardware reset of the device.

Reset
Reset is a condition the MAX5945 enters after any of the following conditions:

- After power-up (VEE and VDD rise above their UVLO thresholds).
- Hardware reset. The $\overline{\text { RESET }}$ input is driven low and up high again any time after power-up.
- Software reset. Writing a 1 into R1Ah[4] any time after power-up.
- Thermal shutdown.

During a reset, the MAX5945 resets its register map to the reset state as shown in Table 30 and latches in the state of AUTO (pin 35) and MIDSPAN (pin 2). During normal operation, changes at the AUTO and MIDSPAN inputs are ignored. While the condition that caused the reset persists (i.e., high temperature, $\overline{R E S E T}$ input low, or UVLO conditions) the MAX5945 will not acknowledge any addressing from the serial interface.

Port Reset (R1Ah[3:0])

Set high anytime during normal operation to turn off power and clear the events and status registers of the corresponding port. Port reset only resets the events and status registers.

Operation Modes

The MAX5945 contains four independent but identical state machines to provide reliable and real-time control of the four network ports. Each state machine has four different operating modes: auto, semi-auto, manual, and shutdown. Auto mode allows the device to operate automatically without any software supervision. Semiauto mode, upon request, continuously detects and classifies a device connected to a port but does not power up that port until instructed by software. Manual mode allows total software control of the device and is useful in system diagnostic. Shutdown mode terminates all activities and securely turns off power to the ports. Switching between AUTO, SEMI, or MANUAL mode does not take effect until the part finishes its current task. When the port is set into SHUTDOWN mode, all the port operations are immediately stopped and the port remains idle until SHUTDOWN is exited.

Automatic (AUTO) Mode

Enter automatic (AUTO) mode by forcing the AUTO input high prior to a reset, or by setting R12h[P_M1,P_M0] to [1,1] during normal operation (see Tables 15 and 15a). In AUTO mode, the MAX5945 performs detection, classification, and powers up the port automatically once a valid PD is detected at the port. If a valid PD is not detected at the port, the MAX5945 repeats the detection routine continuously until a valid PD is detected.
Going into AUTO mode, the DET_EN and CLASS_EN bits are set to high and stay high unless changed by software. Using software to set DET_EN and/or CLASS_EN low causes the MAX5945 to skip detection and/or classification. As a protection, disabling the detection routine in AUTO mode will not allow the corresponding port to power up, unless the DET_BYP (R23H[4]) is set to 1 .
The AUTO status is latched into the register only during a reset. Any changes to the AUTO input after reset is ignored.

Semi-Automatic (SEMI) Mode

Enter semi-automatic (SEMI) mode by setting R12h[P_M1,P_M0] to [1,0] during normal operation (see Tables 15 and 15a). In SEMI mode, the MAX5945, upon request, performs detection and/or classification repeatedly but does not power up the port(s), regardless of the status of the port connection.

Quad Network Power Controller for Power-Over-LAN

Setting R19h[PWR_ON_] (Table 21) high immediately terminates detection/classification routines and turns on power to the port(s).
R14h[DET_EN_, CLASS_EN_] default to low in SEMI mode. Use software to set R14h[DET_EN_, CLASS_EN_] to high to start the detection and/or classification routines. R14h[DET_EN_, CLASS_EN_] are reset every time the software commands a power-off of the port (either through reset or PWR_OFF). In any other case, the status of the bits is left unchanged (including when the state machine turns off the power because a load disconnect or a fault condition is encountered).

MANUAL Mode

Enter MANUAL mode by setting R12h[P_M1,P_M0] to [0,1] during normal operation (see Tables 15 and 15a). MANUAL mode allows the software to dictate any sequence of operation. Write a 1 to both R14h[DET_ EN_] and R14h[CLASS_EN_] start detection and classification operations, respectively, and in that priority order. After execution, the command is cleared from the register(s). PWR_ON_ has highest priority. Setting PWR_ON_ high at any time causes the device to immediately enter the powered mode. Setting DET_EN and CLASS_EN high at the same time causes detection to be performed first. Once in the powered state, the device ignores DET_EN_ or CLASS_EN_ commands.
When switching to MANUAL mode from another mode, DET_EN_, CLASS_EN_ default to low. These bits become pushbutton rather than configuration bits (i.e., writing ones to these bits while in MANUAL mode commands the device to execute one cycle of detection and/or classification. The bits are reset back to zeros at the end of the execution). Putting the MAX5945 into shutdown mode immediately turns off power and halts all operations to the corresponding port. The event and status bits of the affected port(s) are also cleared. In SHUTDOWN mode, the DET_EN_, CLASS_EN_, and PWR_ON_ commands are ignored.
In SHUTDOWN mode, the serial interface operates normally.

Watchdog
R1Dh, R1Eh, and R1Fh registers control watchdog operation. The watchdog function, when enabled, allows the MAX5945 to gracefully take over control or securely shut down the power to the ports in case of software/firmware crashes. Contact the factory for more details.

PD Detection

When PD detection is activated, the MAX5945 probes the output for a valid PD. After each detection cycle, the device sets the DET_END_ bit R04h/05h[3:0] high and reports the detection results in the status registers ROCh[2:0], RODh[2:0], ROEh[2:0], and ROFh[2:0]. The DET_END_ bit is reset to low when read through R05h or after a port reset. Both DET_END_ bit status registers are cleared after the port powers down.
A valid PD has a $25 \mathrm{k} \Omega$ discovery signature characteristic as specified in the IEEE 802.3af standard. Table 1 shows the IEEE 802.3af specification for a PSE detecting a valid PD signature (see the Typical Application Circuit and Figure 2). The MAX5945 can probe and categorize different types of devices connected to the port such as a valid PD, an open circuit, a low resistive load, a high resistive load, a high capacitive load, a positive DC supply, or a negative DC supply.
During detection, the MAX5945 turns off the external MOSFET and forces two probe voltages through the DET_ input. The current through the DET_input is measured as well as the voltage at OUT_. A two-point slope measurement is used as specified by the IEEE 802.3af standard to verify the device connected to the port. The MAX5945 implements appropriate settling times and a 100 ms digital integration to reject $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ powerline noise coupling.
An external diode, in series with the DET_ input, restricts PD detection to the 1st quadrant as specified by the IEEE 802.3af standard. To prevent damage to non-PD devices and to protect itself from an output short circuit, the MAX5945 limits the current into DET_ to less than $2 m A$ maximum during PD detection.
In midspan mode, the MAX5945 waits 2.2 s before attempting another detection cycle after every failed detection. The first detection, however, happens immediately after issuing the detection command.

Power Device Classification (PD Classification)

During the PD classification mode, the MAX5945 forces a probe voltage $(-18 \mathrm{~V})$ at DET_{-}and measures the current into $D E T_{-}$. The measured current determines the class of the PD.
After each classification cycle, the device sets the CL_END_ bit (R04h/05h[7:4]) high and reports the classification results in the status registers ROCh[6:4], RODh[6:4], ROEh[6:4], and ROFh[6:4]. The CL_END_ bit is reset to low when read through register R05h or after a port reset. Both Class_END_ bit status registers are cleared after the port powers down.

Quad Network Power Controller for Power-Over-LAN

Table 1. PSE PI Detection Modes Electrical Requirement (Table 33-2 of the IEEE 802.3af Standard)

PARAMETER	SYMBOL	MIN	MAX	UNITS	ADDITIONAL INFORMATION
Open-Circuit Voltage	VOC	-	30	V	In detection mode only
Short-Circuit Current	ISC	-	5	mA	In detection mode only
Valid Test Voltage	VVALID	2.8	10	V	
Voltage Difference Between Test Points	$\Delta \mathrm{V}_{\text {TEST }}$	1	-	V	
Time Between Any Two Test Points	$t_{B P}$	2	-	ms	This timing implies a 500 Hz maximum probing frequency
Slew Rate	VSLEW	-	0.1	V/us	
Accept Signature Resistance	RGOOD	19	26.5	k Ω	
Reject Signature Resistance	RBAD	< 15	> 33	$\mathrm{k} \Omega$	
Open-Circuit Resistance	Ropen	500	-	k Ω	
Accept Signature Capacitance	Cgood	-	150	nF	
Reject Signature Capacitance	Cbad	10	-	$\mu \mathrm{F}$	
Signature Offset Voltage Tolerance	Vos	0	2.0	V	
Signature Offset Current Tolerance	Ios	0	12	$\mu \mathrm{A}$	

Table 2. PSE Classification of a PD (Table 33-4 of the IEEE 802.3af Standard)

MEASURED ICLASS (mA)	CLASSIFICATION
0 to 5	Class 0
>5 and <8	May be Class 0 and 1
8 to 13	Class 1
>13 and <16	May be Class 0, 1, or 2
16 to 21	Class 2
>21 and <25	May be Class 0, 2, or 3
25 to 31	Class 3
>31 and <35	May be Class 0, 3, or 4
35 to 45	Class 4
>45 and <51	May be Class 0 or 4

Table 2 shows the IEEE 802.3af requirement for a PSE classifying a PD at the power interface (PI).

Powered State

When the part enters PWR MODE, the tstart and tDISC timers are reset. Before turning on the power, the part
checks if any other port is not turning on and if the trault timer is zero. Another check is performed if the ACD_EN bit is set, in this case OSC_FAIL bit must be low (oscillator is okay) for the port to be powered.
If these conditions are met then the part enters startup where it turns on power to the port. An internal signal, POK , is asserted high when VOUT is within 2 V from VEE. PGOOD_ status bits are set high if POK_ stays high longer than tpGOOD. PGOOD immediately resets when POK goes low.
The PWR_CHG bit sets when a port powers up or down. PWR_EN sets when a port powers up and resets when a port shuts down. The port shutdown timer lasts 0.5 ms and prevents other ports from turning off during that period, except in the case of emergency shutdowns (RESET $=$ L, RESET_IC = H, VEEUVLO, VDDUVLO, and TSHD).
The MAX5945 always checks the status of all ports before turning off. A priority logic system determines the order to prevent the simultaneous turn-on or turn-off of the ports. The port with the lesser ordinal number gets priority over the others (i.e., port 1 turns on first, port 2 second, port 3 third and port 4 fourth). Setting PWR_OFF_ high turns off power to the corresponding port.

Quad Network Power Controller for Power-Over-LAN

Figure 2. Detection, Classification, and Power-Up Port Sequence

Overcurrent Protection

A sense resistor (RS), connected between SENSE_ and VEE, monitors the load current. Under all circumstances, the voltage across Rs never exceeds the threshold VSU_LIM. If SENSE_ exceeds VSU_LIM, an internal current-limiting circuit regulates the GĀTE voltage, limiting the current to ILIM = VSU_LIM / RS. During transient conditions, if the SENSE_ voltage exceeds VSU_LIM, a fast pulldown circuit activates to quickly recover from the current overshoot. During startup, if the current-limit condition persists, when the startup timer, tSTART, times out, the port shuts off and the STRT_FLT_ bit is set. In normal powered state, the MAX5945 checks for overcurrent conditions as determined by VFLT_LIM $=\sim 88 \%$ of VSU_LIM. The tFAULT counter sets the maximum allowed continuous overcurrent period. The tFAULT counter increases when VSENSE exceeds VFLT_LIM and decreases at a slower pace when VSENSE drops below VFLT_LIM. A slower decrement for the tFAULT counter allows for detecting repeated short-duration overcurrents. When the counter reaches the tFAULT limit, the MAX5945 powers off the port and asserts the IMAX_FLT_ bit. For a continuous overstress, a fault latches exactly after a period of tFAULT. VSU_LIM, is programmable using R27h[4-7]. tFAULT is programmable using R16h[2-3] and R28[4-7].
After power-off due to an overcurrent fault, and if the RSTR_EN bit is set, the tFAULT timer is not immediately reset but starts decrementing at the same slower pace. The MAX5945 allows the port to be powered on only when the tFAULT counter is at zero. This feature sets an automatic duty-cycle protection to the external MOSFET to avoid overheating. The duty cycle is programmable using R16h[6-7].
The MAX5945 continuously flags when the current exceeds the maximum current allowed for the class as indicated in the CLASS status register. When class overcurrent occurs, the MAX5945 sets the IVC bit in register R09h.

Foldback Current During startup and normal operation, an internal circuit senses the voltage at OUT_ and reduces the currentlimit value when (VOUT_ - V_{EE}) $>30 \mathrm{~V}$. The foldback function helps to reduce the power dissipation on the FET. The current limit eventually reduces to $1 / 3$ of ILIM when (VOUT_ - VEE) > 50V (see Figure 4).

Figure 3. PGOOD Timing

Quad Network Power Controller for Power-Over-LAN

Figure 4. Foldback Current Characteristics

MOSFET Gate Driver Connect the gate of the external n-channel MOSFET to GATE_A An internal $50 \mu \mathrm{~A}$ current source pulls GATE_ to (VEE +10 V) to turn on the MOSFET. An internal $40 \mu \mathrm{~A}$ current source pulls down GATE_ to VEE to turn off the MOSFET.
The pullup and pulldown current controls the maximum slew rate at the output during turn-on or turn-off. The pullup current (gate-charging current) is programmable using R23h[5-7]. Use the following equation to set the maximum slew rate:

$$
\frac{\Delta V_{\mathrm{OUT}}}{\Delta \mathrm{t}}=\frac{\mathrm{I}_{\mathrm{GATE}}}{\mathrm{C}_{\mathrm{GD}}}
$$

where CGD is the total capacitance between GATE and DRAIN of the external FET. Current limit and the capacitive load at the drain control the slew rate during startup. During current-limit regulation, the MAX5945 manipulates the GATE_ voltage to control the voltage at SENSE_. A fast pulldown activates if SENSE_ overshoots the limit threshold. The fast pulldown current increases with the amount of overshoot. The maximum fast pulldown current is 100 mA .
During turn-off, when the GATE voltage reaches a value lower than 1.2 V , a strong pulldown switch is activated to keep the FET securely off.

Digital Logic

$V_{D D}$ supplies power for the internal logic circuitry. VDD ranges from +1.71 V to +3.7 V and determines the logic thresholds for the CMOS connections (SDAIN, SDAOUT, SCL, AUTO, SHD_, 2 _). This voltage range enables the MAX5945 to interface with a nonisolated low-voltage microcontroller. The MAX5945 checks the
digital supply for compatibility with the internal logic. The MAX5945 also features a VDD undervoltage lockout (VDDUVLO) of +1.35 V . A VDDUVLO condition keeps the MAX5945 in reset and the ports shut off. Bit 0 in the supply event register shows the status of VDDUVLO (Table 11) after VDD has recovered. All logic inputs and outputs reference to DGND. DGND and AGND are completely isolated internally to the MAX5945. In a completely isolated system, the digital signal can be referenced indifferently to $V_{\text {AGND }}$ or VEE or at voltages even higher than AGND (up to 60V). VDD - VDGND must be greater than 3.0 V when $\mathrm{V}_{\mathrm{DGND}} \leq\left(\mathrm{V}_{\mathrm{EE}}+3.0 \mathrm{~V}\right)$
When using the AC disconnect detection feature, AGND must be connected directly to DGND and VDD must be greater than +3 V . In this configuration, connect DGND to AGND at a single point in the system as close to MAX5945 as possible.

Hardware Shutdown

$\overline{\text { SHD }}$ _ shuts down the respective ports without using the serial interface. Hardware shutdown offers an emergency turn-off feature that allows a fast disconnect of the power supply from the port. Pull SHD_ low to remove power.

Interrupt

The MAX5945 contains an open-drain logic output (INT) that goes low when an interrupt condition exists. ROOh and R01h (Tables 5 and 6) contain the definitions of the interrupt registers. The mask register R01h determines events that trigger an interrupt. As a response to an interrupt, the controller reads the status of the event register to determine the cause of the interrupt and takes subsequent actions. Each interrupt event register also contains a clear-on-read (CoR) register. Reading through the CoR register address clears the interrupt. INT remains low when reading the interrupt through the read-only addresses. For example, to clear a startup fault on port 4 read address 09h (see Table 10). Use the global pushbutton bit on register 1Ah (bit 7, Table 22) to clear interrupts, or use a software or hardware reset.

Undervoltage and Overvoltage Protection

 The MAX5945 contains several undervoltage and overvoltage protection features. Table 11 in the Register Map and Description section shows a detailed list of the undervoltage and overvoltage protection features. An internal $\mathrm{V}_{E E}$ undervoltage lockout (VEEUVLO) circuit keeps the MOSFET off and the MAX5945 in reset until $V_{A G N D}$ - VEE exceeds 29 V for more than 3 ms . An internal VEE overvoltage (VEE_OV) circuit shuts down the ports when (VAGND - $V_{E E}$) exceeds 60V. The digital supply also contains an undervoltage lockout (VDDUVLO).
Quad Network Power Controller for Power-Over-LAN

The MAX5945 also features three other undervoltage and overvoltage interrupts: VEE undervoltage interrupt (VEEUV), VDD undervoltage interrupt (VDDUV), and VDD overvoltage interrupt (VDDOV). A fault latches into the supply events register (Table 11) but the MAX5945 does not shut down the ports with a VEEUV, VDDUV, or VDDOV.

DC Disconnect Monitoring

Setting R13h[DCD_EN_] bits high enable DC load monitoring during a normal powered state. If SENSE_ falls below the DC load disconnect threshold, VDCTH, for more than tDISC, the device turns off power and asserts the LD_DISC_ bit of the corresponding port. tDISC is programmable using R16h[0-1] and R27h[0-3].

AC Disconnect Monitoring

The MAX5945 features AC load disconnect monitoring. Connect an external sine wave to OSC_IN. The oscillator requirements are:

- Frequency \times VP-P $=200 V_{P-P} \times H z \pm 15 \%$
- Positive peak voltage > +2V
- Frequency $>60 \mathrm{~Hz}$
- A $100 \mathrm{~Hz} \pm 10 \%, 2 \mathrm{VP}-\mathrm{P} \pm 5 \%$, with +1.2 V offset $(\mathrm{V}$ PEAK $=+2.2 \mathrm{~V}$, typ $)$ is recommended.
The MAX5945 buffers and amplifies $3 x$ the external oscillator signal and sends the signal to DET_, where the sine wave is AC coupled to the output. The MAX5945 senses the presence of the load by monitoring the amplitude of the AC current returned to DET_ (see the Functional Diagram).
Setting R13h[ACD_EN_] bits high enable AC load disconnect monitoring during the normal powered state. If the AC current peak at the DET_ pin falls below IACTH for more than tDISC, the device turns off power and asserts the LD_DISC_ bit of the corresponding port. IACTH is programmable using $\mathrm{R} 23 \mathrm{~h}[0-3$].
An internal comparator checks for a proper amplitude of the oscillator input. If the positive peak of the input sinusoid falls below a safety value of 2 V , OSC_FAIL sets and the port shuts down. Power cannot be applied to the ports when ACD_EN is set high and OSC_FAIL is set high. Leave OSC_IN unconnected or connect it to DGND when not using AC disconnect detection.
When using the AC disconnect detection feature, connect AGND directly to DNGD as close as possible to the IC. The MAX5945 also requires a VDD of greater than $+3 V$ for this function. See the Typical Application Circuit with AC disconnect for other external component requirements.

Table 3. MAX5945 Address

0	1	0	$A 3$	$A 2$	$A 1$	$A 0$	R / W

Thermal Shutdown

If the MAX5945 die temperature reaches $+150^{\circ} \mathrm{C}$, an overtemperature fault generates and the MAX5945 shuts down and the MOSFETs turn off. The die temperature of the MAX5945 must cool down below $+130^{\circ} \mathrm{C}$ to remove the overtemperature fault condition. After a thermal shutdown, the part is reset.

Address Inputs
A3, A2, A1, and A0 represent the four LSBs of the chip address, the complete 7-bit chip address (see Table 3).
The four LSBs latch on the low-to-high transition of $\overline{R E S E T}$ or after a power-supply start (either on VDD or VEE). Address inputs default high through an internal $50 \mathrm{k} \Omega$ pullup resistor to VDD. The MAX5945 also responds to the call through a global address 60h (see the Global Addressing and Alert Response Protocol section).

I^{2} C-Compatible Serial Interface

The MAX5945 operates as a slave that sends and receives data through an $\mathrm{I}^{2} \mathrm{C}$-compatible, 2 -wire or 3wire interface. The interface uses a serial data input line (SDAIN), a serial data output line (SDAOUT), and a serial clock line (SCL) to achieve bidirectional communication between master(s) and slave(s). A master (typically a microcontroller) initiates all data transfers to and from the MAX5945, and generates the SCL clock that synchronizes the data transfer. In most applications, connect the SDAIN and the SDAOUT lines together to form the serial data line (SDA).
Using the separate input and output data lines allows optocoupling with the controller bus when an isolated supply powers the microcontroller.
The MAX5945 SDAIN line operates as an input. The MAX5945 SDAOUT operates as an open-drain output. A pullup resistor, typically $4.7 \mathrm{k} \Omega$, is required on SDAOUT. The MAX5945 SCL line operates only as an input. A pullup resistor, typically $4.7 \mathrm{k} \Omega$, is required on SCL if there are multiple masters, or if the master in a single-master system has an open-drain SCL output.

Serial Addressing

Each transmission consists of a START condition (Figure 7) sent by a master, followed by the MAX5945 7-bit slave address plus R/W bit, a register address byte, one or more data bytes, and finally a STOP condition.

Quad Network Power Controller for Power-Over-LAN

Figure 5. 2-Wire Serial Interface Timing Details

Figure 6. 3-Wire Serial Interface Timing Details

Figure 7. Start and Stop Conditions

Start and Stop Conditions
Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a transmission with a START (S) condition by transitioning SDA from high to low while SCL is high. When the master fin-

Figure 8. Bit Transfer
ishes communicating with the slave, the master issues a STOP (P) condition by transitioning SDA from low to high while SCL is high. The stop condition frees the bus for another transmission.

Quad Network Power Controller for Power-Over-LAN

Figure 9. Acknowledge

Figure 10. Slave Address

Bit Transfer

Each clock pulse transfers one data bit (Figure 8). The data on SDA must remain stable while SCL is high.

Acknowledge

The acknowledge bit is a clocked 9th bit (Figure 9), which the recipient uses as a handshake receipt of each byte of data. Thus each byte effectively transferred requires 9 bits. The master generates the 9th clock pulse, and the recipient pulls down SDA (or the SDAOUT in the 3-wire interface) during the acknowledge clock pulse, so the SDA line is stable low during the high period of the clock pulse. When the master transmits to the MAX5945, the MAX5945 generates the acknowledge bit. When the MAX5945 transmits to the master, the master generates the acknowledge bit.

Slave Address

The MAX5945 has a 7-bit long slave address (Figure 10). The bit following the 7-bit slave address (bit eight) is the R/W bit, which is low for a write command and high for a read command.
010 always represent the first three bits (MSBs) of the MAX5945 slave address. Slave address bits A3, A2, A1, and A0 represent the states of the MAX5945's A3, A2, A1, and A0 inputs, allowing up to sixteen MAX5945 devices to share the bus. The states of the A3, A2, A1,
and AO latch in upon the reset of the MAX5945 into register R11h. The MAX5945 monitors the bus continuously, waiting for a START condition followed by the MAX5945's slave address. When the MAX5945 recognizes its slave address, it acknowledges and is then ready for continued communication.

Global Addressing and Alert Response Protocol The global address call is used in writing mode to write the same register to multiple devices (address 0x60). In read mode (address 0x61), the global address call is used as the alert response address. When responding to a global call, the MAX5945 puts out on the data line its own address whenever its interrupt is active and so does every other device connected to the SDAOUT line that has an active interrupt. After every bit is transmitted, the MAX5945 checks that the data line effectively corresponds to the data it is delivering. If it is not, it then backs off and frees the data line. This litigation protocol always allows the part with the lowest address to complete the transmission. The microcontroller can then respond to the interrupt and take proper actions. The MAX5945 does not reset its own interrupt at the end of the alert response protocol. The microcontroller has to do it by clearing the event register through their CoR addresses or activating the CLR_INT pushbutton.

Quad Network Power Controller for Power-Over-LAN

Figure 11. Control Byte Received

Figure 12. Control and Single Data Byte Received

Figure 13. 'n' Data Bytes Received

Message Format for Writing the MAX5945

A write to the MAX5945 comprises of the MAX5945's slave address transmission with the R/W bit set to 0 , followed by at least one byte of information. The first byte of information is the command byte (Figure 11). The command byte determines which register of the MAX5945 is written to by the next byte, if received. If the MAX5945 detects a STOP condition after receiving the command byte, then the MAX5945 takes no further action beyond storing the command byte. Any bytes received after the command byte are data bytes. The first data byte goes into the internal register of the

MAX5945 selected by the command byte. If the MAX5945 transmits multiple data bytes before the MAX5945 detects a STOP condition, these bytes store in subsequent MAX5945 internal registers because the control byte address auto-increments.
Any bytes received after the control byte are data bytes. The first data byte goes into the internal register of the MAX5945 selected by the control byte (Figure 8).
If multiple data bytes are transmitted before a STOP condition is detected, these bytes are stored in subsequent MAX5945 internal registers because the control byte address auto-increments.

Quad Network Power Controller for Power-Over-LAN

Table 4. Auto-Increment Rules

COMMAND BYTE ADDRESS RANGE	AUTO-INCREMENT BEHAVIOR
0×00 to 0×26	Command address will auto- increment after byte read or written
0×26	Command address remains at 0×26 after byte written or read

Message Format for Reading

The MAX5945 reads using the MAX5945's internally stored command byte as an address pointer, the same way the stored command byte is used as an address pointer for a write. The pointer auto-increments after reading each data byte using the same rules as for a write. Thus, a read is initiated by first configuring the MAX5945's command byte by performing a write (Figure 12). The master now reads ' n ' consecutive bytes from the MAX5945, with the first data byte read from the register addressed by the initialized command byte (Figure 13). When performing read-after-write verification, remember to reset the command byte's address because the stored control byte address autoincrements after the write.

Operation with Multiple Masters

When the MAX5945 operates on a 2-wire interface with multiple masters, a master reading the MAX5945 should use repeated starts between the write that sets the MAX5945's address pointer, and the read(s) that takes the data from the location(s). It is possible for master 2 to take over the bus after master 1 has set up the MAX5945's address pointer but before master 1 has read the data. If master 2 subsequently resets the MAX5945's address pointer then master 1's read may be from an unexpected location.

Command Address Auto-Incrementing

 Address auto-incrementing allows the MAX5945 to be configured with fewer transmissions by minimizing the number of times the command address needs to be sent. The command address stored in the MAX5945 generally increments after each data byte is written or read (Table 4). The MAX5945 is designed to prevent overwrites on unavailable register addresses and unintentional wrap-around of addresses.
Register Map And Description

The interrupt register (Table 5) summarizes the event register status and is used to send an interrupt signal (INT goes low) to the controller. Writing a 1 to R1Ah[7] clears all interrupt and events registers. A reset sets ROOh to 00h.
INT_EN (R17h[7]) is a global interrupt mask (Table 6). The MASK_ bits activate the corresponding interrupt bits in register R00h. Writing a 0 to INT_EN (R17h[7]) disables the INT output.
A reset sets R01h to AAA00A00b, where A is the state of the AUTO input prior to the reset.
The power event register (Table 7) records changes in the power status of the four ports. Any change in PGOOD_ (R10h[7:4]) sets PG_CHG_ to 1. Any change in the PWR_EN_ (R10h[3:0]) sets PWEN_CHG_ to 1. PG_CHG_ and PWEN_CHG_ trigger on the edges of PGOOD_ and PWR_EN_ and do not depend on the actual level of the bits. The power event register has two addresses. When read through the R02h address, the content of the register is left unchanged. When read through the CoR R03h address, the register content will be cleared. A reset sets R02h/R03h $=00 h$.
DET_END_/CL_END_ is set high whenever detection/ classification is completed on the corresponding port. A 1 in any of the CL_END_ bits forces ROOh[4] to 1. A 1 in any of the DET_END_ bits forces R00h[3] to 1. As with any other events register, the detect event register (Table 8) has two addresses. When read through the R04h address, the content of the register is left unchanged. When read through the CoR R05h address, the register content will be cleared. A reset sets R04h/R05h = 00h.
LD_DISC_ is set high whenever the corresponding port shuts down due to detection of load removal. IMAX_FLT_ is set high when the port shuts down due to an extended overcurrent event after a successful startup. A 1 in any of the LD_DISC_ bits forces ROOh[2] to 1. A 1 in any of the IMAX_FLT_ bits forces R00h[5] to 1. As with any of the other events register, the fault event register (Table 9) has two addresses. When read through the R06h address, the content of the register is left unchanged. When read through the CoR R07h address, the register content will be cleared. A reset sets R06h/R07h = 00h.

Quad Network Power Controller for Power-Over-LAN

Table 5. Interrupt Register

| ADDRESS = 00h | | DESCRIPTION | |
| :---: | :---: | :---: | :--- | :--- |
| SYMBOL | BIT | R/W | |
| SUP_FLT | 7 | R | Interrupt signal for supply faults. SUP_FLT is the logic OR of all the bits [7:0] in register ROAh/ROBh
 (Table 8). |
| TSTR_FLT | 6 | R | Interrupt signal for startup failures. TSRT_FLT is the logic OR of bits [7:0] in register R08h/R09h
 (Table 7). |
| IMAX_FLT | 5 | R | Interrupt signal for current-limit violations. IMAX_FLT is the logic OR of bits [3:0] in register
 R06h/RO7h (Table 6). |
| CL_END | 4 | R | Interrupt signal for completion of classification. CL_END is the logic OR of bits [7:4] in register
 R04h/R05h (Table 5) |
| DET_END | 3 | R | Interrupt signal for completion of detection. DET_END is the logic OR of bits [3:0] in register
 R04h/R05h (Table 5). |
| LD_DISC | 2 | R | Interrupt signal for load disconnection. LD_DISC is the logic OR of bits [7:4] in register R06h/R07h
 (Table 6). |
| PG_INT | 1 | R | Interrupt signal for PGOOD status change. PG_INT is the logic OR of bits [7:4] in register R02h/R03h
 (Table 4). |
| PE_INT | 0 | R | Interrupt signal for power-enable status change. PEN_INT is the logic OR of bits [3:0] in register
 RO2h/R03h (Table 4). |

Table 6. Interrupt Mask Register

| ADDRESS = 01h | | DESCRIPTION | |
| :---: | :---: | :---: | :--- | :--- |
| SYMBOL | BIT | R/W | |
| MASK7 | 7 | R/W | Interrupt mask bit 7. A logic high enables the SUP_FLT interrupts. A logic low disables the SUP_FLT
 interrupts. |
| MASK6 | 6 | R/W | Interrupt mask bit 6. A logic high enables the TSTR_FLT interrupts. A low disables the TSTR_FLT
 interrupts. |
| MASK5 | 5 | R/W | Interrupt mask bit 5. A logic high enables the IMAX_FLT interrupts. A logic low disables the
 IMAX_FLT interrupts. |
| MASK4 | 4 | R/W | Interrupt mask bit 4. A logic high enables the CL_END interrupts. A logic low disables the CL_END
 interrupts. |
| MASK3 | 3 | R/W | Interrupt mask bit 3. A logic high enables the DET_END interrupts. A logic low disables the
 DET_END interrupts. |
| MASK2 | 2 | R/W | Interrupt mask bit 2. A logic high enables the LD_DISC interrupts. A logic low disables the LD_DISC
 interrupts. |
| MASK1 | 1 | R/W | Interrupt mask bit 1. A logic high enables the PG_INT interrupts. A logic low disables the PG_INT
 interrupts. |
| MASK0 | 0 | R/W | Interrupt mask bit 0. A logic high enables the PEN_INT interrupts. A logic low disables the PEN_INT
 interrupts. |

Quad Network Power Controller for Power-Over-LAN

Table 7. Power Event Register

ADDRESS =		02h	03h	DESCRIPTION
SYMBOL	BIT	R/W	R/W	
PG_CHG4	7	R	CoR	PGOOD change event for port 4
PG_CHG3	6	R	CoR	PGOOD change event for port 3
PG_CHG2	5	R	CoR	PGOOD change event for port 2
PG_CHG1	4	R	CoR	PGOOD change event for port 1
PWEN_CHG4	3	R	CoR	Power enable change event for port 4
PWEN_CHG3	2	R	CoR	Power enable change event for port 3
PWEN_CHG2	1	R	CoR	Power enable change event for port 2
PWEN_CHG1	0	R	CoR	Power enable change event for port 1

Table 8. Detect Event Register

ADDRESS =		$\mathbf{0 4 h}$	$\mathbf{0 5 h}$	DESCRIPTION
SYMBOL	$\mathbf{B I T}$	$\mathbf{R / W}$	$\mathbf{R / W}$	
CL_END4	7	R	CoR	
CL_END3	6	R	CoR	Classification completed on port 3
CL_END2	5	R	CoR	Classification completed on port 2
CL_END1	4	R	CoR	Classification completed on port 1
DET_END4	3	R	CoR	Detection completed on port 4
DET_END3	2	R	CoR	Detection completed on port 3
DET_END2	1	R	CoR	Detection completed on port 2
DET_END1	0	R	CoR	Detection completed on port 1

Table 9. Fault Event Register

ADDRESS $=$		$\mathbf{0 6 h}$	$\mathbf{0 7 h}$	DESCRIPTION
SYMBOL	BIT	R/W	R/W	
LD_DISC4	7	R	CoR	
LD_DISC3	6	R	CoR	Disconnect on port 3
LD_DISC2	5	R	CoR	Disconnect on port 2
LD_DISC1	4	R	CoR	Disconnect on port 1
IMAX_FLT4	3	R	CoR	Overcurrent on port 4
IMAX_FLT3	2	R	CoR	Overcurrent on port 3
IMAX_FLT2	1	R	CoR	Overcurrent on port 2
IMAX_FLT1	0	R	CoR	Overcurrent on port 1

Quad Network Power Controller for Power-Over-LAN

Table 10. Startup Event Register

ADDRESS $=$		$\mathbf{0 8 h}$	$\mathbf{0 9 h}$	DESCRIPTION
SYMBOL	$\mathbf{B I T}$	R/W	R/W	
IVC4	7	R	CoR	
IVC3	6	R	CoR	Class overcurrent flag for port 3
IVC2	5	R	CoR	Class overcurrent flag for port 2
IVC1	4	R	CoR	Class overcurrent flag for port 1
STRT_FLT4	3	R	CoR	Startup failed on port 4
STRT_FLT3	2	R	CoR	Startup failed on port 3
STRT_FLT2	1	R	CoR	Startup failed on port 2
STRT_FLT1	0	R	CoR	Startup failed on port 1

Table 11. Supply Event Register

ADDRESS =		OAh	0Bh	DESCRIPTION
SYMBOL	BIT	R/W	R/W	
TSD	7	R	CoR	Overtemperature shutdown
VDD_OV	6	R	CoR	VDD overvoltage condition
VDD_UV	5	R	CoR	$V_{\text {DD }}$ undervoltage condition
VEE_UVLO	4	R	CoR	$\mathrm{V}_{\text {EE }}$ undervoltage lockout condition
$\mathrm{V}_{\text {EE_OV }}$	3	R	CoR	VEE overvoltage condition
VEE_UV	2	R	CoR	$\mathrm{V}_{\text {EE }}$ undervoltage condition
OSC_FAIL	1	R	CoR	Oscillator amplitude is below limit
VDD_UVLO	0	R	CoR	$V_{\text {DD }}$ undervoltage lockout condition

Table 12. Port Status Registers

ADDRESS = 0Ch, ODh, 0Eh, 0Fh			DESCRIPTION
SYMBOL	BIT	R/W	
Reserved	7	R	Reserved
CLASS_	6	R	CLASS_[2]
	5	R	CLASS_[1]
	4	R	CLASS_[0]
Reserved	3	R	Reserved
DET_ST_	2	R	DET_[2]
	1	R	DET_[1]
	0	R	DET_[0]

If the port remains in current limit or the PGOOD condition is not met at the end of the startup period, the port shuts down and the corresponding STRT_FLT_ is set to 1. A 1 in any of the STRT_FLT_ bits forces ROOh[6] to 1. IVC_ is set to 1 whenever the port current exceeds the
maximum allowed limit for the class (determined during the classification process). A 1 in any of IVC_ forces R00h[6] to 1. When the CL_DISC (R17h[2]) is set to 1, the port will also limit the load current according to its class as specified in the Electrical Characteristics table. As with any other events register, the startup event register (Table 10) has two addresses. When read through the R08h address, the content of the register is left unchanged. When read through the CoR R09h address, the register content will be cleared. A reset sets R08h/R09h = 00h.
The MAX5945 continuously monitors the power supplies and sets the appropriate bits in the supply event register (Table 11). VDD_OV / VEE_OV is set to 1 whenever VDD / VEE exceeds its overvoltage threshold. VDD_UV / VEE_UV is set to 1 whenever $V_{D D} / V_{E E}$ falls below its undervoltage threshold.
OSC_FAIL is set to 1 whenever the amplitude of the oscillator signal at the OSC_input falls below a level that might compromise the AC disconnect detection

Quad Network Power Controller for Power-Over-LAN

Table 12a. Detection Result Decoding Chart

DET_ST_[2:0]	DETECTED	
000	None	Detection status unknown
001	DCP	Positive DC supply connected at the port (AGND - VOUT_ < 1.65V)
010	HIGH CAP	High capacitance at the port ($>5 \mu \mathrm{~F}$)
011	RLOW	Low resistance at the port. RPD $<17 \mathrm{k} \Omega$.
100	DET_OK	Detection pass. $17 \mathrm{k} \Omega>\operatorname{RPD}>28 \mathrm{k} \Omega$.
101	RHIGH	High resistance at the port. RPD $>28 \mathrm{k} \Omega$.
110	OPENO	Open port (I < 12.5 $\mu \mathrm{A}$)
111	DCN	Negative DC supply connected to the port (VOUT - VEE < 2V)

Table 12b. Classification Result Decoding Chart

CLASS_[2:0]	CLASS RESULT
000	Unknown
001	1
010	2
011	3
100	4
101	Undefined (treated as CLASS 0)
110	0
111	Current limit (>ICILIM)

function. OSC_FAIL generates an interrupt only if at least one of the ACD_EN (R13h[7:4]) bits is set high.
A thermal-shutdown circuit monitors the temperature of the die and resets the MAX5945 if the temperature exceeds $+150^{\circ} \mathrm{C}$. TSD is set to 1 after the MAX5945 returns to normal operation. TSD is also set to 1 after every UVLO reset.
When $V_{D D}$ and/or IVEEI is below its undervoltage lockout (UVLO) threshold, the MAX5945 is in reset mode and securely holds all ports off. When VDD and IVEEl rise to above their respective UVLO thresholds, the device comes out of reset as soon as the last supply crosses the UVLO threshold. The last supply corresponding UV and UVLO bits in the supply event register will be set to 1 .
A 1 in any supply event register's bits forces ROOh[7] to 1. As with any other events register, the supply event register has two addresses. When read through the ROAh address, the content of the register is left unchanged. When read through the CoR ROBh address, the register content will be cleared. A reset
sets ROAh/ROBh to 00100001 if VDD comes up after $V_{E E}$ or to 00010100 if $V_{E E}$ comes up after VDD.
The port status register (Table 12) records the results of the detection and classification at the end of each phase in three encoding bits each. ROCh contains detection and classification status of port 1. RODh corresponds to port 2, ROEh corresponds to port 3 and ROFh corresponds to port 4. Tables 12a and 12b show the detection/classification result decoding charts, respectively.
As a protection, when POFF_CL (R17h[3], Table 20) is set to 1, the MAX5945 prohibits turning on power to the port that returns a status 111 after classification. A reset sets $0 \mathrm{Ch}, \mathrm{ODh}, 0 \mathrm{Eh}$, and $0 \mathrm{OFh}=00 \mathrm{~h}$.
PGOOD_ is set to 1 (Table 13) at the end of the power-up startup period if the power-good condition is met ($0<$ (VOUT - $\mathrm{V}_{\text {EE }}$ < PG TH). The power-good condition must remain valid for more than tPGOOD to assert PGOOD_. PGOOD_ is reset to 0 whenever the output falls out of the power-good condition. A fault condition immediately forces PGOOD_low.
PWR_EN_ is set to 1 when the port power is turned on. PWR_EN_ resets to 0 as soon as the port turns off. Any transition of PGOOD_ and PWR_EN_ bits set the corresponding bit in the power event registers R02h/R03h (Table 7). A reset sets R10h = 00h.
A3, A2, A1, A0 (Table 14) represent the four LSBs of the MAX5945 address (Table 3). During a reset, the device latches into R11h. These four bits address from the corresponding inputs as well as the state of the MIDSPAN and AUTO inputs. Changes to those inputs during normal operation are ignored.
The MAX5945 uses two bits for each port to set the mode of operation (Table 15). Set the modes according to Table 15a.
A reset sets R12h = AAAAAAAA where A represents the latched-in state of the AUTO input prior to the reset. Use software to change the mode of operation.

Quad Network Power Controller for Power-Over-LAN

Table 13. Power Status Register

ADDRESS $=\mathbf{1 0 h}$		~ DESCRIPTION	
SYMBOL	BIT		
PGOOD4	7	R	Power-good condition on port 4
PGOOD3	6	R	Power-good condition on port 3
PGOOD2	5	R	Power-good condition on port 2
PGOOD1	4	R	Power-good condition on port 1
PWR_EN4	3	R	Power is enabled on port 4
PWR_EN3	2	R	Power is enabled on port 3
PWR_EN2	1	R	Power is enabled on port 2
PWR_EN1	0	R	Power is enabled on port 1

Table 14. Address Input Status Register

ADDRESS $=\mathbf{1 1}$			
SYMBOL	BIT	R/W	
Reserved	7	R	Reserved
Reserved	6	R	Reserved
A3	5	R	Device address, A3 pin latched-in status
A2	4	R	Device address, A2 pin latched-in status
A1	3	R	Device address, A1 pin latched-in status
A0	2	R	Device address, A0 pin latched-in status
MIDSPAN	1	R	MIDSPAN input's latched-in status
AUTO	0	R	AUTO input's latched-in status

Table 15. Mode Register

ADDRESS $=\mathbf{1 2 h}$			D DESCRIPTION
SYMBOL	BIT	R/W	
P4_M1	7	R/W	MODE[1] for port 4
P4_M0	6	R/W	MODE[0] for port 4
P3_M1	5	R/W	MODE[1] for port 3
P3_M0	4	R/W	MODE[0] for port 3
P2_M1	3	R/W	MODE[1] for port 2
P2_M0	2	R/W	MODE[0] for port 2
P1_M1	1	R/W	MODE[1] for port 1
P1_M0	0	R/W	MODE[0] for port 1

Software resets of ports (RESET_P_ bit, Table 22) do not affect the mode register.
Setting DCD_EN_ to 1 enables the DC load disconnect detection feature (Table 16). Setting ACD_EN_ to 1 enables the AC load disconnect feature. If enabled, the load disconnect detection starts during power mode and after startup when the corresponding PGOOD_ bit in register R10h (Table 13) goes high. A Reset sets

R13h $=0000 A A A A$ where A represents the latched-in state of the AUTO input prior to the reset.
Setting DET_EN_/CLASS_EN_ to 1 (Table 17) enables load detection/classification, respectively. Detection always has priority over classification. To perform classification without detection, set the DET_EN_ bit low and CLASS_EN_ bit high.

Quad Network Power Controller for Power-Over-LAN

In MANUAL mode, R14h works like a pushbutton. Set the bits high to begin the corresponding routine. The bit clears after the routine finishes.
When entering AUTO mode, R14h defaults to FFh. When entering MANUAL mode, R14h defaults to 00h. When entering SEMI mode, R1h is left unchanged but it is reset every time the software commands power off the port. A reset or power-up sets R14h = AAAAAAAAb where A represents the latched-in state of the AUTO input prior to the reset.
Setting BCKOFF_ to 1 (Table 18) enables Cadence timing on each port where the port backs off and waits 2.2 s after each failed load discovery detection. The IEEE

Table 15a. Mode Status

MODE	DESCRIPTION
00	Shutdown
01	MANUAL
10	Semi AUTO
11	AUTO

802.3af standard requires a PSE that delivers power through the spare pairs (midspan PSE) to have cadence timing. A reset sets R14h $=0000 \mathrm{XXXX}$ where X is the logic AND of the MIDSPAN and AUTO input state prior to a reset. BCKOFF_ can be changed by software at any time while changes to the MIDSPAN and AUTO input state during normal operation are ignored.
TSTART[1,0] (Table 19) programs the startup timers, startup time is the time the port is allowed to be in current limit during startup. TFAULT_[1,0] programs the fault time. Fault time is the time allowable for the port to be in current limit during normal operation. RSTR[1,0] programs the discharge rate of the TFAULT_ counter and effectively sets the time the port remains off after an overcurrent fault. TDISC[1,0] programs the load disconnect detection time. The device turns off power to the port if it fails to provide a minimum power maintenance signal for longer than the load disconnect detection time (TDISC).
Set the bits in R16h to scale the TSTART, TFAULT, and TDISC to a multiple of their nominal value specified in the Electrical Characteristics table. R27h and R28h fur-

Table 16. Load Disconnect Detection Enable Register

ADDRESS = 13h			DESCRIPTION
SYMBOL	BIT	R/W	
ACD_EN4	7	R/W	
ACD_EN3	6	R/W	Enable AC disconnect detection on port 3
ACD_EN2	5	R/W	Enable AC disconnect detection on port 2
ACD_EN1	4	R/W	Enable AC disconnect detection on port 1
DCD_EN4	3	R/W	Enable DC disconnect detection on port 4
DCD_EN3	2	R/W	Enable DC disconnect detection on port 3
DCD_EN2	1	R/W	Enable DC disconnect detection on port 2
DCD_EN1	0	R/W	Enable DC disconnect detection on port 1

Table 17. Detection and Classification Enable Register

ADDRESS $=\mathbf{1 4 h}$			DESCRIPTION
SYMBOL	BIT	R/W	
CLASS_EN4	7	R/W	Enable classification on port 4
CLASS_EN3	6	R/W	Enable classification on port 3
CLASS_EN4	5	R/W	Enable classification on port 2
CLASS_EN3	4	R/W	Enable classification on port 1
DET_EN4	3	R/W	Enable detection on port 4
DET_EN3	2	R/W	Enable detection on port 3
DET_EN2	1	R/W	Enable detection on port 2
DET_EN1	0	R/W	Enable detection on port 1

Quad Network Power Controller for Power－Over－LAN

Table 18．Backoff Enable Register

ADDRESS $=\mathbf{1 5 h}$			DESCRIPTION
SYMBOL	BIT	R／W	
Reserved	7	R	Reserved
Reserved	6	R	Reserved
Reserved	5	R	Reserved
Reserved	4	R	Reserved
BCKOFF4	3	R／W	Enable Cadence timing on port 4
BCKOFF3	2	R／W	Enable Cadence timing on port 3
BCKOFF2	1	R／W	Enable Cadence timing on port 2
BCKOFF1	0	R／W	Enable Cadence timing on port 1

Table 19．Timing Register

ADDRESS $=\mathbf{1 6}$			DESCRIPTION
SYMBOL	BIT	R／W	
RSTR［1］	7	R／W	Restart timer programming bit 1
RSTR［0］	6	R／W	Restart timer programming bit 0
TSTART［1］	5	R／W	Startup timer programming bit 1
TSTART［0］	4	R／W	Startup timer programming bit 0
TFAULT［1］	3	R／W	Overcurrent timer programming bit 1
TFAULT［0］	2	R／W	Overcurrent timer programming bit 0
TDISC［1］	1	R／W	Load disconnect timer programming bit 1
TDISC［0］	0	R／W	Load disconnect timer programming bit 0

Table 19a．Startup，Fault，and Load Disconnect Timers with Default Values in the Register 27h and 28h

BIT［1：0］	RSTR	tDISC	tstart	$\mathrm{t}_{\text {FAULT }}$
00	$16 \times$ tFAULT	tDISC nominal （350ms，typ）	tSTART nominal （60ms，typ）	tFAULT nominal （60ms，typ）
01	$32 \times$ tFAULT	$1 / 4 \times$ tDISC nominal	$1 / 2 \times$ tstart nominal	$1 / 2 \times$ traULT nominal
10	$64 \times$ tFAULT	$1 / 2 \times$ tDISC nominal	2 xtSTART nominal	$2 \times$ tFAULT nominal
11	$0 \times$ tFAULT	$2 \times$ tDISC nominal	$4 \times$ tstart nominal	$4 \times$ tFAULT nominal

ther extend the programming range of these timers and also increase the programming resolution．
When the MAX5945 shuts down a port due to an extended overcurrent condition（either during startup or normal operation），if RSRT＿EN is set high，then the part does not allow the port to power back on before the restart timer（Table 19a）returns to zero．This effectively sets a minimum duty cycle that protects the external MOSFET from overheating during prolonged output overcurrent conditions．
A reset sets $\mathrm{R} 16 \mathrm{~h}=00 \mathrm{~h}$ ．

Setting CL＿DISC to 1 （Table 20）enables port－over－ class current protection，where the MAX5945 scales down the overcurrent limit（VFLT＿LIM）according to the port classification status．This feature provides protec－ tion to the system against PDs that violate their maxi－ mum class current allowance．
A reset sets $\mathrm{R} 17 \mathrm{~h}=0 \times \mathrm{CO}$ ．
Power－enable pushbutton（Table 21）for SEMI and MANUAL modes．Setting PWR＿ON＿to 1 turns on power to the corresponding port．Setting PWR＿OFF＿to 1 turns off power to the port．PWR＿ON＿is ignored

Quad Network Power Controller for Power-Over-LAN

Table 20. Miscellaneous Configurations

| ADDRESS $=\mathbf{1 7 h}$ | | | DESCRIPTION |
| :---: | :---: | :---: | :--- | :--- |
| SYMBOL | BIT | R/W | |
| INT_EN | 7 | R/W | A logic high enables $\overline{\text { INT f functionality }}$ |
| RSTR_EN | 6 | R | A logic high enables the autorestart protection time off (as set by the RSRT[1:0] bits) |
| Reserved | 5 | R | Reserved |
| Reserved | 4 | R | Reserved |
| POFF_CL | 3 | R | A logic high prevents power-up after a classification failure (I > 50mA, valid only in AUTO mode) |
| CL_DISC | 2 | R/W | A logic high enables reduced current-limit voltage threshold (VFLT_LIM) according to port
 classification result |
| Reserved | 1 | R/W | Reserved |
| Reserved | 0 | R/W | Reserved |

Table 21. Power Enable Pushbuttons

ADDRESS $\boldsymbol{= 1 9 h}$			D DESCRIPTION
SYMBOL	BIT	R/W	
PWR_OFF4	7	W	A logic high powers off port 4
PWR_OFF3	6	W	A logic high powers off port 3
PWR_OFF2	5	W	A logic high powers off port 2
PWR_OFF1	4	W	A logic high powers off port 1
PWR_ON4	3	W	A logic high powers on port 4
PWR_ON3	2	W	A logic high powers on port 3
PWR_ON2	1	W	A logic high powers on port 2
PWR_ON1	0	W	A logic high powers on port 1

Table 22. Global Pushbuttons

ADDRESS $=1$ Ah			DESCRIPTION
SYMBOL	BIT	R/W	
CLR_INT	7	W	A logic high clears all interrupts
Reserved	6		Reserved
Reserved	5		Reserved
RESET_IC	4	W	A logic high resets the MAX5945
RESET_P4	3	W	A logic high softly resets port 4
RESET_P3	2	W	A logic high softly resets port 3
RESET_P2	1	W	A logic high softly resets port 2
RESET_P1	0	W	A logic high softly resets port 1

when the port is already powered and during shutdown. PWR_OFF_ is ignored when the port is already off and during shutdown. After execution, the bits reset to 0 . During detection or classification, if $\mathrm{PWR}_{-} \mathrm{ON}_{-}$
goes high, the MAX5945 gracefully terminates the current operation and turn-on power to the port. The MAX5945 ignores the PWR_ON_ in AUTO mode. A reset sets R19h = 00h.

Quad Network Power Controller for Power-Over-LAN

Table 23. ID Register

ADDRESS $=1 \mathrm{Bh}$			DESCRIPTION	
SYMBOL	BIT	R/W		
ID_CODE	7	R	ID_CODE[4]	
	6	R	ID_CODE[3]	
	5	R	ID_CODE[2]	
	4	R	ID_CODE[1]	
	3	R	ID_CODE[0]	
REV	2	R	REV [2]	
	1	R	REV [1]	
	0	R	REV [0]	

ID register keeps track of the device ID number and revision. The MAX5945's ID_CODE[4:0] = 11000b. Contact the factory for REV[2:0] value.

Table 24. SMODE Register

ADDRESS $=\mathbf{1 C h}$			DESCRIPTION
SYMBOL	BIT	$\mathbf{C o R}$	
Reserved	7	-	
Reserved	6	-	Reserved
Reserved	5	-	Reserved
Reserved	4	-	Reserved
SMODE4	3	CoR	Hardware control flag for port 4
SMODE3	2	CoR	Hardware control flag for port 3
SMODE2	1	CoR	Hardware control flag for port 2
SMODE1	0	CoR	Hardware control flag for port 1

Writing a 1 to CLR_INT (Table 22) clears all the event registers and the corresponding interrupt bits in register ROOh. Writing a 1 to RESET_P_ turns off power to the corresponding port and resets only the status and event registers of that port. After execution, the bits reset to 0 . Writing a 1 to RESET_IC causes a global software reset, after which the register map is set back to its reset state. A reset sets R1Ah = 00h.
Enable SMODE function (Table 24) by setting EN_WHDOG (R1Fh[7]) to 1. SMODE_ bit goes high when the watchdog counter reaches zero and the port(s) switch over to hardware-controlled mode. SMODE_ also goes high each and every time the software tries to power-on a port but is denied since the port is in hardware mode. A reset sets R1Ch = 00h.
Set EN_WHDOG (R1Fh[7]) to 1 (Table 25) to enable the watchdog function. When activated, the watchdog timer counter, WDTIME[7:0], continuously decrements toward zero once every 164ms. Once the counter reaches zero
(also called watchdog expiry), the MAX5945 enters hard-ware-controlled mode and each port shifts to a mode set by the HWMODE_ bit in register R1Fh (Table 24). Use software to set WDTIME and continuously set this register to some non-zero value before the register reaches zero to prevent a watchdog expiry. In this way, the software gracefully manages the power to ports upon a system crash or switchover.
While in hardware-controlled mode, the MAX5945 ignores all requests to turn the power on and the flag SMODE_ indicates that the hardware took control of the MAX5945 operation. In addition, the software is not allowed to change the mode of operation in hardwarecontrolled mode. A reset sets R1Eh $=00 \mathrm{~h}$.
Setting EN_WHDOG (Table 26) high activates the watchdog counter. When the counter reaches zero, the port switches to the hardware-controlled mode determined by the corresponding HWMODE_ bit. A low in HWMODE_ switches the port into shutdown by setting

Quad Network Power Controller for Power-Over-LAN

Table 25. Watchdog Timer Register

ADDRESS = 1Eh			DESCRIPTION	
SYMBOL	BIT	R/W		
WDTIME	7	R/W	WDTIME[7]	
	6	R/W	WDTIME[6]	
	5	R/W	WDTIME[5]	
	4	R/W	WDTIME[4]	
	3	R/W	WDTIME[3]	
	2	R/W	WDTIME[2]	
	1	R/W	WDTIME[1]	
	0	R/W	WDTIME[0]	

Table 26. Switch Mode Register

| ADDRESS $=\mathbf{1 F h}$ | | | DESCRIPTION |
| :---: | :---: | :---: | :--- | :--- |
| SYMBOL | BIT | R/W | |
| EN_WHDOG | 7 | R/W | A logic high enables the watchdog function |
| WD_INT_EN | 6 | - | Enables interrupt on SMODE_ bits |
| Reserved | 5 | - | |
| Reserved | 4 | R/W | |
| HWMODE4 | 3 | R/W | Port 4 switches to AUTO if logic high and to SHUTDOWN if logic low when watchdog timer expires |
| HWMODE3 | 2 | R/W | Port 3 switches to AUTO if logic high and to SHUTDOWN if logic low when watchdog timer expires |
| HWMODE2 | 1 | R/W | Port 2 switches to AUTO if logic high and to SHUTDOWN if logic low when watchdog timer expires |
| HWMODE1 | 0 | R/W | Port 1 switches to AUTO if logic high and to SHUTDOWN if logic low when watchdog timer expires |

the bits in register R12h to 00. A high in HWMODE_ switches the port into auto mode by setting the bits in register R12h to 11. If WD_INT_EN is set, an interrupt is sent if any of the SMODE bits are set.
A reset sets R1Fh $=00 h$.
Use IGATE[2:0] (Table 27) to set the gate pin pullup current, IPU, according to the following formula:

$$
\mathrm{IPU}=50 \mu \mathrm{~A}-6.25 \times \mathrm{N}
$$

where N is the decimal value of IGATE[2:0].
Use AC_TH[2:0] to program the current threshold of the AC disconnect comparator according to the following formula:

$$
I A C_{-} T H=213.68 \mu \mathrm{~A}+28.33 \mu \mathrm{~A} \times \mathrm{N}
$$

where N is the decimal value of $A C_{-} T H[2: 0]$.
Note: The programmed value has the same percentage tolerance as the value specified in the Electrical Characteristics.
When set low, DET_BYP inhibits port power-on if the discovery detection was bypassed in AUTO mode.

When set high, it allows the part to turn on power to a non-IEEE 802.3af load without doing detection. If OSCF_RS is set high, the OSC_FAIL bit is ignored.
A reset sets R23h $=04 \mathrm{~h}$, which sets $\mathrm{IPU}=50 \mu \mathrm{~A}$ and $I_{\text {AC_TH }}=325 \mu \mathrm{~A}$ as shown in the Electrical Characteristics.
Use R27h (Table 28) to program the current-limit threshold, VSU_LIM, and the nominal load disconnect detection time, tDISC nominal.
Use IMAX[3:0] to program the current-limit trip voltage according to the following formula:

$$
\text { VSU_LIM }=135 \mathrm{mV}+19.25 \mathrm{mV} \times \mathrm{N}
$$

where N is the decimal value of IMAX[3:0]. The VFAULT_LIM limit scales proportionally to the VSU_LIM value (IFAULT $=88 \%$ of VSU_LIM).
A reset sets R27h $=47 \mathrm{~h}$, which sets VSU_LIM $=212 \mathrm{mV}$ (typical) as shown in the Electrical Characteristics. The default threshold is set to meet the IEEE 802.3af standard when using an RSENSE $=0.5 \Omega \pm 1 \%$, 100ppm.

Quad Network Power Controller for Power-Over-LAN

Table 27. Program Register 1

ADDRESS = 23h			DESCRIPTION
SYMBOL	BIT	R/W	
IGATE	7	R/W	IGATE[2]
	6	R/W	IGATE[1]
	5	R/W	IGATE[0]
DET_BYP	4	R/W	Detect bypass protection in AUTO mode
OSCF_RS	3	R/W	OSC_FAIL Reset Bit
AC_TH	2	R/W	AC_TH[2]
	1	R/W	AC_TH[1]
	0	R/W	AC_TH[0]

Table 28. Program Register 2

ADDRESS = 27h			DESCRIPTION
SYMBOL	BIT	R/W	
IMAX	7	R	IMAX[3]. VSU_LIM programming bit 3.
	6	R	IMAX[2]. VSU_LIM programming bit 2.
	5	R	IMAX[1]. VSU_LIM programming bit 1.
	4	R	IMAX[0]. VSU_LIM programming bit 0 .
TD_PR	3	R	TD_PR[3]. tDISC nominal programming bit 3.
	2	R	TD_PR [2]. tDISC nominal programming bit 2.
	1	R	TD_PR [1]. tDISC nominal programming bit 1.
	0	R	TD_PR [0]. tDISC nominal programming bit 0 .

Use TF_PR[3:0] to set the nominal value for tDISC according to the following formula:
tDISC nominal $=238 \mathrm{~ms}+16 \mathrm{~ms} \times \mathrm{N}$
where N is the decimal value of the binary words TF_PR[3:0].
A reset sets $\mathrm{R} 27 \mathrm{~h}=47 \mathrm{~h}$, which sets tDISC nominal $=$ 350ms as shown in the Electrical Characteristics. Use R27h in conjunction with the two TDISC[1:0] bits in register R16h to program the values of tDISC from 60ms to almost 340 ms with a 16 ms resolution.

Example: Set TD_PR[3:0] = 1111b, TDISC[1:0] = 11b Then:

$$
\begin{aligned}
\text { tDISC } & =2 \times \text { tDISC nominal } \\
& =2 \times(238 \mathrm{~ms}+16 \mathrm{~ms} \times 15) \\
& =956 \mathrm{~ms}
\end{aligned}
$$

Note: The programmed value has the same percentage tolerance as the value specified in the Electrical Characteristics.

Quad Network Power Controller for Power-Over-LAN

Table 29. Program Register 3

ADDRESS $=28 \mathrm{~h}$			DESCRIPTION
SYMBOL	BIT	R/W	
TF_PR	7	R	TF_PR[3]. tFAULT nominal programming bit 3.
	6	R	TF_PR[2]. tFAULT nominal programming bit 2.
	5	R	TF_PR[1]. tFAULT nominal programming bit 1.
	4	R	TF_PR[0]. tFAULT nominal programming bit 0 .
TS_PR	3	R	TS_PR[3]. tSTART nominal programming bit 3.
	2	R	TS_PR[2]. tSTART nominal programming bit 2.
	1	R	TS_PR[1]. tSTART nominal programming bit 1.
	0	R	TS_PR[0]. tstart nominal programming bit 0 .

Use the program registers (Table 29) to set the nominal value for tFAULT and tSTART for all ports according to the following formula:

$$
\begin{aligned}
& \text { tFAULT nominal }=40.96 \mathrm{~ms}+2.72 \mathrm{~ms} \times \mathrm{N} \\
& \text { tSTART nominal }=40.96 \mathrm{~ms}+2.72 \mathrm{~ms} \times \mathrm{N}
\end{aligned}
$$

where N is the decimal value of TF_PR[3:0] or TS_PR[3:0], respectively.
A reset sets R28h $=77 \mathrm{~h}$, which sets tFAULT $=$ tSTART $=$ 60ms as shown in the Electrical Characteristics. Use R28h in conjunction with the two TSTART and TFAULT bits in register R16h to program the values of trault and tsTART from about 20 ms to almost 330 ms with a 2.72 ms resolution.

Example: Set TF_PR[3:0] = 1111b, TFAULT[1:0] = 11b Then:

$$
\begin{aligned}
\text { tFAULT } & =4 \times \text { tFAULT nominal } \\
& =4 \times(40.96 \mathrm{~ms}+2.72 \mathrm{~ms} \times 15) \\
& =327 \mathrm{~ms}
\end{aligned}
$$

Note: The programmed value has the same percentage tolerance as the value specified in the Electrical Characteristics.

Quad Network Power Controller for Power-Over-LAN

Table 30. Register Map Summary

ADDR	REGISTER NAME	R/W	PORT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	RESET STATE
INTERRUPTS												
00h	Interrupt	RO	G	SUP_FLT	TSTR_FLT	IMAX_FLT	CL_END	DET_END	LD_DISC	PG_INT	PE_INT	0000,0000
01h	Int Mask	R/W	G	MASK7	MASK6	MASK5	MASK4	MASK3	MASK2	MASK1	MASKO	AAAO,0A00
EVENTS												
02h	Power Event	RO	4321									0000,0000
03h	Power Event CoR	CoR		PG_CHG4	PG_CHG3	PG_CHG2	PG_CHG1	$\begin{aligned} & \text { PWEN- } \\ & \text { CHG } \end{aligned}$	$\begin{aligned} & \text { PWEN- } \\ & \text { CHG3 } \end{aligned}$	$\begin{aligned} & \text { PWEN- } \\ & \text { CHG } \end{aligned}$	$\begin{aligned} & \text { PWEN- } \\ & \text { CHG } \end{aligned}$	
04h	Detect Event	RO	4321									0000,0000
05h	Detect Event CoR	CoR		CL_END4	CL_END3	CL_END2	CL_END1	DET_END4	DET_END3	DET_END2	DET_END1	
06h	Fault Event	RO	4321									0000,0000
07h	Fault Event CoR	CoR		LD_DISC4	LD_DISC3	LD_DISC2	LD_DISC1	IMAX_FLT4	IMAX_FLT3	IMAX_FLT2	IMAX_FLT1	
08h	Tstart Event	RO	4321									0000,0000
09h	Tstart Event CoR	CoR		IVC4	IVC3	IVC2	IVC1	STRT_FLT4	STRT_FLT3	STRT_FLT2	STRT_FLT1	
OAh	Supply Event	RO	4321									0011,0101*
OBh	Supply Event CoR	CoR		TSD	VDD_OV	VDD_UV	VEE UVLO	VEE_OV	VEE_UV	OSC_FAIL	VDD_UVLO	
STATUS												
OCh	Port 1 Status	RO	1	reserved	CLASS1[2]	CLASS1[1]	CLASS1[0]	reserved	DET_ST1 [2]	$\begin{gathered} \text { DET_ST1 } \\ {[1]} \end{gathered}$	$\begin{gathered} \text { DET_ST1 } \\ {[0]} \end{gathered}$	0000,0000
ODh	Port 2 Status	RO	2	reserved	CLASS2[2]	CLASS2[1]	CLASS2[0]	reserved	$\begin{gathered} \text { DET_ST2 } \\ {[2]} \end{gathered}$	$\begin{gathered} \text { DET_ST2 } \\ {[1]} \end{gathered}$	$\begin{gathered} \text { DET_ST2 } \\ {[0]} \end{gathered}$	0000,0000
OEh	Port 3 Status	RO	3	reserved	CLASS3[2]	CLASS3[1]	CLASS3[0]	reserved	DET_ST3 [2]	$\begin{gathered} \text { DET_ST3 } \\ {[1]} \end{gathered}$	$\begin{gathered} \text { DET_ST3 } \\ {[0]} \end{gathered}$	0000,0000
OFh	Port 4 Status	RO	4	reserved	CLASS4[2]	CLASS4[1]	CLASS4[0]	reserved	DET_ST4 [2]	$\begin{gathered} \text { DET_ST4 } \\ {[1]} \end{gathered}$	$\begin{gathered} \text { DET_ST4 } \\ {[0]} \end{gathered}$	0000,0000
10h	Power Status	RO	4321	PGOOD4	PGOOD3	PGOOD2	PGOOD1	PWR_EN4	PWR_EN3	PWR_EN2	PWR_EN1	0000,0000
11h	Pin Status	RO	G	reserved	reserved	A3	A2	A1	AO	MIDSPAN	AUTO	00A3A2, A1A0MA

\boldsymbol{G}

Quad Network Power Controller for Power-Over-LAN

MAX5945

ADDR	REGISTER NAME	R/W	PORT	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	RESET STATE
CONFIGURATION												
12h	Operating Mode	R/W	4321	P4_M1	P4_M0	P3_M1	P3_M0	P2_M1	P2_M0	P1_M1	P1_M0	AAAA,AAAA
13h	Disconnect Enable	R/W	4321	ACD_EN4	ACD_EN3	ACD_EN2	ACD_EN1	DCD_EN4	DCD_EN3	DCD_EN2	DCD_EN1	0000,AAAA
14h	Det/Class Enable	R/W	4321	CLASS_EN4	$\begin{array}{\|c} \text { CLASS_EN } \\ 3 \end{array}$	$\begin{array}{\|c} \text { CLASS_EN } \\ 2 \end{array}$	$\begin{array}{\|c} \text { CLASS_EN } \\ 1 \end{array}$	DET_EN4	DET_EN3	DET_EN2	DET_EN1	AAAA,AAAA
15h	Backoff Enable	R/W	4321	reserved	reserved	reserved	reserved	Bckoff4	Bckoff3	Bckoff2	Bckoff1	0000,MMMM
16h	Timing Config	R/W	G	RSTR[1]	RSTR[0]	TSTART[1]	TSTART[0]	TFAULT[1]	TFAULT[0]	TDISC[1]	TDISC[0]	0000,0000
17h	Misc Config	R/W	G	INT_EN	RSTR_EN	reserved	reserved	POFF_CL	CL_DISC	reserved	reserved	1100,0000
PUSHBUTTONS												
18h	Reserved	R/W	G	reserved								
19h	Power Enable	WO	4321	PWR_OFF4	PWR_OFF3	PWR_OFF2	PWR_OFF1	PWR_ON4	PWR_ON3	PWR_ON2	PWR_ON1	0000,0000
1Ah	Global	WO	G	CLR_INT	reserved	reserved	RESET_IC	RESET_P4	RESET_P3	RESET_P2	RESET_P1	0000,0000
GENERAL												
1Bh	ID	RO	G	ID_CODE[4]	ID_CODE[3]	ID_CODE[2]	ID_CODE[1]	ID_CODE[0]	REV [2]	REV [1]	REV [0]	1100,0RRR
1Ch	SMODE	CoR	4321	reserved	reserved	reserved	reserved	SMODE4	SMODE3	SMODE2	SMODE1	00000000
1Dh	Reserved		G	reserved	00000000							
1EH	Watchdog	R/W	G	WDTIME[7]	WDTIME[6]	WDTIME[5]	WDTIME[4]	WDTIME[3]	WDTIME[2]	WDTIME[1]	WDTIME[0]	00000000
1FH	Switch Mode	R/W	4321	EN_WHDOG	WD_INT_EN	reserved	reserved	HWMODE4	HWMODE3	HWMODE2	HWMODE1	00000000
MAXIM RESERVED												
20 H	Reserved		G	reserved	00000000							
21H	Reserved		G	reserved	00000000							
22 H	Reserved		G	reserved	00000000							
23H	Program1	R/W	4321	IGATE[2]	IGATE[1]	IGATE[0]	DET_BYP	OSCF_RS	AC_TH[0]	AC_TH[0]	AC_TH[0]	00000100
24h	Reserved		G	reserved	00000000							
25h	Reserved		G	reserved	00000000							
26h	Reserved		G	reserved	00000000							
27H	Program2	R/W	G	IMAX[3]	IMAX[2]	IMAX[1]	IMAX[0]	TD[3]	TD[2]	TD[1]	TD[0]	01000111
28 H	Program3	R/W	G	TF_PR[3]	TF_PR[2]	TF_PR[1]	TF_PR[0]	TS_PR[3]	TS_PR[2]	TS_PR[1]	TS_PR[0]	01110111

$A=A U T O$ pin state, $A 3 . . O=$ ADDRESS pin states, $M=$ MIDSPAN pin state, $R=$ contact factory for current revision code Table $15 a$.

Quad Network Power Controller for Power-Over-LAN

Figure 14. PoE System Block Diagram

Quad Network Power Controller for Power-Over-LAN

Figure 15. PoE System Diagram of One Complete Port, Endpoint PSE

Quad Network Power Controller for Power-Over-LAN

MAX5945

Figure 16. PoE System Diagram of One Complete Port, Midspan PSE

Quad Network Power Controller for Power-Over-LAN

Figure 17. -48 V to $+3.3 \mathrm{~V}(300 \mathrm{~mA})$ Boost Converter Solution for $V_{D I G}$

Figure 18. Layout Example for Boost Converter Solution for VDIG

Quad Network Power Controller for Power-Over-LAN

Component List

DESIGNATION	DESCRIPTION
C1	$0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$ ceramic capacitor
C2	$0.022 \mu \mathrm{~F}, 25 \mathrm{~V}$ ceramic capacitor
C3	$15 \mathrm{nF}, 25 \mathrm{~V}$ ceramic capacitor
C4	$220 \mu \mathrm{~F}$ capacitor Sanyo 6SVPA220MAA
C5	4.7 $\mu \mathrm{F}, 16 \mathrm{~V}$ ceramic capacitor
C6	$0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$ ceramic capacitor
C7	$0.22 \mu \mathrm{~F}, 16 \mathrm{~V}$ ceramic capacitor
C8	$0.22 \mu \mathrm{~F}, 16 \mathrm{~V}$ ceramic capacitor
C9	4.7nF, 16V ceramic capacitor
D1	B1100 100V Schottky diode
L1	$68 \mu \mathrm{H}$ inductor Coilcraft DO3308P-683 or equivalent
Q1	Si2328DS Vishay n-channel MOSFET, SOT23
Q2	MMBTA56 small-signal PNP
Q3	MMBTA56 small-signal PNP
Q4	MMBTA56 small-signal PNP
R1	$2.61 \mathrm{k} \Omega \pm 1 \%$ resistor
R2	$6.81 \mathrm{k} \Omega \pm 1 \%$ resistor
R3	$2.61 \mathrm{k} \Omega \pm 1 \%$ resistor
R4	$1 \Omega \pm 1 \%$ resistor
R5	$1 \mathrm{k} \Omega \pm 1 \%$ resistor
R6	$1 \Omega \pm 1 \%$ resistor
R7	$1.02 \mathrm{k} \Omega \pm 1 \%$ resistor
R8	$30 \Omega \pm 1 \%$ resistor
R9	$1 \Omega \pm 1 \%$ resistor
R10	$2 \Omega \pm 1 \%$ resistor
U1	High-voltage PWM IC MAX5020ESA (8-pin SO)

Quad Network Power Controller for Power-Over-LAN

Typical Operating Circuits

Typical Operating Circuit 1 (without AC Load Removal Detection)

Quad Network Power Controller for Power-Over-LAN

Typical Operating Circuits (continued)

Typical Operating Circuit 2 (with AC Load Removal Detection)

Quad Network Power Controller for Power-Over-LAN

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

