
INTEGRATED CIRCUITS

Product specification Supersedes data of 2000 Oct 12 File under Integrated Circuits, IC02

TDA8787A

FEATURES

- Correlated Double Sampling (CDS), Programmable Gain Amplifier (PGA), 10-bit Analog-to-Digital Converter (ADC) and reference regulator included
- Fully programmable via a 3-wire serial interface
- Sampling frequency up to 25 MHz; (TDA8787AHL = 18 MHz; TDA8787AHL/S1 = 25 MHz)
- PGA gain range of 36 dB (in steps of 0.1 dB)
- Low power consumption of only 170 mW at 2.7 V
- Power consumption in standby mode of 4.5 mW (typical value)
- 3.0 V operation; 2.5 to 3.6 V operation for the digital outputs
- Active control pulses polarity selectable via serial interface
- 8-bit DAC included for analog settings
- TTL compatible inputs, CMOS compatible outputs.

APPLICATIONS

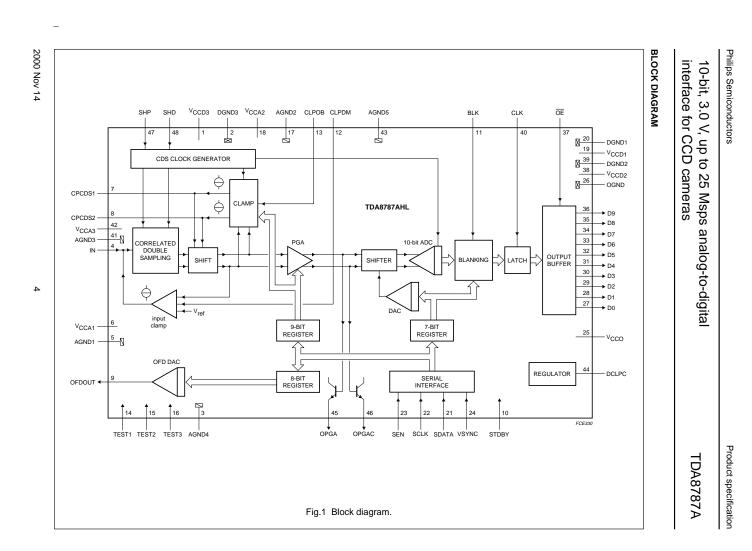
· Low-power, low-voltage CCD camera systems.

GENERAL DESCRIPTION

The TDA8787A is a 10-bit analog-to-digital interface for CCD cameras. The device includes a correlated double sampling circuit, a PGA, clamp loops and a low-power 10-bit ADC, together with its reference voltage regulator.

The PGA gain and the ADC input clamp level are controlled via the serial interface.

An additional DAC is provided for additional system controls. Its output voltage range is 1.0 V peak-to-peak which is available at pin OFDOUT.


	PACKAGE			
TYPE NUMBER	NAME	DESCRIPTION	VERSION	PIXEL FREQUENCY
TDA8787AHL	LQFP48	plastic low profile quad flat package; 48 leads;	SOT313-2	18 MHz
TDA8787AHL/S1	LQFP48	body $7 \times 7 \times 1.4$ mm	SOT313-2	25 MHz

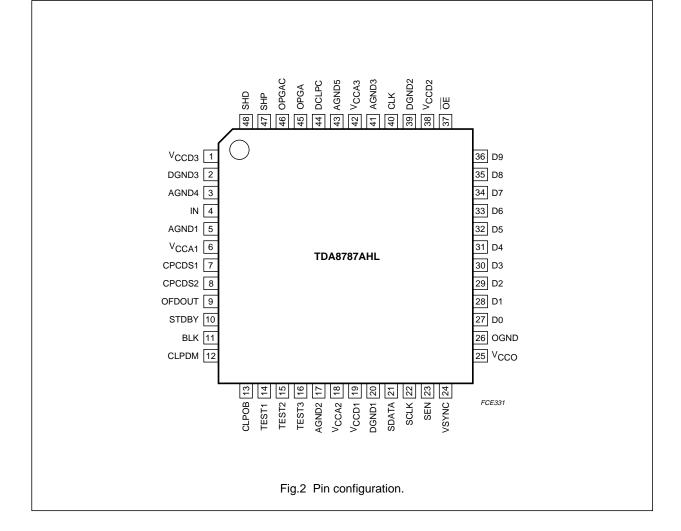
ORDERING INFORMATION

TDA8787A

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CCA}	analog supply voltage		2.7	3.0	3.6	V
V _{CCD}	digital supply voltage		2.7	3.0	3.6	V
V _{CCO}	digital outputs stages supply voltage		2.5	2.6	3.6	V
I _{CCA}	analog supply current	all clamps active; f _{pix} = 18 MHz	-	50	60	mA
I _{CCD}	digital supply current	f _{pix} = 18 MHz	-	13	17	mA
I _{CCO}	digital outputs supply current	f_{pix} = 18 MHz; C _L = 20 pF; input ramp response time is 800 µs	-	1	2	mA
ADC _{res}	ADC resolution		-	10	-	bits
V _{i(CDS)(p-p)}	CDS input amplitude (video	V _{CC} = 2.85 V	650	-	-	mV
	signal) (peak-to-peak value)	$V_{CC} \ge 3.0 \text{ V}$	800	-	-	mV
f _{pix(max)}	maximum pixel frequency		25	-	-	MHz
f _{pix(min)}	minimum pixel frequency		2	-	-	MHz
DR _{PGA}	PGA dynamic range		-	36	-	dB
N _{tot(rms)}	total noise (RMS value) at CDS input to ADC output	PGA code = 0; see Fig.8	-	0.15	-	LSB
V _{n(i)(eq)(rms)}	equivalent input noise voltage (RMS value)	PGA code = 383	-	70	-	μV
P _{tot}	total power consumption	$V_{CCA} = V_{CCD} = V_{CCO} = 3 V$	-	190	-	mW
		$V_{CCA} = V_{CCD} = V_{CCO} = 2.7 V$	-	170	-	mW

Downloaded from Elcodis.com electronic components distributor


10-bit, 3.0 V, up to 25 Msps analog-to-digital interface for CCD cameras

PINNING

SYMBOL	PIN	DESCRIPTION
V _{CCD3}	1	digital supply voltage 3
DGND3	2	digital ground 3
AGND4	3	analog ground 4
IN	4	input signal from CCD
AGND1	5	analog ground 1
V _{CCA1}	6	analog supply voltage 1
CPCDS1	7	clamp storage capacitor 1
CPCDS2	8	clamp storage capacitor 2
OFDOUT	9	analog output of the additional 8-bit control DAC
STDBY	10	standby mode control input (LOW: TDA8787A active; HIGH: TDA8787A standby)
BLK	11	blanking control input
CLPDM	12	clamp pulse input at dummy pixel (should be connected to ground)
CLPOB	13	clamp pulse input for optical black
TEST1	14	test pin input 1 (should be connected to AGND2)
TEST2	15	test pin input 2 (should be connected to AGND2)
TEST3	16	test pin input 3 (should be connected to AGND2)
AGND2	17	analog ground 2
V _{CCA2}	18	analog supply voltage 2
V _{CCD1}	19	digital supply voltage 1
DGND1	20	digital ground 1
SDATA	21	serial data input for serial interface control
SCLK	22	serial clock input for serial interface control
SEN	23	strobe pin for serial interface control
VSYNC	24	vertical sync pulse input
V _{cco}	25	output stages supply voltage
OGND	26	digital output ground
D0	27	ADC digital output 0 (LSB)
D1	28	ADC digital output 1
D2	29	ADC digital output 2
D3	30	ADC digital output 3
D4	31	ADC digital output 4
D5	32	ADC digital output 5
D6	33	ADC digital output 6
D7	34	ADC digital output 7
D8	35	ADC digital output 8
D9	36	ADC digital output 9 (MSB)
OE	37	output enable control input (LOW: outputs active; HIGH: outputs in high impedance)
V _{CCD2}	38	digital supply 2
DGND2	39	digital ground 2
CLK	40	data clock input

10-bit, 3.0 V, up to 25 Msps analog-to-digital interface for CCD cameras

SYMBOL	PIN	DESCRIPTION
AGND3	41	analog ground 3
V _{CCA3}	42	analog supply 3
AGND5	43	analog ground 5
DCLPC	44	regulator decoupling pin
OPGA	45	PGA output (test pin)
OPGAC	46	PGA complementary output (test pin)
SHP	47	preset sample-and-hold pulse input
SHD	48	data sample-and-hold pulse input

TDA8787A

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CCA}	analog supply voltage	note 1	-0.3	+5.0	V
V _{CCD}	digital supply voltage	note 1	-0.3	+5.0	V
V _{CCO}	output stages supply voltage	note 1	-0.3	+5.0	V
ΔV_{CC}	supply voltage difference				
	between V_{CCA} and V_{CCD}		-0.5	+0.5	V
	between V_{CCA} and V_{CCO}		-0.5	+1.2	V
	between V_{CCD} and V_{CCO}		-0.5	+1.2	V
Vi	input voltage	referenced to AGND	-0.3	+5.0	V
l _o	data output current		-	±10	mA
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-20	+75	°C
Tj	junction temperature		-	150	°C

Note

1. The supply voltages V_{CCA}, V_{CCD} and V_{CCO} may have any value between –0.3 and +5.0 V provided that the supply voltage difference ΔV_{CC} remains as indicated.

HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	76	K/W

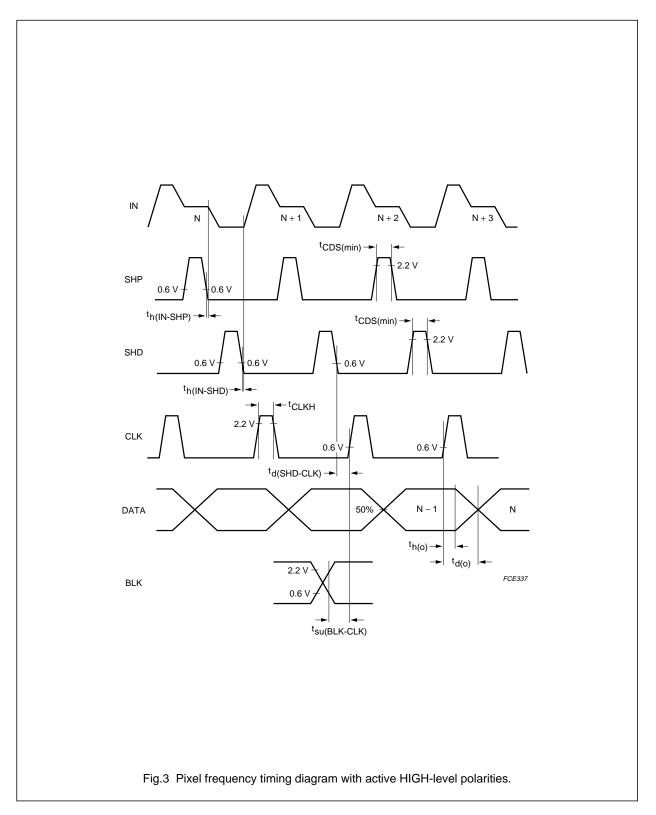
TDA8787A

CHARACTERISTICS

 $V_{CCA} = V_{CCD} = 3.0 \text{ V}; V_{CCO} = 2.6 \text{ V}; f_{pix} = 18 \text{ MHz}; T_{amb} = -20 \text{ to } +75^{\circ}\text{C}; \text{ unless otherwise specified}.$

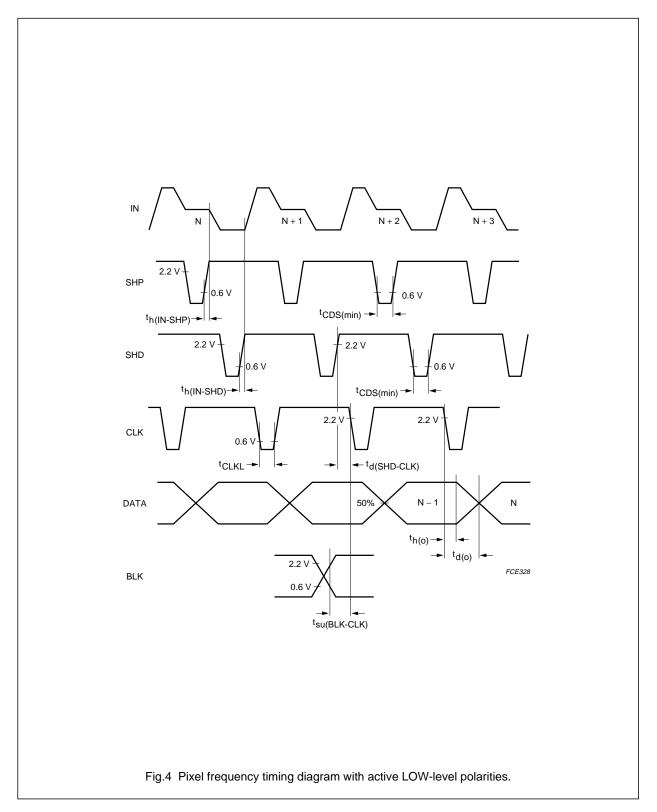
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies				-		1
V _{CCA}	analog supply voltage		2.7	3.0	3.6	V
V _{CCD}	digital supply voltage		2.7	3.0	3.6	V
V _{CCO}	digital outputs stages supply voltage		2.5	2.6	3.6	V
I _{CCA}	analog supply current	all clamps active	-	50	60	mA
I _{CCD}	digital supply current		-	13	17	mA
I _{CCO}	digital outputs supply current	$C_L = 20 \text{ pF}$ on all data outputs; input ramp response time is $800 \mu\text{s}$	-	1	2	mA
P _{tot}	total power consumption	$V_{CCA} = V_{CCD} = V_{CCO} = 3 V$	-	190	-	mW
		$V_{CCA} = V_{CCD} = V_{CCO} = 2.7 \text{ V}$	-	170	-	mW
Digital input	ts					
INPUTS: PINS	STDBY, CLPDM, CLPOB, S	CLK, SDATA, SEN, VSYNC, OE,	CLK AND B	LK		
V _{IL}	LOW-level input voltage		0	-	0.6	V
V _{IH}	HIGH-level input voltage		2.2	-	5.0	V
li	input current	$0 \le V_i \le V_{CCD}$	-2	-	+2	μA
INPUTS: PINS	SHP AND SHD					
V _{IL}	LOW-level input voltage		0	-	0.6	V
V _{IH}	HIGH-level input voltage		2.2	-	5.0	V
li	input current	$0 \le V_i \le V_{CCD}$	-10	-	+10	μA
Clamps	•			•		
GLOBAL CHAF	RACTERISTICS OF THE CLAMP L	OOPS				
t _{W(clamp)}	clamp active pulse width in numbers of pixels	PGA input code = 255 for maximum 4 LSB error	12	-	-	pixels
INPUT CLAMP					-	
gm(CDS)	CDS input clamp transconductance		1.5	2.7	3.5	mS
OPTICAL BLAC	CK CLAMP: PIN CLPOB					
G _{shift}	gain from CPCDS1 and 2 to PGA inputs		-	0.27	-	
I _{LSB(cp)}	charge pump current for	PGA input code = 0	-	±20	-	μA
· · ·	±1 LSB error at ADC output	PGA input code = 383	-	±0.60	-	μA

TDA8787A


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Correlated I	Double Sampling (CDS) (pir	n IN)				1
V _{i(CDS)(p-p)}	CDS input amplitude	V _{CC} = 2.85 V	650	_	_	mV
(/(I /	(video signal) (peak-to-peak value)	$V_{CC} \ge 3.0 \text{ V}$	800	-	-	mV
V _{i(rst)(max)}	maximum CDS input reset pulse amplitude		500	-	-	mV
li	input current	at floating gate level	-1	-	+1	μA
Ci	input capacitance		-	2	-	pF
t _{CDS(min)}	CDS control pulses minimum active time	$V_{i(CDS)(p-p)} = 800 \text{ mV};$ black-to-white transition in 1 pixel (±2 LSB typical); $T_{amb} = 25 \text{ °C};$ note 1				
		f _{pix} = 18 MHz (TDA8787AHL)	11	15	-	ns
		f _{pix} = 25 MHz (TDA8787AHL/S1)	9	11	-	ns
t _{h(IN-SHP)}	hold time SHP to IN	T _{amb} = 25 °C; see Figs 3 and 4	-	1	2	ns
t _{h(IN-SHD)}	hold time SHD to IN	T _{amb} = 25 °C; see Figs 3 and 4	-	1	2	ns
Amplifier						-
DR _{PGA}	PGA dynamic range		-	36	-	dB
ΔG_{PGA}	PGA gain step		-0.3	-	+0.3	dB
Analog-to-D	Digital Converter (ADC)			·		1
LE _(i)	integral non-linearity error	f _{pix} = 18 MHz; ramp input	-	±1.3	±2.5	LSB
LE _(d)	differential non-linearity error	f _{pix} = 18 MHz; ramp input	-	±0.5	±0.9	LSB
Total chain	characteristics (CDS, PGA	and ADC)				
f _{pix(max)}	maximum pixel frequency		25	-		MHz
f _{pix(min)}	minimum pixel frequency		2	_	_	MHz
t _{CLKH}	clock HIGH time		15	-	_	ns
t _{CLKL}	clock LOW time		15	-	-	ns
t _{d(SHD-CLK)}	time delay SHD to CLK	see Fig.3	10	-	-	ns
t _{su(BLK-CLK)}	set-up time of BLK compared to CLK		10	-	-	ns
V _{i(IN)}	video input dynamic signal	PGA input code = 0	800	-	-	mV
	for ADC full-scale output	PGA input code = 383	12.7	-	-	mV
N _{tot(rms)}	total noise from CDS input	see Fig.8				
	to ADC output	PGA input code = 0	-	0.15	-	LSB
	(RMS value)	PGA input code = 96	-	0.8	_	LSB
V _{n(i)(eq)(rms)}	equivalent input noise	PGA input code = 383	-	70	-	μV
	voltage (RMS value)	PGA input code = 0	-	120	-	μV

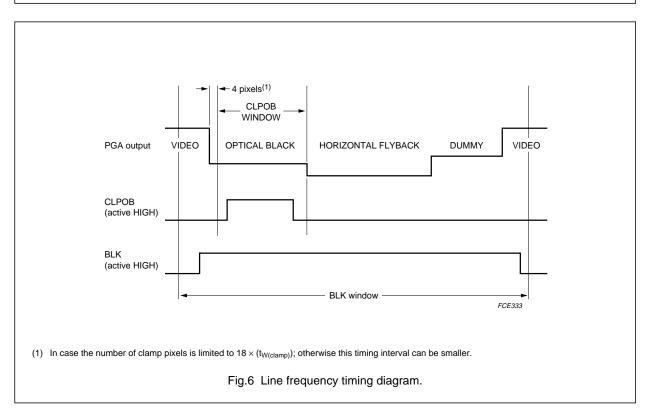
TDA8787A

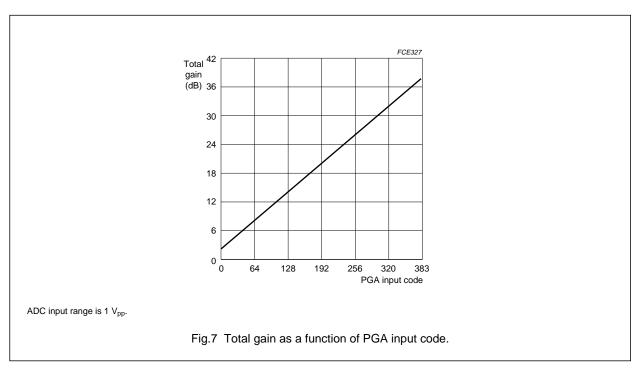
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
O _{CCD(max)}	maximum offset between CCD floating level and CCD dark pixel level		-80	_	+80	mV
Digital-to-Ar	alog Converter (OFDOUT	DAC)				
V _{OFDOUT(p-p)}	additional 8-bit control DAC (OFD) output voltage (peak-to-peak value)	$R_L = 1 M\Omega$	_	1.0	-	V
V _{OFDOUT}	DC output voltage	OFD input code 0	-	AGND	-	V
		OFD input code 255	-	AGND + 1.0	-	V
TC _{OFD}	OFD output range temperature coefficient		-	250	-	ppm/°C
ZOFDOUT	OFD output impedance		_	2000	-	Ω
IOFDOUT	OFD output drive current	static	-	-	100	μA
Digital output	uts (f _{pix} = 18 MHz; C _L = 10 p	oF); see Figs 3 and 4	•			•
V _{OH}	HIGH-level output voltage	I _{OH} = -1 mA	V _{CCO} – 0.5	-	Vcco	V
V _{OL}	LOW-level output voltage	I _{OL} = 1 mA	0	-	0.5	V
I _{OZ}	OFF-state output current	0.5 V < V _{OZ} < V _{CCO}	-20	-	+20	μA
t _{h(o)}	output hold time		9	-	-	ns
t _{d(o)}	output delay time	V _{CCO} = 3.0 V	-	17	23	ns
		V _{CCO} = 2.7 V	-	19	25	ns
CL	load capacitance		-	-	22	pF
Serial interfa	ace					
f _{SCLK(max)}	maximum frequency pin SCLK		5	-	-	MHz


Note

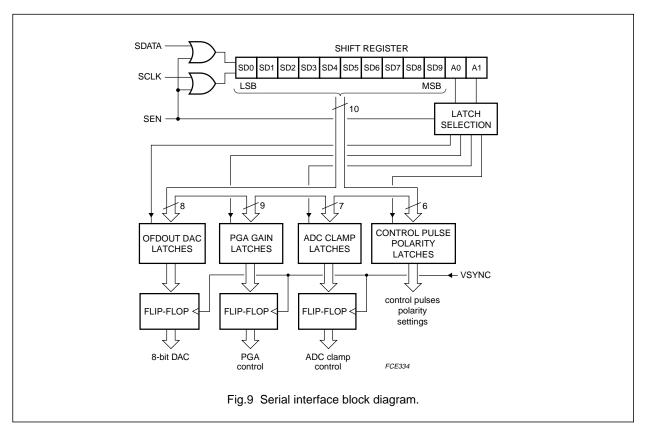
1. Depending on application environments and especially in case of high gain operation and digital supply with jitter, it is preferable to apply 12 ns or higher CDS pulses.

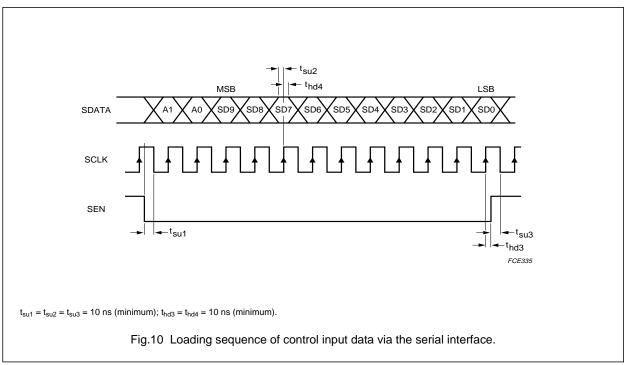
2000 Nov 14


TDA8787A


TDA8787A


10-bit, 3.0 V, up to 25 Msps analog-to-digital interface for CCD cameras




10-bit, 3.0 V, up to 25 Msps analog-to-digital interface for CCD cameras

TDA8787A

TDA8787A

Table 1Serial interface programming; see Figs 9 and 10

ADDRE	ESS BITS	DATA BITS SD9 TO SD0
A1	A0	
0	0	PGA gain control (bits SD8 to SD0); bit SD9 should be set to logic 0
0	1	DAC OFDOUT output control (bits SD7 to SD0); bits SD8 and SD9 should be set to logic 0
1	0	ADC clamp reference control (SD6 to SD0); from code 0 to 127; bits SD7, SD8 and SD9 should be set to logic 0
1	1	control pulses polarity settings (pins SHP, SHD, CLPDM, CLPOB, BLK and CLK)

Table 2Polarity settings

SYMBOL	PIN	SERIAL CONTROL BIT ⁽¹⁾	ACTIVE EDGE OR LEVEL
SHP and SHD	47 and 48	SD0	1 = HIGH; 0 = LOW
CLK	40	SD1	1 = HIGH; 0 = LOW
CLPDM	12 (connected to ground)	SD2	always 0 = LOW
CLPOB	13	SD3	1 = HIGH; 0 = LOW
BLK	11	SD5	1 = HIGH; 0 = LOW
VSYNC	24	SD6	0 = rising; 1 = falling

Note

1. Bit SD4 is not used.

Table 3 Standby mode selection; pin STDBY

STDBY	ADC DIGITAL OUTPUTS; PINS D9 TO D0	I _{CCA} + I _{CCO} + I _{CCD} (typical)
1	logic state LOW	1.5 mA
0	active	64 mA

Table 4Output enable (\overline{OE}) pin 37

OE	ADC DIGITAL OUTPUTS; PINS D9 TO D0
0	active, binary
1	high impedance

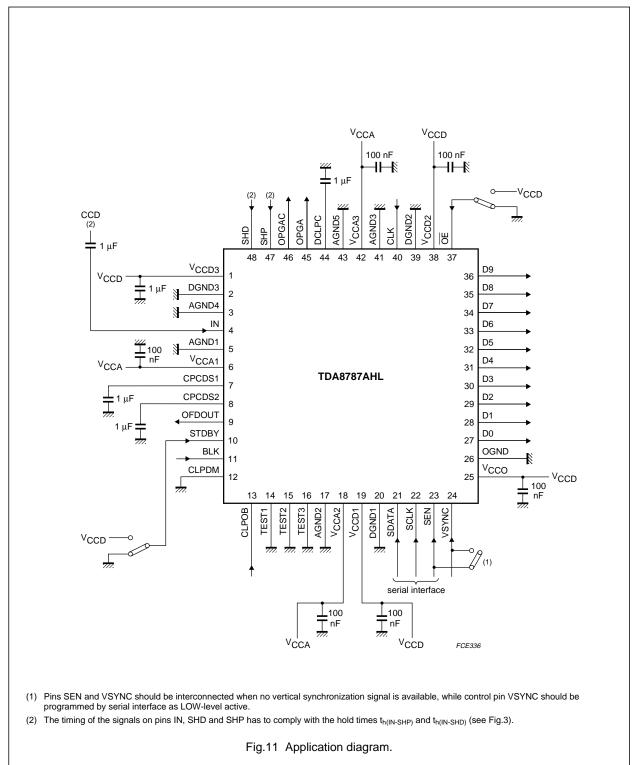
10-bit, 3.0 V, up to 25 Msps analog-to-digital interface for CCD cameras

APPLICATION INFORMATION

Power and grounding recommendations

When designing a printed-circuit board for applications such as PC cameras, surveillance cameras, camcorders and digital still cameras, care should be taken to minimize the noise.

For the front-end integrated circuit, the basic rules of printed-circuit board design and implementation of analog components (such as additional operational amplifiers) must be respected, particularly with respect to power and ground connections.

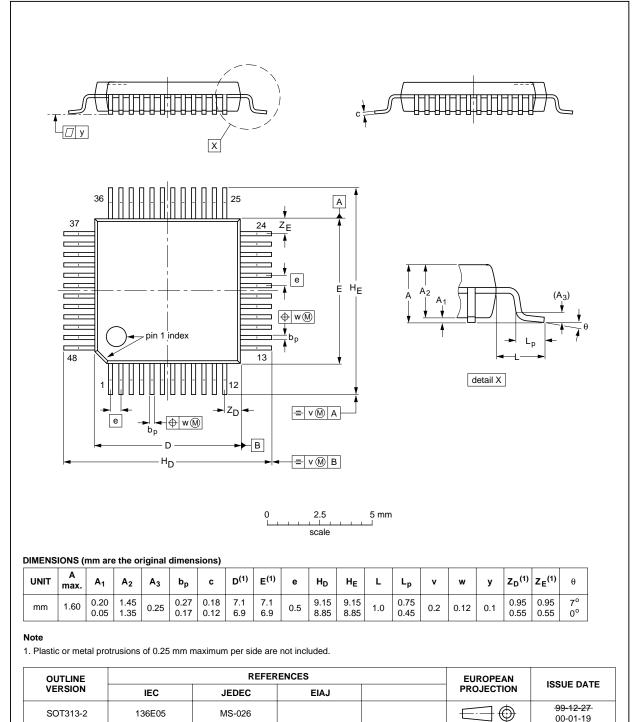

The following additional recommendation is given for the CDS input pin(s) which is /are internally connected to the programmable gain amplifier.

The connections between the CCD interface and CDS input should be as short as possible and a ground ring protection around these connections can be beneficial. Separate analog and digital supplies provide the best solution. If this is not possible to do this on the board then the analog supply pins must be decoupled effectively from the digital supply pins. If the same power supply and ground are used for all the pins then the decoupling capacitors must be placed as close as possible to the IC package. In order to minimize the noise due to package and die parasitics in a two-ground system, the following measures must be implemented:

- All the analog and digital supply pins must be decoupled to the analog ground plane. Only the ground pin associated with the digital outputs must be connected to the digital ground plane. All the other ground pins should be connected to the analog ground plane. The analog and digital ground planes must be connected together at one point as close as possible to the ground pin associated with the digital outputs.
- The digital output pins and their associated lines should be shielded by the digital ground plane which can then be used as a return path for digital signals.

10-bit, 3.0 V, up to 25 Msps analog-to-digital interface for CCD cameras

Application diagram



SOT313-2

10-bit, 3.0 V, up to 25 Msps analog-to-digital interface for CCD cameras

PACKAGE OUTLINE

TDA8787A

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "*Data Handbook IC26; Integrated Circuit Packages*" (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300 \,^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^\circ\text{C}.$

TDA8787A

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD		
FACKAGE	WAVE	REFLOW ⁽¹⁾	
BGA, SQFP	not suitable	suitable	
HLQFP, HSQFP, HSOP, HTSSOP, SMS	not suitable ⁽²⁾	suitable	
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable	
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable	

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

TDA8787A

DATA SHEET STATUS

DATA SHEET STATUS	PRODUCT STATUS	DEFINITIONS ⁽¹⁾
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Note

1. Please consult the most recently issued data sheet before initiating or completing a design.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

NOTES

Philips Semiconductors – a worldwide company

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Argentina: see South America Tel. +31 40 27 82785, Fax. +31 40 27 88399 Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Tel. +64 9 849 4160, Fax. +64 9 849 7811 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213. Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Pakistan: see Singapore Belgium: see The Netherlands Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Brazil: see South America Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, 51 James Bourchier Blvd., 1407 SOFIA Tel. +48 22 5710 000, Fax. +48 22 5710 001 Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Portugal: see Spain Tel. +1 800 234 7381, Fax. +1 800 943 0087 Romania: see Italv China/Hong Kong: 501 Hong Kong Industrial Technology Centre, Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Tel. +852 2319 7888, Fax. +852 2319 7700 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Colombia: see South America Tel. +65 350 2538, Fax. +65 251 6500 Czech Republic: see Austria Slovakia: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Slovenia: see Italy Tel. +45 33 29 3333, Fax. +45 33 29 3905 South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, Finland: Sinikalliontie 3, FIN-02630 ESPOO, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +358 9 615 800, Fax. +358 9 6158 0920 Tel. +27 11 471 5401, Fax. +27 11 471 5398 France: 51 Rue Carnot. BP317. 92156 SURESNES Cedex. South America: Al. Vicente Pinzon, 173, 6th floor, Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 04547-130 SÃO PAULO, SP, Brazil Tel. +55 11 821 2333. Fax. +55 11 821 2382 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107 Hungary: see Austria Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, India: Philips INDIA Ltd, Band Box Building, 2nd floor, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Indonesia: PT Philips Development Corporation, Semiconductors Division, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874 Tel. +62 21 794 0040 ext. 2501. Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd. Tel. +353 1 7640 000, Fax. +353 1 7640 200 60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260, Tel. +66 2 361 7910, Fax. +66 2 398 3447 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, Tel. +39 039 203 6838, Fax +39 039 203 6800 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057 MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Uruguay: see South America Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Vietnam: see Singapore Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087 Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Middle East: see Italy Tel. +381 11 3341 299, Fax.+381 11 3342 553

For all other countries apply to: Philips Semiconductors, Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 2000

SCA70 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

753504/03/pp24

Date of release: 2000 Nov 14

Document order number: 9397 750 07755

Let's make things better.

Internet: http://www.semiconductors.philips.com

Semiconductors

Philips