# 

# Stereo Audio Taper Potentiometers with Pushbutton Interface

### **General Description**

The MAX5456/MAX5457 dual, logarithmic taper digital potentiometers feature a simple pushbutton interface that controls volume and balance in audio applications. Each potentiometer has 32 tap points and replaces mechanical potentiometers. Refer to the MAX5408–MAX5411 data sheet for SPI<sup>™</sup> versions of the MAX5456/MAX5457.

Use the MAX5456/MAX5457 digital inputs with momentary contact single-pole/single-throw (SPST) pushbutton switches. Each input includes internal debounce circuitry and a 50k $\Omega$  pullup resistor.

The MAX5456/MAX5457 advance the wiper setting once per button push. Maxim's proprietary SmartWiper™ control eliminates the need for a microcomputer to increase the wiper transition rate. Holding the control input low for more than 1s advances the wiper at a rate of 4Hz for 4s and 16Hz per second thereafter.

The MAX5456/MAX5457 provide temperature coefficients of 50ppm/°C end-to-end and 5ppm/°C ratiometric and a nominal resistance of 10k $\Omega$  per potentiometer. An integrated click/pop suppression feature minimizes the audible noise generated by wiper transitions. The typical total harmonic distortion plus noise (THD+N) for these devices is 0.01%.

The MAX5457 features a 3-button interface with a MODE input that toggles between volume- and balancecontrol modes. An LED output indicates volume or balance mode. The MAX5456 features a 4-button interface with separate inputs for up and down volume controls and left and right balance controls.

The MAX5456/MAX5457 are available in 16-pin QSOP and 16-pin TQFN packages and are specified over the extended (-40°C to +85°C) temperature range.

Stereo Volume Control Fading and Balancing Stereo Signals Stereo Blending and Mixing

Typical Application Circuits and Selector Guide appear at end of data sheet.

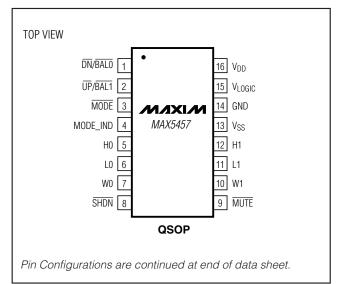
SPI is a trademark of Motorola, Inc. SmartWiper is a trademark of Maxim Integrated Products, Inc.

### \_ Features

- SmartWiper Control Provides Accelerated Wiper Motion
- Debounced Pushbutton Interface with Internal Pullup Resistors
- Logarithmic Taper with 2dB Steps Between Taps
- Single +2.7V to +5.5V or Dual ±2.7V Supply Operation
- ♦ Low 0.5µA Standby Supply Current
- Clickless Switching

MAX5457ETE\*

- 10kΩ End-to-End Fixed Resistance Value
- Mute Function to -90dB (typ)
- Power-On Reset to -12dB Wiper Position
- ♦ 32 Tap Positions for Each Wiper
- Small 16-Pin QSOP/TQFN Packages


|             | Ordering       | Information |
|-------------|----------------|-------------|
| PART        | TEMP RANGE     | PIN-PACKAGE |
| MAX5456EEE  | -40°C to +85°C | 16 QSOP     |
| MAX5456ETE* | -40°C to +85°C | 16 TQFN     |
| MAX5457EEE* | -40°C to +85°C | 16 QSOP     |

-40°C to +85°C

\*Future product—contact factory for availability.

### Pin Configurations

16 TQFN



Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

**Applications** 

### **ABSOLUTE MAXIMUM RATINGS**

| (MAX5456) SHDN, MUTE, VOLUP, VOLDN,<br>BAL_ to GND0.3V to (V <sub>LOGIC</sub> + 0.3V) | Peak Current into H_, L_, and W±1mA<br>Average Current into H_, L_, and W±500µA |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| (MAX5457) SHDN, MUTE, UP/BAL1, DN/BAL0, MODE,                                         | Input and Output Latchup Immunity±200mA                                         |
| MODE_IND to GND0.3V to (V <sub>LOGIC</sub> + 0.3V)                                    | Continuous Power Dissipation ( $T_A = +70^{\circ}C$ )                           |
| H_, L_, and W_ to V <sub>SS</sub> 0.3V to (V <sub>DD</sub> + 0.3 V)                   | 16-Pin QSOP (derate 8.3mW/°C above +70°C)666.7mW                                |
| V <sub>DD</sub> to GND0.3V to +6V                                                     | 16-Pin TQFN (derate 16.9mW/°C above +70°C)1349.1mW                              |
| V <sub>DD</sub> to V <sub>SS</sub> 0.3V to +6V                                        | Operating Temperature Range40°C to +85°C                                        |
| VLOGIC to GND0.3V to +6V                                                              | Junction Temperature+150°C                                                      |
| VLOGIC to Vss0.3V to +6V                                                              | Storage Temperature Range60°C to +150°C                                         |
| V <sub>SS</sub> to GND3.0V to +0.3V                                                   | Lead Temperature (soldering, 10s)+300°C                                         |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **ELECTRICAL CHARACTERISTICS**

 $(V_{DD} = V_{LOGIC} = +2.7V \text{ to } +5.5V, V_{SS} = 0V, \text{ GND} = 0V, V_{H_} = V_{DD}, V_{L_} = V_{SS}, T_A = T_{MIN} \text{ to } T_{MAX}$ . Typical values are at  $T_A = +25^{\circ}C$ , unless otherwise specified.) (Note 1)

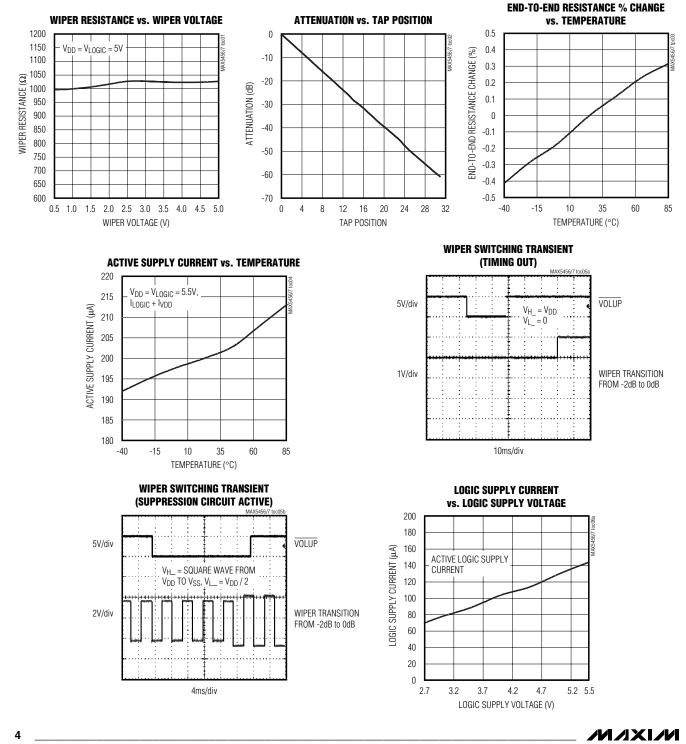
| PARAMETER                                         | SYMBOL      | CONDITIONS                                                                                                                                                 | MIN    | ТҮР   | MAX  | UNITS             |
|---------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------|-------------------|
| End-to-End Resistance                             | R           | Figures 1, 2                                                                                                                                               | 7      | 10    | 13   | kΩ                |
| Maximum Bandwidth                                 | fcutoff     | From H_ to W_, $C_{LOAD} = 10 pF$                                                                                                                          |        | 100   |      | kHz               |
| Absolute Ratio Tolerance                          |             | No load at the output of the wiper, $W_{-} = -6dB$                                                                                                         |        | ±0.25 |      | dB                |
| Tap-to-Tap Tolerance                              |             |                                                                                                                                                            |        | ±0.1  |      | dB                |
| T                                                 |             | $V_{DD} = 5V, V_{H_{-}} = (V_{DD} / 2) + 1V_{RMS},$<br>f = 1kHz, tap = -6dB, $V_{L_{-}} = V_{DD} / 2, R_{L} = \infty$                                      |        | 0.01  |      |                   |
| Total Harmonic Distortion Plus<br>Noise           | THD+N       | $ \begin{array}{l} V_{DD}=3V,V_{SS}=0V,V_{L}=1.5V,\\ V_{H}\_=1.5V+1V_{RMS},f=1kHz,R_{L}=10k\Omega \text{ to}\\ (V_{DD}/2),C_{L}=5pF,tap=-6dB \end{array} $ |        | 0.23  |      | %                 |
| Channel-to-Channel Isolation                      |             |                                                                                                                                                            |        | -100  |      | dB                |
| Interchannel Matching                             |             | f = 20Hz to $20kHz$ , tap = $-6dB$                                                                                                                         |        | ±0.5  |      | dB                |
| Mute Attenuation                                  |             |                                                                                                                                                            |        | -90   |      | dB                |
| Power-Supply Rejection Ratio                      | PSRR        |                                                                                                                                                            |        | -80   |      | dB                |
| Wiper Resistance                                  | Rw          |                                                                                                                                                            |        | 1000  | 1700 | Ω                 |
| Wiper Capacitance                                 | Cw          |                                                                                                                                                            |        | 10    |      | pF                |
| H Terminal Capacitance                            | Сн          |                                                                                                                                                            |        | 5     |      | рF                |
| L Terminal Capacitance                            | CL          |                                                                                                                                                            |        | 7     |      | pF                |
| End-to-End Resistance<br>Temperature Coefficient  |             |                                                                                                                                                            |        | 50    |      | ppm/°C            |
| Ratiometric Resistance<br>Temperature Coefficient |             |                                                                                                                                                            |        | 5     |      | ppm/°C            |
| Output Noise                                      | en          | 20Hz to 20kHz                                                                                                                                              |        | 0.95  |      | μV <sub>RMS</sub> |
| PUSHBUTTON CONTACT INPUT                          | S (UP/BAL1, | DN/BAL0, MUTE, VOLUP, VOLDN, BAL0, BAL                                                                                                                     | 1, MOD | Ē)    |      |                   |
| Internal Pullup Resistor                          | Rpullup     |                                                                                                                                                            | 32     | 50    | 65   | kΩ                |
| Single Pulse-Width Input                          | tipw        | Figure 5                                                                                                                                                   | 22.5   |       |      | ms                |
| Repetitive Input Pulse High Time                  | thpw        | Figure 5                                                                                                                                                   | 40     |       |      | ms                |
| Timeout Period                                    | tws         | Click/pop suppression inactive                                                                                                                             |        | 32    |      | ms                |

### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{DD} = V_{LOGIC} = +2.7V \text{ to } +5.5V, V_{SS} = 0V, \text{GND} = 0V, V_{H_{-}} = V_{DD}, V_{L_{-}} = V_{SS}, T_A = T_{MIN} \text{ to } T_{MAX}$ . Typical values are at  $T_A = +25^{\circ}C$ , unless otherwise specified.) (Note 1)

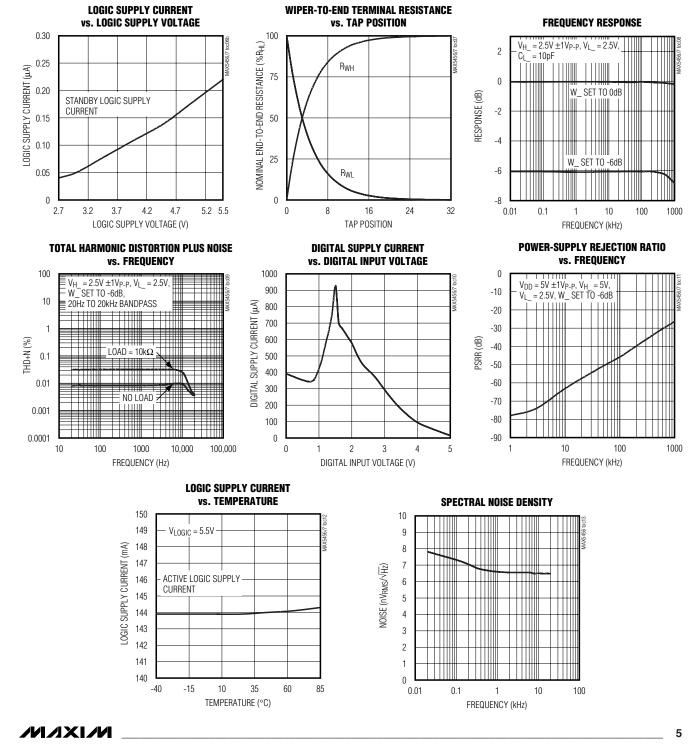
| PARAMETER                                | SYMBOL            | CONDITIONS                                               | MIN             | TYP | MAX                         | UNITS |
|------------------------------------------|-------------------|----------------------------------------------------------|-----------------|-----|-----------------------------|-------|
| First Autoincrement Point                |                   |                                                          |                 | 1   |                             | s     |
| First Autoincrement Rate                 |                   |                                                          |                 | 4   |                             | Hz    |
| Second Autoincrement Point               |                   |                                                          |                 | 4   |                             | S     |
| Second Autoincrement Rate                |                   |                                                          |                 | 16  |                             | Hz    |
| DIGITAL INPUTS (VLOGIC > 4.5             | V)                |                                                          |                 |     |                             |       |
| Input High Voltage                       | VIH               |                                                          | 2.4             |     |                             | V     |
| Input Low Voltage                        | VIL               |                                                          |                 |     | 0.8                         | V     |
| Input Leakage Current                    |                   | Inputs floating                                          |                 |     | ±1                          | μA    |
| Input Capacitance                        |                   |                                                          |                 | 5   |                             | рF    |
| DIGITAL INPUTS (V <sub>LOGIC</sub> < 4.5 | V)                |                                                          |                 |     |                             |       |
| Input High Voltage                       | V <sub>IH</sub>   |                                                          | 0.7 x<br>VLOGIC |     |                             | V     |
| Input Low Voltage                        | VIL               |                                                          |                 |     | 0.3 x<br>V <sub>LOGIC</sub> | V     |
| Input Leakage Current                    |                   | Inputs floating                                          |                 |     | ±1                          | μA    |
| Input Capacitance                        |                   |                                                          |                 | 5   |                             | рF    |
| POWER SUPPLIES                           |                   |                                                          |                 |     |                             |       |
| Supply Voltage                           | V <sub>DD</sub>   |                                                          | 2.7             |     | 5.5                         | V     |
| Negative Power Supply                    | V <sub>SS</sub>   |                                                          | -2.7            |     | 0                           | V     |
| Supply-Voltage Difference                |                   | V <sub>DD</sub> - V <sub>SS</sub>                        |                 |     | 5.5                         | V     |
| Active Supply Current                    | IDD               | (Note 2)                                                 |                 |     | 100                         | μA    |
|                                          |                   | $V_{DD} = +5.5V, V_{SS} = 0V, V_{LOGIC} = 2.7V$ (Note 3) |                 | 2   | 10                          |       |
| Standby Supply Current                   | ISTBY             | $V_{LOGIC} = V_{DD} = +2.7V, V_{SS} = -2.7V$ (Note 3)    |                 | 0.5 | 1                           | μA    |
| Shutdown Supply Current                  | ISHDN             | (Note 4)                                                 |                 |     | 1                           | μΑ    |
| Power-Up Time                            | tpu               |                                                          |                 | 10  |                             | ms    |
| Logic Standby Voltage                    | VLOGIC            |                                                          | 2.7             |     | V <sub>DD</sub>             | V     |
| Logic Active Supply Current              | ILOGIC            | (Note 2)                                                 |                 |     | 160                         | μΑ    |
| Logic Standby Supply Current             | <b>ILOGICSTBY</b> | (Note 3)                                                 |                 | 0.5 | 1                           | μΑ    |
| Logic Shutdown Current                   | ILOGICSHDN        | (Note 4)                                                 |                 |     | 1                           | μΑ    |
| DIGITAL OUTPUT, MODE_IND                 |                   |                                                          |                 |     |                             |       |
|                                          | \/                | $V_{LOGIC} = 2.7V, I_{SINK} = 10mA$                      |                 |     | 0.4                         | V     |
| Output Low Voltage                       | V <sub>OL</sub>   | $V_{LOGIC} = 5.5V$ , $I_{SINK} = 10mA$                   |                 |     | 0.2                         | v     |
| Output Leakage Current                   |                   |                                                          |                 | 0.1 | 10                          | μA    |
| Output Capacitance                       |                   |                                                          |                 | 3   |                             | рF    |
| Maximum Sink Current                     |                   |                                                          |                 | 150 |                             | mA    |

Note 1: Parameters are 100% production tested at  $+85^{\circ}$ C and limits through temperature are guaranteed by design.


**Note 2:** Supply current measured with the supply on and a button pushed.

Note 3: Supply current measured with the power on, no button pushed, and the wiper position fixed.

Note 4: This is the measured current with SHDN low and MODE\_IND unconnected.


### **Typical Operating Characteristics**

 $(V_{DD} = V_{LOGIC} = +2.7V \text{ to } +5.5V, V_{SS} = 0V, \text{ GND} = 0V, V_{H_} = V_{DD}, V_{L_} = V_{SS}, T_A = T_{MIN} \text{ to } T_{MAX}$ . Typical values are at  $T_A = +25^{\circ}C$ , unless otherwise specified.)



### **Typical Operating Characteristics (continued)**

 $(V_{DD} = V_{LOGIC} = +2.7V \text{ to } +5.5V, V_{SS} = 0V, \text{GND} = 0V, V_{H_} = V_{DD}, V_{L_} = V_{SS}, T_A = T_{MIN} \text{ to } T_{MAX}$ . Typical values are at  $T_A = +25^{\circ}C$ , unless otherwise specified.)



**Pin Description** 

|      | P    | N    |      |                 |                                                                                                                                                                                                                                                                                                                                                                |
|------|------|------|------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAX  | 5457 | MAX  | 5456 | NAME            | FUNCTION                                                                                                                                                                                                                                                                                                                                                       |
| TQFN | QSOP | TQFN | QSOP |                 |                                                                                                                                                                                                                                                                                                                                                                |
| 1    | 3    |      | _    | MODE            | Volume/Balance Control. Each transition from high to low toggles between volume and balance modes. $\overline{\text{MODE}}$ is pulled high internally with a 50k $\Omega$ resistor to V <sub>LOGIC</sub> . On power-up, the MAX5457 is in volume-control mode.                                                                                                 |
| 2    | 4    |      |      | MODE_IND        | Volume-Control/Balance-Control Mode Indicator Open-Drain Output. Connect to an LED through a resistor to $V_{LOGIC}$ . When the LED is on, the MAX5457 is in balance-control mode. When the LED is off, the MAX5457 is in volume-control mode. See the <i>Mode Indicator, MODE_IND</i> section for more detail.                                                |
| 3    | 5    | 3    | 5    | HO              | Potentiometer 0 High Terminal. H0 and L0 terminals can be reversed.                                                                                                                                                                                                                                                                                            |
| 4    | 6    | 4    | 6    | LO              | Potentiometer 0 Low Terminal. L0 and H0 terminals can be reversed.                                                                                                                                                                                                                                                                                             |
| 5    | 7    | 5    | 7    | WO              | Potentiometer 0 Wiper Terminal                                                                                                                                                                                                                                                                                                                                 |
| 6    | 8    | 6    | 8    | SHDN            | Active-Low Shutdown Input. In shutdown mode, the MAX5456/MAX5457 store the last wiper settings. The wipers move to the L end of the resistor string, and the H end of the resistor string disconnects from the signal input. Terminating shutdown mode restores the wipers to their previous settings.                                                         |
| 7    | 9    | 7    | 9    | MUTE            | Mute Input. When $\overline{\text{MUTE}}$ is low, the wiper goes to the highest attenuation setting (see Table 1). $\overline{\text{MUTE}}$ is internally pulled up with 50k $\Omega$ to V <sub>LOGIC</sub> .                                                                                                                                                  |
| 8    | 10   | 8    | 10   | W1              | Potentiometer 1 Wiper Terminal                                                                                                                                                                                                                                                                                                                                 |
| 9    | 11   | 9    | 11   | L1              | Potentiometer 1 Low Terminal. L1 and H1 terminals can be reversed.                                                                                                                                                                                                                                                                                             |
| 10   | 12   | 10   | 12   | H1              | Potentiometer 1 High Terminal. H1 and L1 terminals can be reversed.                                                                                                                                                                                                                                                                                            |
| 11   | 13   | 11   | 13   | VSS             | Negative Power Supply. Bypass with 0.1µF to ground.                                                                                                                                                                                                                                                                                                            |
| 12   | 14   | 12   | 14   | GND             | Ground                                                                                                                                                                                                                                                                                                                                                         |
| 13   | 15   | 13   | 15   | VLOGIC          | Digital Logic Power Supply. Bypass with 0.1µF to ground.                                                                                                                                                                                                                                                                                                       |
| 14   | 16   | 14   | 16   | V <sub>DD</sub> | Analog Power Supply. Bypass with 0.1µF to ground.                                                                                                                                                                                                                                                                                                              |
| 15   | 1    | _    |      | DN/BAL0         | Downward Volume/Channel 0 Balance-Control Input. In volume mode, pressing $\overline{\text{DN}/\text{BAL0}}$ moves both wipers towards the L terminals. In balance mode, pressing $\overline{\text{DN}/\text{BAL0}}$ moves the balance towards channel 0. $\overline{\text{DN}/\text{BAL0}}$ is internally pulled up with 50k $\Omega$ to V <sub>LOGIC</sub> . |
| 16   | 2    |      |      | UP/BAL1         | Upward Volume/Channel 1 Balance-Control Input. In volume mode, pressing UP/BAL1 moves both wipers towards the H terminals. In balance mode, pressing UP/BAL1 moves the balance towards channel 1. UP/BAL1 is internally pulled up with 50k $\Omega$ to V <sub>LOGIC</sub> .                                                                                    |
|      | _    | 1    | 3    | BAL1            | Channel 1 Balance-Control Input. Pressing $\overline{BAL1}$ moves the balance towards channel 1. $\overline{BAL1}$ is internally pulled up with $50k\Omega$ to V <sub>LOGIC</sub> .                                                                                                                                                                            |
|      | —    | 2    | 4    | BALO            | Channel 0 Balance-Control Input. Pressing $\overline{BAL0}$ moves the balance towards channel 0. $\overline{BAL0}$ is internally pulled up with 50k $\Omega$ to VLOGIC.                                                                                                                                                                                        |
|      | —    | 15   | 1    | VOLDN           | Downward Volume-Control Input. Pressing $\overline{\text{VOLDN}}$ moves both wipers towards the L terminals. $\overline{\text{VOLDN}}$ is internally pulled up with 50k $\Omega$ to V <sub>LOGIC</sub> .                                                                                                                                                       |
|      |      | 16   | 2    | VOLUP           | Upward Volume-Control Input. Pressing $\overline{\text{VOLUP}}$ moves both wipers towards the H terminals. $\overline{\text{VOLUP}}$ is internally pulled up with 50k $\Omega$ to V <sub>LOGIC</sub> .                                                                                                                                                         |

### **Detailed Description**

The MAX5456/MAX5457 dual, logarithmic taper digital potentiometers feature a simple pushbutton interface that controls volume and balance in audio applications. Each potentiometer has 32 tap points and replaces mechanical potentiometers (see the *Functional Diagrams*).

### **Up and Down Interface**

The MAX5456/MAX5457 interface with momentary contact SPST switches. All switch inputs are internally debounced and pulled up to V<sub>LOGIC</sub> through 50k $\Omega$ resistors. The wiper setting advances once per button press up to 1s. Maxim's SmartWiper control circuitry allows the wiper to advance at a rate of 4Hz when an input is held low from 1s up to 4s, and at a rate of 16Hz if the contact is maintained for greater than 4s (see Table 2). The SmartWiper control eliminates the need for a microcomputer to increase the wiper transition rate.

The MAX5456 features independent control inputs for volume and balance control while the MAX5457 MODE input toggles between volume and balance control. Each transition of MODE from high to low toggles the MAX5457 between volume-control and balance-control modes. MODE is internally pulled high with a 50k $\Omega$  resistor to VLOGIC.

### Volume Control

In volume-control mode, the MAX5456/MAX5457s' wipers move simultaneously, maintaining the balance separation between each wiper (Figure 3a).

When either wiper reaches the maximum tap position (position closest to H\_), further commands to increase the volume are ignored. Balance separation is maintained in the maximum volume configuration (Figure 3b).

When either wiper reaches the minimum tap position (position closest to L\_), further commands to decrease the volume adjust the other wiper until it also reaches the minimum tap position (Figure 3c).

Increasing the volume from this minimum position restores the original balance separation of the wipers (Figure 3d).

When both wipers are in the 31st tap position (-62dB attenuation), further commands to VOLDN place the wipers in the mute position (see Table 1). VOLUP or MUTE pulses return wipers to position 31.

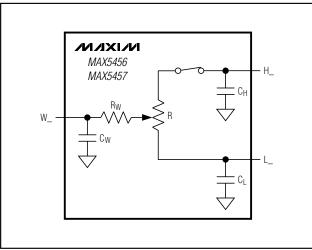



Figure 1. Potentiometer Model (Active)

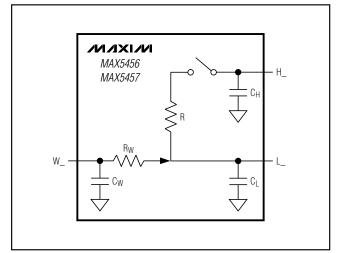



Figure 2. Potentiometer Model (Shutdown)

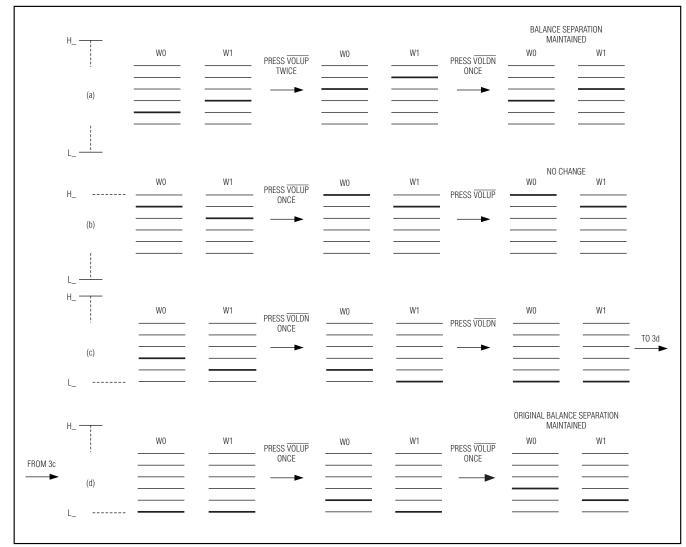
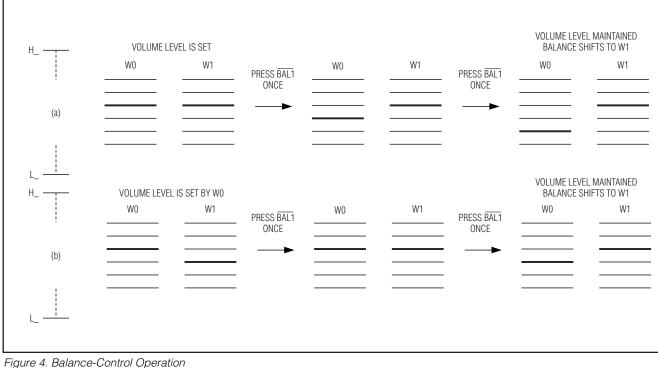



Figure 3. Volume-Control Operation

| _         |                  |
|-----------|------------------|
| POSITION  | ATTENUATION (dB) |
| 0         | 0                |
| 1         | 2                |
| 2         | 4                |
| :         | :                |
| 6 (POR)   | 12               |
| :         | i                |
| 30        | 60               |
| 31        | 62               |
| 32 (mute) | >90              |

8

M/IXI/M


### **Balance Control**

In balance-control mode, the MAX5456/MAX5457 adjust the balance between channel 0 and channel 1 while maintaining the set volume. For example, if the volume of channel 0 equals the volume of channel 1, forcing the balance towards channel 1 increases the attenuation of channel 0 (Figure 4a). If channel 1 is at a higher attenuation than channel 0, adjusting the balance to channel 1 moves channel 1's wiper up to the same wiper position as channel 0 before attenuating channel 0 (Figure 4b).

To control the wiper quickly with a logic signal, maintain pulses at least 22.5ms wide and separated by at least 40ms.

# Table 2. Wiper Action vs. PushbuttonContact Duration

| CONTACT DURATION | WIPER ACTION                              |
|------------------|-------------------------------------------|
| t < 22.5ms       | No motion (debouncing).                   |
| 22.5ms < t ≤ 1s  | Wiper changes position once.              |
| 1s < t ≤ 4s      | Wiper changes position at a rate of 4Hz.  |
| t > 4s           | Wiper changes position at a rate of 16Hz. |



rigure 4. Dalarice-Control Operation

### **Click/Pop Suppression**

The click/pop suppression feature reduces the audible noise (clicks and pops) that result from wiper transitions. The MAX5456/MAX5457 minimize this noise by allowing the wiper position changes only when  $V_H = V_L$ . Thus, the wiper changes position only when the voltage at L\_ is the same as the voltage at the corresponding H\_. Each wiper has its own suppression and timeout circuitry (see The suppression circuitry monitors left and right channels separately. In volume-control mode, when the first wiper changes position, the second wiper has 32ms to change or it will be forced to change.

### **Power-On Reset**

READY TO ACCEPT

ANOTHER KEYPRESS

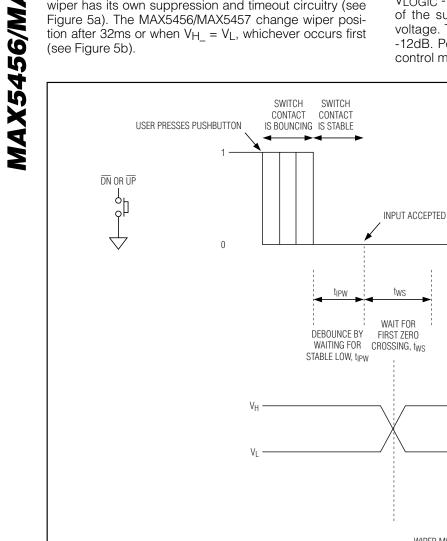
The power-on comparators monitor V<sub>DD</sub> - V<sub>SS</sub> and VI OGIC - GND. A power-on reset is initiated when either of the supplies is brought back to normal operating voltage. The power-on-reset feature sets both wipers to -12dB. Power-on reset places the MAX5457 in volumecontrol mode.

thpw

DEBOUNCE BY

WAITING FOR STABLE HIGH, tHPW

SWITCH


CONTACT

IS BOUNCING

tws

WIPER MOVES HERE

2dB STEPS



WIPER MOTION

10

Figure 5a. Wiper Transition Timing Diagram

### Shutdown, SHDN

Upon entering shutdown mode, the MAX5456/MAX5457 store the last wiper settings. The wipers move to the L\_ end of the resistor string disconnects from the signal input. Terminating shutdown mode restores the wipers to their previous settings (see Figure 2). Shutdown does not affect the state of MODE\_IND.

### Mute Function, **MUTE**

The MAX5456/MAX5457 feature a mute function. Successive pulses on MUTE toggle its setting. Activating the mute

function forces both wipers to maximum attenuation (-90dB typ). Deactivating the mute function returns the wipers to their previous settings. Pressing VOLUP also deactivates mute, setting the wipers to their previous positions. MUTE is internally pulled high with a 50k $\Omega$ resistor to VLOGIC. When both wipers are in the 31st tap position (-62dB attenuation), further commands to VOLDN place the wipers in the mute position (see Table 1). VOLUP or MUTE pulses return the wipers to position 31.

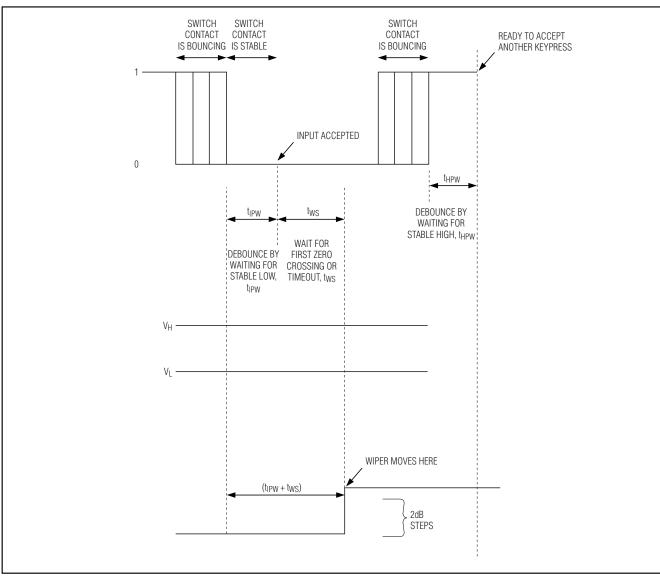



Figure 5b. Wiper Transition Timing Diagram

### Mode Control, MODE

The MAX5457  $\overline{\text{MODE}}$  input toggles between volumeand balance-control modes. Force  $\overline{\text{MODE}}$  low to toggle between volume-control and balance-control modes. For example, driving  $\overline{\text{MODE}}$  low once while in volumecontrol mode, switches the MAX5457 to balance-control mode. Driving mode low once again, switches the MAX5457 back to volume-control mode. MODE is internally pulled high with a 50k $\Omega$  resistor to V<sub>LOGIC</sub>. The MAX5457 powers up in volume-control mode.

### Mode Indicator, MODE\_IND

MODE\_IND is the volume-control and balance-control mode indicator with an open-drain output. Connect MODE\_IND to an LED through a pullup resistor to V<sub>LOGIC</sub>. When the LED is on, the MAX5457 is in balance-control mode. When the LED is off, the MAX5457 is in volume-control mode. See the *Mode Control*, *MODE* section for more detail on switching between modes. Shutdown does not affect the state of MODE\_IND.

### **Multiple Button Pushes**

The MAX5456/MAX5457 do not respond to simultaneous button pushes. Pushing more than one button at the same time stops the wipers in their present states. Only a single button push configures the device. Additionally, a 40ms blocking period affects all other inputs when releasing any input forced low. The MAX5456/MAX5457 do not respond to any logic input until the blocking period ends. If multiple wiper-control buttons are pressed, all wiper-control connections must be released before the part will respond to further commands.

### **Applications Information**

### **Stereo Volume/Balance Control**

Figure 6 shows a volume/balance application using the MAX5457. The op amp is connected in a follower (noninverting gain) configuration to isolate the potentiometer's wiper impedance from the load and provide drive capability. Connect the W\_ of the MAX5457 to the positive input of a noninverting gain amp. The pushbutton <u>potentiometers</u> attenuate the input signals. Use the MODE input to switch between volume-control and balance-control modes.

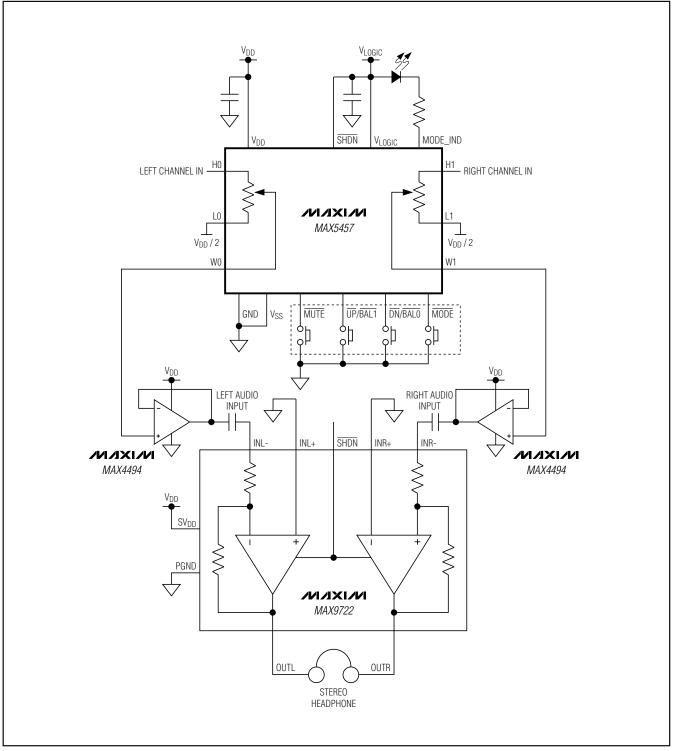
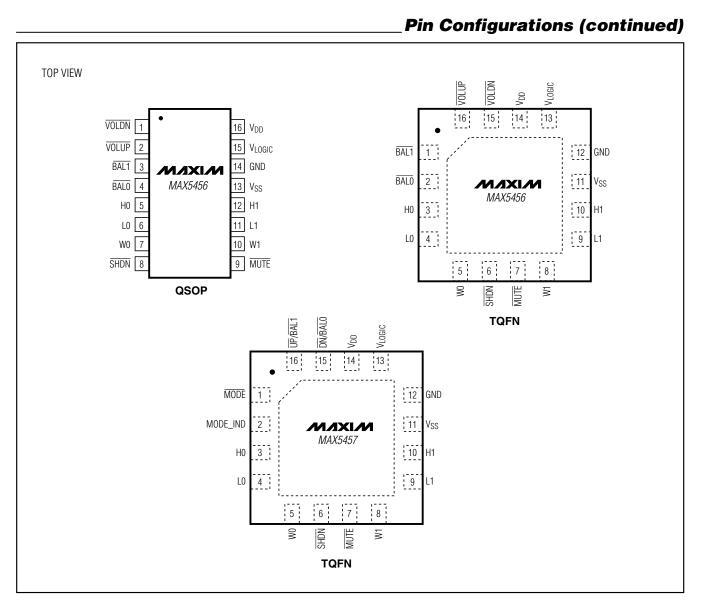
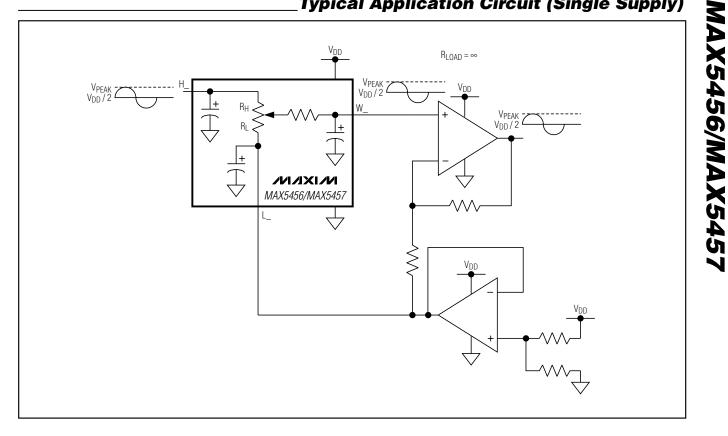


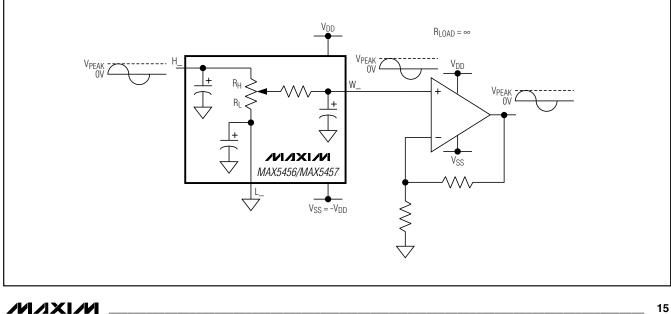

Figure 6. Volume/Balance Control

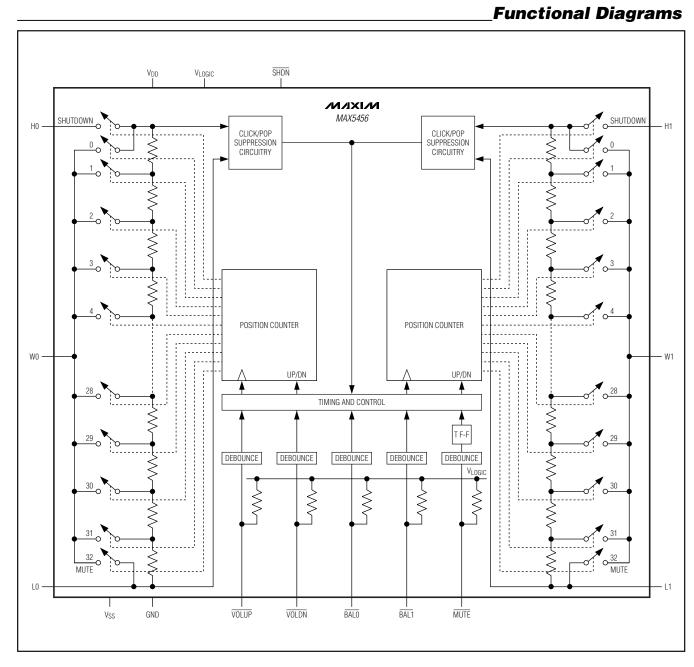

**Selector Guide** 


PARTINTERFACEPKG. CODEMAX5456EEE4-ButtonE16-1MAX5456ETE\*4-ButtonT1644-4MAX5457EEE3-ButtonE16-1MAX5457ETE\*3-ButtonT1644-4

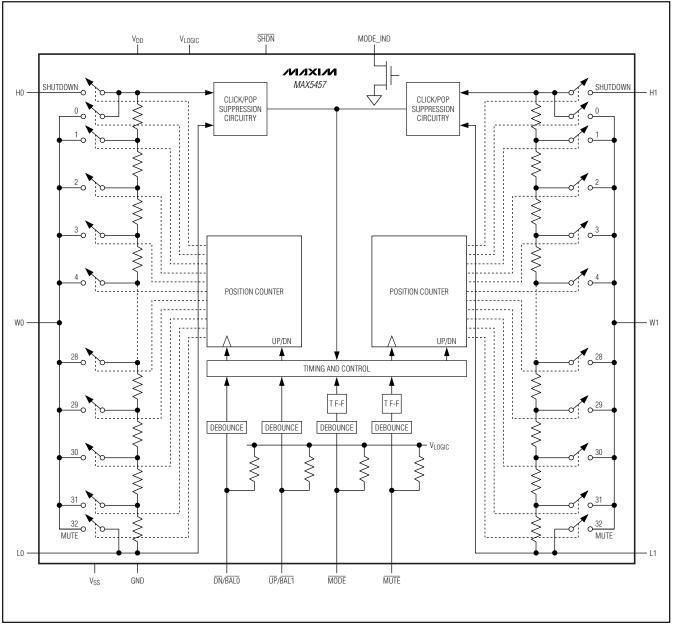
**Chip Information** 

TRANSISTOR COUNT: 15,395 PROCESS: CMOS


\*Future product—contact factory for availability.



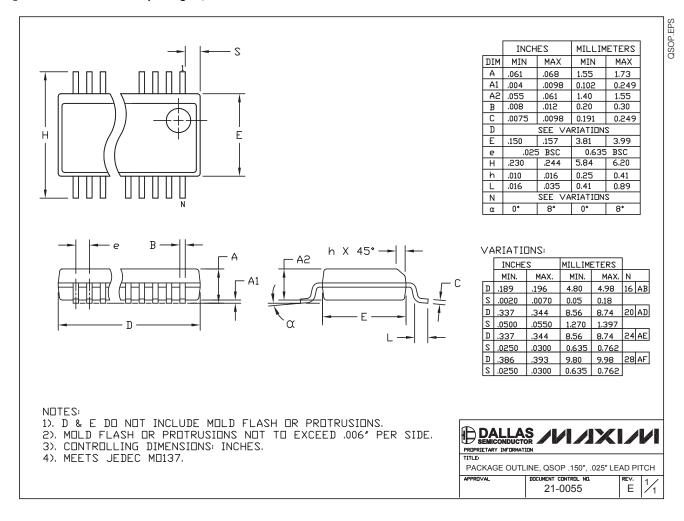




## **Typical Application Circuit (Single Supply)**

### **Typical Application Circuit (Dual Supplies)**

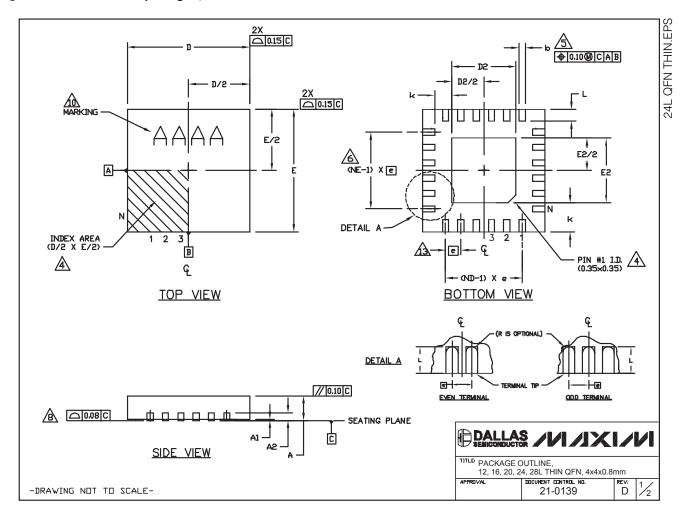





### Functional Diagrams (continued)



# MAX5456/MAX5457


### **Package Information**

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)



### Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)



### \_Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

|                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DIME                                                                                                                      | INSII                                                                                             | SNC                                                                                        |                                                                                           |                                                                |                                                             |                                                           |                                                         |                                      |                  |         | EXPO         | SED          | PAD              | VAR          | IATI         | DNS          |               |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|--------------------------------------|------------------|---------|--------------|--------------|------------------|--------------|--------------|--------------|---------------|
| PKG                                                                                  | 12                                                                                                                                                                                                   | 2L 4×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :4                                                                                                                                | 16                                                                                                                               | 5L 4x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                         | 20                                                                                                | L 4x                                                                                       | 4                                                                                         | 24                                                             | 4L 4×                                                       | (4                                                        | 28                                                      | 8L 4×                                | (4               | PKG.    |              | D2           |                  |              | E2           |              | DOWN<br>BONDS |
| REF.                                                                                 | MIN.                                                                                                                                                                                                 | NDM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAX.                                                                                                                              | MIN.                                                                                                                             | NDM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAX.                                                                                                                      | MIN.                                                                                              | NDM.                                                                                       | MAX.                                                                                      | MIN.                                                           | NDM.                                                        | MAX.                                                      | MIN.                                                    | NDM.                                 | MAX.             | CODES   | MIN.         | NDM.         | MAX.             | MIN.         | NDM.         | MAX.         | ALLOV         |
| A                                                                                    | 0.70                                                                                                                                                                                                 | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.80                                                                                                                              | 0.70                                                                                                                             | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.90                                                                                                                      | 0.70                                                                                              | 0.75                                                                                       | 0.80                                                                                      | 0.70                                                           | 0.75                                                        | 0.80                                                      | 0.70                                                    | 0.75                                 | 0.80             | T1244-2 | 1.95         | 2.10         | 2.25             | 1.95         | 2.10         | 2.25         | ND            |
| A1                                                                                   | 0.0                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05                                                                                                                              | 0.0                                                                                                                              | 20,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                      | 0,0                                                                                               | 0.02                                                                                       | 0.05                                                                                      | 0,0                                                            | 0.02                                                        | 0.05                                                      | 0,0                                                     | 20.0                                 | 0.05             | T1244-3 | 1.95         | 2.10         | 2.25             | 1.95         | 2.10         | 2.25         | YES           |
| A2                                                                                   | 0                                                                                                                                                                                                    | .20 RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                                                                                                                                 | 0                                                                                                                                | 20 RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F                                                                                                                         | 0.                                                                                                | 20 RE                                                                                      | F                                                                                         | 0                                                              | 20 RE                                                       | F                                                         | 0                                                       | 20 RE                                | F                | T1244-4 | 1.95         | 2.10         | 2.25             | 1.95         | 2.10         | 2.25         | ND            |
| b                                                                                    | 0.25                                                                                                                                                                                                 | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.35                                                                                                                              | 0.25                                                                                                                             | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.35                                                                                                                      | 0.20                                                                                              | 0.25                                                                                       | 0.30                                                                                      | 0.18                                                           | 0.23                                                        | 0.30                                                      | 0.15                                                    | 0.20                                 | 0.25             | T1644-2 | 1.95         | 2.10         | 2.25             | 1.95         | 2.10         | 2.25         | ND            |
| D                                                                                    | 3,90                                                                                                                                                                                                 | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,10                                                                                                                              | 3.90                                                                                                                             | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.10                                                                                                                      | 3.90                                                                                              | 4.00                                                                                       | 4.10                                                                                      | 3.90                                                           | 4.00                                                        | 4.10                                                      | 3.90                                                    | 4.00                                 | 4.10             | T1644-3 | 1.95         | 2.10         | 2.25             | 1.95         | 2.10         | 2.25         | YES           |
| E                                                                                    | 3.90                                                                                                                                                                                                 | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.10                                                                                                                              | 3.90                                                                                                                             | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.10                                                                                                                      |                                                                                                   | 4.00                                                                                       | 4.10                                                                                      | 3.90                                                           |                                                             | 4.10                                                      | 3.90                                                    |                                      | 4.10             | T1644-4 | 1.95         | 2.10         | 2.25             | 1.95         | 2.10         | 2.25         | ND            |
| e .                                                                                  |                                                                                                                                                                                                      | 0.80 BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                 |                                                                                                                                  | 65 BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                  |                                                                                                   | 50 BS                                                                                      |                                                                                           |                                                                | 1.50 BS                                                     | 1                                                         |                                                         | ).40 BS                              | 1                | T2044-1 | 1.95         | 2.10         | 2.25             | 1.95         | 2.10         | 2.25         | ND            |
| <u>к</u>                                                                             | 0.25                                                                                                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                 | 0.25<br>0.45                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                         | 0.25                                                                                              |                                                                                            | -<br>0.65                                                                                 | 0.25                                                           | -                                                           | - 0.50                                                    | 0.25                                                    | -                                    | -                | T2044-2 | 1.95         | 2.10         | 2.25             | 1.95         | 2.10         | 2.25         | YES           |
| L<br>N                                                                               | 0.43                                                                                                                                                                                                 | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.63                                                                                                                              | 0.43                                                                                                                             | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.65                                                                                                                      | 0.43                                                                                              | 0.55<br>20                                                                                 | 0.63                                                                                      | 0.30                                                           | 0.40<br>24                                                  | 0.30                                                      | 0.30                                                    | 0.40<br>28                           | 0.50             | T2044-3 | 1.95<br>2.45 | 2.10<br>2.60 | 2.25             | 1.95<br>2.45 | 2.10<br>2.60 | 2.25<br>2.63 | ND            |
| ND                                                                                   |                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                   | 5                                                                                          |                                                                                           |                                                                | 6                                                           |                                                           |                                                         | - 28                                 |                  | T2444-1 | 1.95         | 2.60         | 2.63             | 2.45         | 2.60         | 2.63         | YES           |
| NE                                                                                   | <del> </del>                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                   | 5                                                                                          |                                                                                           |                                                                | 6                                                           |                                                           |                                                         | 7                                    |                  | T2444-3 | 2.45         | 2.60         | 2.63             | 2.45         | 2.60         | 2.63         | YES           |
| ledec                                                                                | <u> </u>                                                                                                                                                                                             | VGGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   |                                                                                                                                  | VGGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                           | `                                                                                                 | J<br>VGGD-1                                                                                | 1                                                                                         |                                                                | WGGD-                                                       | -2                                                        |                                                         | VGGE                                 |                  | T2444-4 | 2.45         | 2.60         | 2.63             | 2.45         | 2.60         | 2.63         |               |
| /ar.                                                                                 | 1                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                                                                                  | * 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                           |                                                                                                   |                                                                                            | •                                                                                         |                                                                | 1000                                                        | -                                                         |                                                         |                                      |                  | T2844-1 | 2,50         | 2,60         | 2.70             | 2.50         | 2,60         | 2,70         |               |
| 2.                                                                                   | dimens<br>All di                                                                                                                                                                                     | MENSIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NS ARE                                                                                                                            | IN M                                                                                                                             | LUMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ers. A                                                                                                                    |                                                                                                   |                                                                                            |                                                                                           |                                                                |                                                             |                                                           |                                                         |                                      |                  |         |              |              |                  |              |              |              |               |
| 1.<br>2.<br>3.                                                                       | dimens<br>All di<br>n is ti<br>the te                                                                                                                                                                | Mensio<br>He tot<br>Rminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NS ARE<br>TAL NUI                                                                                                                 | in Mi<br>Mber (                                                                                                                  | llimeti<br>Df ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ers, an<br>Minals.<br>Termi                                                                                               | NGLES                                                                                             | are in<br>Imberii                                                                          | DEGR                                                                                      | EES.                                                           | ON SHA                                                      | ALL CO                                                    | NFORM<br>UST BE                                         | TO<br>E LOCAT                        | ied wit          | HIN     |              |              |                  |              |              |              |               |
| 1.<br>2.<br>3.                                                                       | DIMENS<br>ALL DIM<br>N IS T<br>THE TE<br>JESD 9<br>THE ZO                                                                                                                                            | Mensio<br>He tot<br>Rminal<br>5—1 Si<br>Xne ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NS ARE<br>TAL NUI<br>#1 ID<br>PP-012<br>DICATED                                                                                   | in Mi<br>MBER (<br>Entifie<br>2. Deta<br>5. The                                                                                  | LUMET<br>OF TER<br>R AND<br>ILS OF<br>TERMIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ERS, AM<br>MINALS,<br>TERMIN<br>TERMIN<br>IAL #1                                                                          | NGLES<br>NAL NL<br>IAL #1<br>IDENTI                                                               | ARE IN<br>Imberii<br>Identii<br>Fier M                                                     | DEGR<br>NG COI<br>FIER AI<br>AY BE                                                        | ees.<br>Mentk<br>Re opt<br>Eithef                              | 'IONAL,<br>₹AMC                                             | BUT M                                                     | ust be<br>Marki                                         | ed fea                               | TURE.            |         |              |              |                  |              |              |              |               |
| 1.<br>2.<br>3.                                                                       | DIMENS<br>ALL DIM<br>N IS T<br>THE TE<br>JESD 9<br>THE ZO                                                                                                                                            | Mensio<br>He tot<br>Rminal<br>5—1 Si<br>DNE INE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NS ARE<br>TAL NUI<br>#1 IC<br>PP-012<br>DICATEC                                                                                   | in Mi<br>MBER (<br>Entifie<br>2. Deta<br>5. The                                                                                  | LUMET<br>OF TER<br>R AND<br>ILS OF<br>TERMIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ERS, AM<br>MINALS,<br>TERMIN<br>TERMIN<br>IAL #1                                                                          | NGLES<br>NAL NL<br>IAL #1<br>IDENTI                                                               | ARE IN<br>Imberii<br>Identii<br>Fier M                                                     | DEGR<br>NG COI<br>FIER AI<br>AY BE                                                        | ees.<br>Mentk<br>Re opt<br>Eithef                              | 'IONAL,<br>₹AMC                                             | BUT M                                                     | ust be<br>Marki                                         | ed fea                               |                  |         |              |              |                  |              |              |              |               |
| 1.<br>2.<br>3.<br>(A)                                                                | DIMENS<br>ALL DIN<br>N IS TH<br>THE TE<br>JESD 9<br>THE ZC<br>DIMENS<br>FROM<br>ND ANI                                                                                                               | MENSIO<br>HE TOT<br>RMINAL<br>5-1 S<br>NE INE<br>NE INE<br>ION 6<br>TERMIN<br>D NE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NS ARE<br>AL NUI<br>#1 ID<br>PP-012<br>DICATED<br>APPLIE<br>AL TIP,<br>REFER                                                      | IN MI<br>MENER (<br>MENTIFIE<br>DETA<br>DETA<br>DETA<br>DETA<br>STOI<br>I<br>TO THE                                              | LUMET<br>OF TER<br>ILS OF<br>TERMIN<br>METALU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ERS. AN<br>MINALS.<br>TERMIN<br>TERMIN<br>IAL #1<br>ZED TE<br>BER OF                                                      | NGLES<br>NAL NU<br>IAL #1<br>IDENTII<br>RMINAL<br>TERMIN                                          | ARE IN<br>IMBERII<br>IDENTII<br>FIER M.<br>. AND<br>WALS O                                 | I DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC                                  | EES.<br>NVENTK<br>RE OPT<br>EITHEF<br>SURED                    | ional,<br>R A Mo<br>Betwi                                   | BUT M<br>NLD OR<br>EEN 0.1                                | ust be<br>Marki<br>25 mm                                | ed fea<br>1 AND                      | TURE.            |         |              |              |                  |              |              |              |               |
| 1.<br>2.<br>3.<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A) | DIMENS<br>ALL DIM<br>N IS THE<br>THE TE<br>JESD 9<br>THE ZC<br>DIMENS<br>FROM<br>ND ANI<br>DEPOPU                                                                                                    | MENSIO<br>HE TOT<br>RMINAL<br>5-1 SI<br>5-1 SI<br>5- | NS ARE<br>TAL NUI<br>PP-012<br>DICATED<br>APPLIE<br>AL TIP.<br>REFER                                                              | in Mi<br>Meer (<br>Pentifie<br>Deta<br>Deta<br>Deta<br>S TO I<br>S TO I<br>TO THE                                                | LUMETI<br>DF TER<br>ILS OF<br>TERMIN<br>METALLI<br>IN NME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ers. A<br>minals.<br>Termin<br>Termin<br>Ial #1<br>Zed te<br>Ber of<br>Symme                                              | NGLES<br>NAL NU<br>IAL #1<br>IDENTII<br>RMINAL<br>TERMIN                                          | ARE IN<br>IDENTI<br>FIER M.<br>. AND<br>VALS O<br>FASHK                                    | I DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IS MEA                                  | ees.<br>Wentk<br>Re opt<br>Eithef<br>Sured<br>H d ai           | NONAL,<br>₹AMO<br>BETWE                                     | BUT M<br>ALD OR<br>EEN 0.1<br>SIDE RE                     | ust be<br>Marki<br>25 mm<br>Specti                      | E LOCAT<br>ED FEA<br>1 AND<br>1VELY. | TURE.            |         |              |              |                  |              |              |              |               |
| 1.<br>2.<br>3.<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A) | DIMENS<br>ALL DIM<br>N IS THE<br>JESD 9<br>THE ZC<br>DIMENS<br>FROM<br>DIMENS<br>FROM<br>COPLAN                                                                                                      | MENSIO<br>HE TOT<br>RMINAL<br>5-1 SI<br>NNE IND<br>ION 5<br>TERMIN<br>D NE F<br>ULATION<br>VARITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NS ARE<br>AL NUI<br>PP-012<br>DICATED<br>APPLIE<br>AL TIP.<br>REFER<br>N IS PO<br>APPLIE                                          | IN MI<br>MBLER (<br>ENTIFIE<br>DETA<br>D. THE<br>S TO I<br>S TO I<br>S TO I<br>S TO I                                            | LUMETI<br>DF TER<br>IR AND<br>ILS OF<br>TERMIN<br>METALU<br>IN METALU<br>IN A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ers. A<br>minals.<br>Termin<br>termin<br>Mal #1<br>Zed te<br>Symme<br>Symme<br>Posed                                      | NGLES<br>NAL NL<br>IAL ∯1<br>IDENTII<br>RMINAL<br>TERMIN<br>TRICAL<br>HEAT S                      | ARE IN<br>IDENTII<br>FIER M.<br>. AND<br>VALS O<br>FASHK<br>SINK S                         | I DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IS MEA<br>IN EAC<br>DN.                 | ees.<br>Nventik<br>Eithef<br>Sured<br>H D AI                   | NDAL,<br>RAMC<br>BETWE<br>NDES<br>ASTI                      | BUT M<br>DLD OR<br>EEN 0.1<br>SIDE RE                     | ust be<br>Marki<br>25 mm<br>Specti<br>Ninals            | E LOCAT<br>ED FEA<br>1 AND<br>1VELY. | .TURE.<br>0.30 m |         |              |              |                  |              |              |              |               |
| 1.<br>2.<br>3.<br>▲<br>▲<br>★<br>★<br>★<br>★<br>★<br>★<br>★<br>★<br>★<br>★           | DIMENS<br>ALL DIM<br>N IS TH<br>THE TE<br>JESD 9<br>THE ZC<br>DIMENS<br>FROM<br>ND ANI<br>DEPOPU<br>COPLAN<br>DRAWIN                                                                                 | MENSIO<br>HE TOT<br>RMINAL<br>5-1 SI<br>DNE INE<br>ION 6<br>TERMIN<br>D NE F<br>ULATION<br>VARITY<br>IG CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NS ARE<br>TAL NUI<br>PP-012<br>DICATED<br>APPLIE<br>APPLIE<br>N IS PO<br>APPLIE<br>IFORMS                                         | IN MI<br>MEBER (<br>ENTIFIE<br>2. DETA<br>5. TO I<br>5. TO I<br>5. TO I<br>5. TO I<br>TO JE                                      | LUMETI<br>DF TER<br>IR AND<br>ILS OF<br>TERMIN<br>METALU<br>IN METALU<br>IN A<br>THE EX<br>IDEC M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ERS. AM<br>MINALS.<br>TERMIN<br>TERMIN<br>MAL #1<br>ZED TE<br>SYMME<br>POSED<br>0220,                                     | NAL NUL<br>NAL #1<br>IDENTI<br>RMINAL<br>TERMIN<br>TRICAL<br>HEAT<br>EXCEPT                       | ARE IN<br>IMBERII<br>IDENTII<br>FIER M.<br>. AND<br>VALS O<br>FASHK<br>SINK S              | DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC<br>DN.<br>LUG AS<br>T2444          | ees.<br>Nventik<br>Eithef<br>Sured<br>H D AI                   | NDAL,<br>RAMC<br>BETWE<br>NDES<br>ASTI                      | BUT M<br>DLD OR<br>EEN 0.1<br>SIDE RE                     | ust be<br>Marki<br>25 mm<br>Specti<br>Ninals            | E LOCAT<br>ED FEA<br>1 AND<br>1VELY. | .TURE.<br>0.30 m |         |              |              |                  |              |              |              |               |
| 1.<br>2.<br>3.<br>4.<br>5.<br>7.<br>6.<br>7.<br>9.<br>9.                             | DIMENS<br>ALL DIM<br>N IS TI<br>THE TE<br>JESD 9<br>THE ZC<br>DIMENS<br>FROM<br>DIMENS<br>FROM<br>DIMENS<br>FROM<br>DIMENS<br>FROM<br>DIMENS<br>AND<br>AND<br>DRAWIN<br>JARKING                      | MENSIO<br>HE TOT<br>RMINAL<br>5-1 S<br>SNE INE<br>SONE INE<br>SONE INE<br>SONE FO<br>ULATION<br>NARITY<br>IG CON<br>G IS FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NS ARE<br>TAL NUI<br>#1 ID<br>PP-012<br>DICATED<br>APPLIE<br>AL TIP.<br>REFER<br>N IS PO<br>APPLIE<br>IFORMS<br>DR PAC            | IN MI<br>MBER (<br>ENTIFIE<br>DETA<br>DETA<br>DETA<br>STO I<br>STO I<br>TO JE<br>KAGE (                                          | ILLIMET<br>OF TER<br>AND<br>ILS OF<br>TERMIN<br>METALU<br>IN METALU<br>IN METALU<br>IN A<br>THE EX<br>IDEC M<br>DRIENTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ERS. AM<br>MINALS.<br>TERMIN<br>TERMIN<br>VAL #1<br>ZED TE<br>BER OF<br>SYMME<br>POSED<br>0220,<br>ATION R                | NAL NUL<br>IAL ∦1<br>IDENTII<br>RMINAL<br>TERMIN<br>TERMIN<br>TRICAL<br>HEAT<br>EXCEPT<br>EFFEREN | ARE IN<br>IMBERII<br>IDENTII<br>FIER M.<br>. AND<br>VALS O<br>FASHK<br>SINK S              | DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC<br>DN.<br>LUG AS<br>T2444          | ees.<br>Nventik<br>Eithef<br>Sured<br>H D AI                   | NDAL,<br>RAMC<br>BETWE<br>NDES<br>ASTI                      | BUT M<br>DLD OR<br>EEN 0.1<br>SIDE RE                     | ust be<br>Marki<br>25 mm<br>Specti<br>Ninals            | E LOCAT<br>ED FEA<br>1 AND<br>1VELY. | .TURE.<br>0.30 m |         |              |              |                  |              |              |              |               |
| 1.<br>2.<br>3.<br>4.<br>7.<br>9.<br>11.                                              | DIMENS<br>ALL DIN<br>N IS TI<br>THE TE<br>JESD 9<br>THE ZC<br>DIMENS<br>FROM<br>DIMENS<br>FROM<br>DIMENS<br>COPLAN<br>DRAWIN<br>GOPLAN                                                               | MENSIO<br>HE TOT<br>RMINAL<br>5-1 SIONE INE<br>IONE INE<br>IONE F<br>ULATION<br>VARITY<br>IG CON<br>G IS FC<br>ARITY S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NS ARE<br>TAL NUI<br>#1 ID<br>PP-012<br>DICATED<br>APPLIE<br>AL TIP.<br>REFER<br>N IS PO<br>APPLIE<br>IFORMS<br>DR PAC<br>SHALL N | IN MI<br>MEER (<br>ENTIFIE<br>DETA<br>DETA<br>S TO I<br>S TO I<br>S TO I<br>TO JE<br>KAGE (<br>NOT EX                            | ILLINETI<br>OF TER AND<br>ILS OF<br>TERMIN<br>METALLI<br>IN A<br>THE EX<br>IDEC M<br>DRIENTA<br>CEED (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ERS. AM<br>MINALS.<br>TERMIN<br>TERMIN<br>VAL #1<br>ZED TE<br>ER OF<br>SYMME<br>POSED<br>10220,<br>ATION R<br>0.08mm      | NAL NUL<br>IAL ∦1<br>IDENTII<br>RMINAL<br>TERMIN<br>TERMIN<br>TRICAL<br>HEAT<br>EXCEPT<br>EFFEREN | ARE IN<br>IMBERII<br>IDENTII<br>FIER M.<br>. AND<br>VALS O<br>FASHK<br>SINK S              | DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC<br>DN.<br>LUG AS<br>T2444          | ees.<br>Nventik<br>Eithef<br>Sured<br>H D AI                   | NDAL,<br>RAMC<br>BETWE<br>NDES<br>ASTI                      | BUT M<br>DLD OR<br>EEN 0.1<br>SIDE RE                     | ust be<br>Marki<br>25 mm<br>Specti<br>Ninals            | E LOCAT<br>ED FEA<br>1 AND<br>1VELY. | .TURE.<br>0.30 m | im      |              |              |                  |              |              |              |               |
| 1.<br>2.<br>3.<br>4.<br>7.<br>9.<br>11.<br>12.<br>9.                                 | DIMENS<br>ALL DIM<br>N IS TI<br>THE TE<br>JESD 9<br>THE ZC<br>DIMENS<br>FROM<br>DIMENS<br>FROM<br>DIMENS<br>FROM<br>DIMENS<br>FROM<br>DIMENS<br>AND<br>AND<br>DRAWIN<br>JARKING                      | MENSION<br>HE TOT<br>RMINAL<br>5-1 SI<br>ION B<br>TERMIN<br>D NE F<br>ULATION<br>NARITY<br>IG CON<br>G IS FC<br>ARITY S<br>E SHAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NS ARE<br>TAL NUI<br>AL ID<br>PP-012<br>DICATED<br>APPLIE<br>APPLIE<br>APPLIE<br>IFORMS<br>DR PAC<br>SHALL N<br>L NOT             | IN MI<br>MEER (<br>ENTIFIE<br>DETA<br>DETA<br>DETA<br>S TO I<br>S TO I<br>S TO I<br>S TO I<br>TO JE<br>KAGE (<br>NOT EX<br>EXCEE | ILLINETI<br>DF TER<br>R AND<br>ILS OF<br>TERMIN<br>METALLI<br>: NUME<br>: NUME | ERS. AMMINALS.<br>TERMIN<br>TERMIN<br>AL #1<br>ZED TE<br>BER OF<br>SYMME<br>POSED<br>0220,<br>ATION R<br>0.08mm<br>0.08mm | IGLES                                                                                             | ARE IN<br>IDENTI<br>IDENTI<br>FIER M.<br>AND<br>VALS O<br>FASHK<br>SINK S<br>FOR<br>VCE ON | DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC<br>DN.<br>LUG AS<br>T2444-<br>VLY. | EES.<br>WENTK<br>EITHEF<br>SURED<br>H D AI<br>S WELL<br>-1, T2 | 10 NAL,<br>₹ A MC<br>■ BETWE<br>ND E S<br>. AS TF<br>444-3, | BUT M<br>DLD OR<br>EEN 0.1<br>SIDE RE<br>HE TER<br>, T244 | ust be<br>Marki<br>25 mm<br>Especti<br>Ninals<br>4—4 af | E LOCAT<br>ED FEA<br>1 AND<br>IVELY. | .TURE.<br>0.30 m | im<br>  |              |              | S                |              |              | X            |               |
| 1.<br>2.<br>3.<br>4.<br>7.<br>9.<br>11.<br>12.<br>9.                                 | DIMENS<br>ALL DIM<br>N IS THE TE<br>JESD 90<br>THE ZC<br>DIMENS<br>FROM<br>DIMENS<br>FROM<br>DIMENS<br>FROM<br>DIMENS<br>FROM<br>DIMENS<br>FROM<br>DIMENS<br>COPLAN<br>MARKING<br>COPLAN/<br>VARPAGI | MENSION<br>HE TOT<br>RMINAL<br>5-1 SI<br>ION B<br>TERMIN<br>D NE F<br>ULATION<br>NARITY<br>IG CON<br>G IS FC<br>ARITY S<br>E SHAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NS ARE<br>TAL NUI<br>AL ID<br>PP-012<br>DICATED<br>APPLIE<br>APPLIE<br>APPLIE<br>IFORMS<br>DR PAC<br>SHALL N<br>L NOT             | IN MI<br>MEER (<br>ENTIFIE<br>DETA<br>DETA<br>DETA<br>S TO I<br>S TO I<br>S TO I<br>S TO I<br>TO JE<br>KAGE (<br>NOT EX<br>EXCEE | ILLINETI<br>DF TER<br>R AND<br>ILS OF<br>TERMIN<br>METALLI<br>: NUME<br>: NUME | ERS. AMMINALS.<br>TERMIN<br>TERMIN<br>AL #1<br>ZED TE<br>BER OF<br>SYMME<br>POSED<br>0220,<br>ATION R<br>0.08mm<br>0.08mm | IGLES                                                                                             | ARE IN<br>IDENTI<br>IDENTI<br>FIER M.<br>AND<br>VALS O<br>FASHK<br>SINK S<br>FOR<br>VCE ON | DEGR<br>NG COI<br>FIER AI<br>AY BE<br>IS MEA<br>IN EAC<br>DN.<br>LUG AS<br>T2444-<br>VLY. | EES.<br>WENTK<br>EITHEF<br>SURED<br>H D AI<br>S WELL<br>-1, T2 | 10 NAL,<br>₹ A MC<br>■ BETWE<br>ND E S<br>. AS TF<br>444-3, | BUT M<br>DLD OR<br>EEN 0.1<br>SIDE RE<br>HE TER<br>, T244 | ust be<br>Marki<br>25 mm<br>Especti<br>Ninals<br>4—4 af | E LOCAT<br>ED FEA<br>1 AND<br>IVELY. | .TURE.<br>0.30 m | im<br>Į | ITLE PAC     | KAGE         | OUTLI<br>24, 281 |              | QFN, 4       |              |               |

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

20

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2004 Maxim Integrated Products

Printed USA

**MAXIM** is a registered trademark of Maxim Integrated Products.