## 32x32 Video Crosspoint

The ISL59532 is a $300 \mathrm{MHz} 32 \times 32$ Video Crosspoint Switch. Each input has an integrated DC-restore clamp and an input buffer. Each output has a fast On-Screen Display (OSD) switch (for inserting graphics or other video) and an output buffer. The switch is non-blocking, so any combination of inputs to outputs can be chosen, including one channel driving multiple outputs. The Broadcast Mode directs one input to all 32 outputs. The output buffers can be individually controlled through the SPI interface, the gain can be programmed to $\times 1$ or $\times 2$, and each output can be placed into a high impedance mode.

The ISL59532 offers a typical -3dB signal bandwidth of 300 MHz . Differential gain of $0.025 \%$ and differential phase of $0.05^{\circ}$, along with 0.1 dB flatness out to 50 MHz , make the ISL59532 suitable for many video applications.

The switch matrix configuration and output buffer gain are programmed through an SPI/QSPI ${ }^{\text {TM }}$-compatible three-wire serial interface. The ISL59532 interface is designed to facilitate both fast updates and initialization. On power-up, all outputs are high impedance to avoid output conflicts.

The ISL59532 is available in a 356 ball BGA package and specified over an extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

The single-supply ISL59532 can accommodate input signals from 0 V to 3.5 V and output voltages from 0 V to 3.8 V . Each input includes a clamp circuit that restores the input level to an externally applied reference in AC-coupled applications.

The ISL59533 is a fully differential input version of this device.

## Features

- $32 \times 32$ non-blocking switch with buffered inputs and outputs
- 300MHz typical bandwidth
- $0.025 \% / 0.05^{\circ} \mathrm{dG} / \mathrm{dP}$
- Output gain switchable x1 or x2 for each channel
- Individual outputs can be put in a high impedance state
- -90dB Isolation at 6MHz
- SPI digital interface
- Single +5 V supply operation
- Pb-free plus anneal available (RoHS compliant)


## Applications

- Security camera switching
- RGB routing
- HDTV routing


## Ordering Information

| PART NUMBER |  <br> REEL | PACKAGE <br> (Pb-Free) | PKG. DWG. \# |
| :--- | :---: | :---: | :---: |
| ISL59532IKEZ | - | 356 Ld BGA | V356.27x27A |

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

## Block Diagram



ISL59532


```
Absolute Maximum Ratings \(\left(T_{A}=+25^{\circ} \mathrm{C}\right)\)
```

Supply Voltage between $\mathrm{V}_{\mathrm{S}}$ and GND . . . . . . . . . . . . . . . . . . . . 6.0V
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . . 40mA
Ambient Operating Temperature . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . $+125^{\circ} \mathrm{C}$
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Maximum power supply ( $\mathrm{V}_{\mathrm{S}}$ ) slew rate . . . . . . . . . . . . . . . . . . 1V/ $\mu \mathrm{s}$
ESD Classification
Human Body Model
1500V

Machine Model
100V
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

DC Electrical Specifications $\quad V_{S}=5 V, R_{L}=150 \Omega$ unless otherwise noted.

| PARAMETER | DESCRIPTION | CONDITION | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{S}}$ | Power Supply Voltage |  | 4.5 |  | 5.5 | V |
| $\mathrm{V}_{\text {SDO }}$ | Power Supply for SDO output pin | Establishes serial data output high level | 1.2 |  | 5.5 | V |
| $A_{V}$ | Gain | $A_{V}=1$ | 0.98 | 1 | 1.02 | V/V |
|  |  | $A_{V}=2$ | 1.96 | 2 | 2.04 | V/V |
| GM | Gain Matching (to average of all other outputs) | $A_{V}=1$ | -1.5 |  | +1.5 | \% |
|  |  | $A_{V}=2$ | -1.5 |  | +1.5 | \% |
| $\mathrm{V}_{\text {IN }}$ | Video Input Voltage Range | $A_{V}=1$ | 0 |  | 3.5 | V |
| $\mathrm{V}_{\text {OUT }}$ | Video Output Voltage Range | $A_{V}=2$ | 0.1 |  | 3.8 | V |
| $\mathrm{I}_{\mathrm{B}}$ | Input Bias Current | Clamp function disabled (DC coupled inputs) | -10 | -5 | 1 | $\mu \mathrm{A}$ |
|  |  | Clamp function enabled, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{REF}}+0.5 \mathrm{~V}$ | 0.5 | 2 | 10 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {REF }}$ | $\mathrm{V}_{\text {REF }}$ Input Current | Clamp function enabled |  | -110 |  | $\mu \mathrm{A}$ |
| VOS | Output Offset Voltage | $A_{V}=1$ | -20 | 8 | 35 | mV |
|  |  | $A_{V}=2$ | -100 | -24 | 40 | mV |
| IOUT | Output Current | Sourcing, $\mathrm{R}_{\mathrm{L}}=10 \Omega$ to GND | 60 | 108 |  | mA |
|  |  | Sinking, $\mathrm{R}_{\mathrm{L}}=10 \Omega$ to 2.5 V | 24 | 31 |  | mA |
| PSRR | Power Supply Rejection Ratio | $A_{V}=2$ | 50 | 70 |  | dB |
| $I_{S}$ | Supply Current | Enabled, all outputs enabled, no load current | 560 | 640 | 720 | mA |
|  |  | Enabled, all outputs disabled, no load current | 280 | 320 | 360 | mA |
|  |  | Disabled | 1.2 | 1.8 | 2.4 | mA |

AC Electrical Specifications $V_{S}=5 V, R_{L}=150 \Omega$ unless otherwise noted.

| PARAMETER | DESCRIPTION | CONDITION | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BW -3dB | 3dB Bandwidth | $\mathrm{V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{P}_{\text {P-P }}, \mathrm{A}_{\mathrm{V}}=2$ |  | 300 |  | MHz |
| BW 0.1dB | 0.1dB Bandwidth | $\mathrm{V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{P}_{\text {P-P }}, A_{V}=2$ |  | 50 |  | MHz |
| SR | Slew Rate | $\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P, }} A^{\text {V }}=2$ | 300 | 520 | 740 | $\mathrm{V} / \mathrm{\mu s}$ |
| $\mathrm{T}_{S}$ | Settling Time to 0.1\% | $\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P, }} A_{V}=2$ |  | 12 |  | ns |
| Glitch | Switching Glitch, Peak | $A_{V}=1$ |  | 40 |  | mV |
| Tover | Overlay Delay Time | From OVER rising edge to output transition |  | 6 |  | ns |
| dG | Diff Gain | $A_{V}=2, R_{L}=150 \Omega$ |  | 0.025 |  | \% |
| dP | Diff Phase | $A_{V}=2, R_{L}=150 \Omega$ |  | 0.05 |  | - |
| Xt | Hostile Crosstalk | 6 MHz |  | -85 |  | dB |
| $\mathrm{V}_{\mathrm{N}}$ | Input Referred Noise Voltage |  |  | 18 |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |

## Pin Descriptions

| NAME | NUMBER | DESCRIPTION |
| :---: | :---: | :---: |
| INO | Y8 | Crosspoint Video Input |
| IN1 | Y7 | Crosspoint Video Input |
| IN2 | Y6 | Crosspoint Video Input |
| IN3 | Y5 | Crosspoint Video Input |
| IN4 | Y4 | Crosspoint Video Input |
| IN5 | Y3 | Crosspoint Video Input |
| IN6 | Y2 | Crosspoint Video Input |
| IN7 | Y1 | Crosspoint Video Input |
| IN8 | V1 | Crosspoint Video Input |
| IN9 | U1 | Crosspoint Video Input |
| IN10 | T1 | Crosspoint Video Input |
| IN11 | R1 | Crosspoint Video Input |
| IN12 | P1 | Crosspoint Video Input |
| IN13 | N1 | Crosspoint Video Input |
| IN14 | M1 | Crosspoint Video Input |
| IN15 | L1 | Crosspoint Video Input |
| IN16 | K1 | Crosspoint Video Input |
| IN17 | J1 | Crosspoint Video Input |
| IN18 | H1 | Crosspoint Video Input |
| IN19 | G1 | Crosspoint Video Input |
| IN20 | F1 | Crosspoint Video Input |
| IN21 | E1 | Crosspoint Video Input |
| IN22 | D1 | Crosspoint Video Input |
| IN23 | C1 | Crosspoint Video Input |
| IN24 | A1 | Crosspoint Video Input |
| IN25 | A2 | Crosspoint Video Input |
| IN26 | A3 | Crosspoint Video Input |
| IN27 | A4 | Crosspoint Video Input |
| IN28 | A5 | Crosspoint Video Input |
| IN29 | A6 | Crosspoint Video Input |
| IN30 | A7 | Crosspoint Video Input |
| IN31 | A8 | Crosspoint Video Input |
| OUTO | Y10 | Crosspoint Video Output |
| OUT1 | Y11 | Crosspoint Video Output |
| OUT2 | Y12 | Crosspoint Video Output |
| OUT3 | Y13 | Crosspoint Video Output |
| OUT4 | W14 | Crosspoint Video Output |
| OUT5 | W15 | Crosspoint Video Output |

Pin Descriptions (Continued)

| NAME | NUMBER | DESCRIPTION |
| :---: | :---: | :---: |
| OUT6 | W16 | Crosspoint Video Output |
| OUT7 | W17 | Crosspoint Video Output |
| OUT8 | V20 | Crosspoint Video Output |
| OUT9 | U20 | Crosspoint Video Output |
| OUT10 | T20 | Crosspoint Video Output |
| OUT11 | R20 | Crosspoint Video Output |
| OUT12 | P19 | Crosspoint Video Output |
| OUT13 | N19 | Crosspoint Video Output |
| OUT14 | M19 | Crosspoint Video Output |
| OUT15 | L19 | Crosspoint Video Output |
| OUT16 | K20 | Crosspoint Video Output |
| OUT17 | J20 | Crosspoint Video Output |
| OUT18 | H20 | Crosspoint Video Output |
| OUT19 | G20 | Crosspoint Video Output |
| OUT20 | F19 | Crosspoint Video Output |
| OUT21 | E19 | Crosspoint Video Output |
| OUT22 | D19 | Crosspoint Video Output |
| OUT23 | C19 | Crosspoint Video Output |
| OUT24 | A17 | Crosspoint Video Output |
| OUT25 | A16 | Crosspoint Video Output |
| OUT26 | A15 | Crosspoint Video Output |
| OUT27 | A14 | Crosspoint Video Output |
| OUT28 | B13 | Crosspoint Video Output |
| OUT29 | B12 | Crosspoint Video Output |
| OUT30 | B11 | Crosspoint Video Output |
| OUT31 | B10 | Crosspoint Video Output |
| OVERO | W10 | Overlay Logic Control (with pull-down) |
| OVER1 | W11 | Overlay Logic Control (with pull-down) |
| OVER2 | W12 | Overlay Logic Control (with pull-down) |
| OVER3 | W13 | Overlay Logic Control (with pull-down) |
| OVER4 | Y14 | Overlay Logic Control (with pull-down) |
| OVER5 | Y15 | Overlay Logic Control (with pull-down) |
| OVER6 | Y16 | Overlay Logic Control (with pull-down) |
| OVER7 | Y17 | Overlay Logic Control (with pull-down) |
| OVER8 | V19 | Overlay Logic Control (with pull-down) |
| OVER9 | U19 | Overlay Logic Control (with pull-down) |
| OVER10 | T19 | Overlay Logic Control (with pull-down) |
| OVER11 | R19 | Overlay Logic Control (with pull-down) |

Pin Descriptions (Continued)

| NAME | NUMBER | DESCRIPTION |
| :---: | :---: | :---: |
| OVER12 | P20 | Overlay Logic Control (with pull-down) |
| OVER13 | N20 | Overlay Logic Control (with pull-down) |
| OVER14 | M20 | Overlay Logic Control (with pull-down) |
| OVER15 | L20 | Overlay Logic Control (with pull-down) |
| OVER16 | K19 | Overlay Logic Control (with pull-down) |
| OVER17 | J19 | Overlay Logic Control (with pull-down) |
| OVER18 | H19 | Overlay Logic Control (with pull-down) |
| OVER19 | G19 | Overlay Logic Control (with pull-down) |
| OVER20 | F20 | Overlay Logic Control (with pull-down) |
| OVER21 | E20 | Overlay Logic Control (with pull-down) |
| OVER22 | D20 | Overlay Logic Control (with pull-down) |
| OVER23 | C20 | Overlay Logic Control (with pull-down) |
| OVER24 | B17 | Overlay Logic Control (with pull-down) |
| OVER25 | B16 | Overlay Logic Control (with pull-down) |
| OVER26 | B15 | Overlay Logic Control (with pull-down) |
| OVER27 | B14 | Overlay Logic Control (with pull-down) |
| OVER28 | A13 | Overlay Logic Control (with pull-down) |
| OVER29 | A12 | Overlay Logic Control (with pull-down) |
| OVER30 | A11 | Overlay Logic Control (with pull-down) |
| OVER31 | A10 | Overlay Logic Control (with pull-down) |
| VOVERO | V10 | Overlay Video Input |
| VOVER1 | V11 | Overlay Video Input |
| VOVER2 | V12 | Overlay Video Input |
| VOVER3 | V13 | Overlay Video Input |
| VOVER4 | V14 | Overlay Video Input |
| VOVER5 | V15 | Overlay Video Input |
| VOVER6 | V16 | Overlay Video Input |
| VOVER7 | V17 | Overlay Video Input |
| VOVER8 | V18 | Overlay Video Input |
| VOVER9 | U18 | Overlay Video Input |
| VOVER10 | T18 | Overlay Video Input |
| VOVER11 | R18 | Overlay Video Input |
| VOVER12 | P18 | Overlay Video Input |
| VOVER13 | N18 | Overlay Video Input |
| VOVER14 | M18 | Overlay Video Input |
| VOVER15 | L18 | Overlay Video Input |
| VOVER16 | K18 | Overlay Video Input |
| VOVER17 | J18 | Overlay Video Input |

Pin Descriptions (Continued)

| NAME | NUMBER | DESCRIPTION |
| :---: | :---: | :---: |
| VOVER18 | H18 | Overlay Video Input |
| VOVER19 | G18 | Overlay Video Input |
| VOVER20 | F18 | Overlay Video Input |
| VOVER21 | E18 | Overlay Video Input |
| VOVER22 | D18 | Overlay Video Input |
| VOVER23 | C18 | Overlay Video Input |
| VOVER24 | C17 | Overlay Video Input |
| VOVER25 | C16 | Overlay Video Input |
| VOVER26 | C15 | Overlay Video Input |
| VOVER27 | C14 | Overlay Video Input |
| VOVER28 | C13 | Overlay Video Input |
| VOVER29 | C12 | Overlay Video Input |
| VOVER30 | C11 | Overlay Video Input |
| VOVER31 | C10 | Overlay Video Input |
| $V_{\text {REF }}$ | M3 | DC-restore clamp reference input. In an AC-coupled configuration (DC-Restore clamp enabled), the sync tip of composite video inputs will be restored to this level. Set to 0.3 to 0.7 V for optimum performance. <br> In an DC-coupled configuration (DC-Restore clamp disabled), this pin should be tied to ground. <br> Do not let the $V_{\text {REF }}$ pin float! $A$ floating $\mathbf{V}_{\text {REF }}$ pin drifts high and, if the clamp function is enabled, will cause all of the outputs to simultaneously try to drive $\sim 4 \mathrm{~V}$ DC into their $150 \Omega$ loads. |
| SLATCH | J3 | Serial Latch. Serial data is latched into ISL59532 on rising edge of SLATCH. |
| SCLK | K3 | Serial data clock |
| SDI | L3 | Serial data input |
| SDO | G3 | Serial data output. Can be tied to SDI of another ISL59532 to enable daisychaining of multiple devices. |
| RESET | H3 | Reset input. Pull high then low to reset device, but not needed in normal operation. Tie to ground in final application. |
| $\mathrm{V}_{\text {SDO }}$ | D3 | Power supply for SDO pin. Tie to +5 V for a 0 to 5V SDO output signal swing. |
| $\mathrm{V}_{\mathrm{S}}$ |  | +5V power supply |
| GND |  | Ground |
| NC |  | No Connect - Do not electrically connect to anything, including ground. |

## Typical Performance Curves



FIGURE 1. FREQUENCY RESPONSE - VARIOUS $C_{L}, A_{V}=1$, MUX MODE


FIGURE 3. FREQUENCY RESPONSE - VARIOUS $R_{L}, A_{V}=1$, MUX MODE


FIGURE 5. FREQUENCY RESPONSE - OVERLAY INPUT, $A_{V}=1$


FIGURE 2. FREQUENCY RESPONSE - VARIOUS $C_{L}, A_{V}=2$, MUX MODE


FIGURE 4. FREQUENCY RESPONSE - VARIOUS $R_{L}, A_{V}=2$, MUX MODE


FIGURE 6. FREQUENCY RESPONSE - OVERLAY INPUT, $A_{V}=2$

## Typical Performance Curves (Continued)



FIGURE 7. FREQUENCY RESPONSE - VARIOUS $C_{L}, A_{V}=1$, BROADCAST MODE


FIGURE 9A. FREQUENCY RESPONSE - VARIOUS $R_{L}, A_{V}=1$, BROADCAST MODE


FIGURE 11. CROSSTALK $-A_{V}=1$


FIGURE 8. FREQUENCY RESPONSE - VARIOUS $C_{L}, A_{V}=2$, BROADCAST MODE


FIGURE 10. FREQUENCY RESPONSE - VARIOUS R ${ }_{L}, A_{V}=2$, BROADCAST MODE


FIGURE 12. CROSSTALK - $A_{V}=2$

## Typical Performance Curves (Continued)



FIGURE 13. HARMONIC DISTORTION vs FREQUENCY


FIGURE 15. DISABLED OUTPUT IMPEDANCE


FIGURE 17. RISE TIME $-A_{V}=1$


FIGURE 14. HARMONIC DISTORTION vs VOUT_P-P


FIGURE 16. ENABLED OUTPUT IMPEDANCE


FIGURE 18. FALL TIME $-A_{V}=1$

## Typical Performance Curves (Continued)



FIGURE 19. RISE TIME $-A_{V}=2$


FIGURE 21. RISING SLEW RATE $-A_{V}=1$


FIGURE 23. RISING SLEW RATE - $A_{V}=2$


FIGURE 20. FALL TIME $-A_{V}=2$


FIGURE 22. FALLING SLEW RATE - $A_{V}=1$


FIGURE 24. FALLING SLEW RATE $-A_{V}=2$

## Typical Performance Curves (Continued)



FIGURE 25. OVERLAY SWITCH TURN-ON DELAY TIME


FIGURE 27. DIFFERENTIAL GAIN, $A_{V}=2$


FIGURE 29. DIFFERENTIAL GAIN, $A_{V}=2$


FIGURE 26. OVERLAY SWITCH TURN-OFF DELAY TIME


FIGURE 28. DIFFERENTIAL PHASE, $A_{V}=2$


FIGURE 30. DIFFERENTIAL PHASE, $A_{V}=2$

Typical Performance Curves (Continued)


FIGURE 31. DIFFERENTIAL GAIN, $A_{V}=1$


FIGURE 33. DIFFERENTIAL GAIN, $A_{V}=1$


FIGURE 35. DIFFERENTIAL GAIN, $A_{V}=2$


FIGURE 32. DIFFERENTIAL PHASE, $A_{V}=1$


FIGURE 34. DIFFERENTIAL GAIN, $A_{V}=1$


FIGURE 36. DIFFERENTIAL PHASE, $A_{V}=2$

Typical Performance Curves (Continued)


FIGURE 37. DIFFERENTIAL GAIN, $A_{V}=2$


FIGURE 39. DIFFERENTIAL GAIN, $A_{V}=1$


FIGURE 41. DIFFERENTIAL GAIN, $A_{V}=1$


FIGURE 38. DIFFERENTIAL PHASE, $A_{V}=2$


FIGURE 40. DIFFERENTIAL PHASE, $A_{V}=1$


FIGURE 42. DIFFERENTIAL PHASE, $A_{V}=1$

## Typical Performance Curves (Continued)



FIGURE 43. DIFFERENTIAL GAIN, OVERLAY, $A_{V}=2$


FIGURE 45. DIFFERENTIAL GAIN, OVERLAY, $A_{V}=1$


FIGURE 44. DIFFERENTIAL PHASE, OVERLAY, $A_{V}=2$


FIGURE 46. DIFFERENTIAL PHASE, OVERLAY, $A_{V}=1$





## Block Diagram



## General Description

The ISL59532 is a $32 \times 32$ integrated video crosspoint switch matrix with input and output buffers and On-Screen Display (OSD) insertion. This device operates from a single +5 V supply. Any output can be generated from any of the 32 input video signal sources, and each output can have OSD information inserted through a dedicated, fast 2:1 mux located before the output buffer. There is also a Broadcast mode allowing any one input to be broadcast to all 32 outputs. A DC restore clamp function enables the ISL59532 to AC-couple incoming video.

The ISL59532 offers a -3dB signal bandwidth of 300 MHz . Differential gain and differential phase of $0.025 \%$ and $0.05^{\circ}$ respectively, along with 0.1 dB flatness out to 50 MHz make this ideal for multiplexing composite NTSC and PAL signals. The switch matrix configuration and output buffer gain are programmed through an SPI/QSPI ${ }^{T M}$-compatible, three-wire serial interface. The ISL59532 interface is designed to facilitate both fast initialization and configuration changes. On power-up, all outputs are initialized to the disabled state to avoid output conflicts in the user's system.

## Digital Interface

The ISL59532 uses a serial interface to program the configuration registers. The serial interface uses three signals (SCLK, SDI, and SLATCH) for programming the ISL59532, while a fourth signal (SDO) enables optional daisy-chaining of multiple devices. The serial clock can run at up to 5 MHz ( $5 \mathrm{Mbits} / \mathrm{s}$ ).

## Serial Interface

The ISL59532 is programmed through a simple serial interface. Data on the SDI (serial data input) pin is shifted into a 16 -bit shift register on the rising edge of the SCLK (serial clock) signal. (This is continuously done regardless of the state of the SLATCH signal.) The LSB (bit 0 ) is loaded
first and the MSB (bit 15) is loaded last (see the Serial Timing Diagram). After all 16 bits of data have been loaded into the shift register, the rising edge of SLATCH updates the internal registers.

While the ISL59532 has an SDO (Serial Data Out) pin, it does not have a register readback feature. The data on the SDO pin is an exact replica of the incoming data on the SDI pin, delayed by 15.5 SCLKs (an input bit is latched on the rising edge of SLCK, and is output on SDO on the falling edge of SLCK 15.5 SCLKs later). Multiple ISL59532's can be daisy-chained by connecting the SDO of one to the SDI of the other, with SCLK and SLATCH common to all the daisychained parts. After all the serial data is transmitted (16 bits * n devices $=16 * \mathrm{n}$ SCLKs), the rising edge of SLATCH will update the configuration registers of all $n$ devices simultaneously.

The Serial Timing Diagram and Serial Timing Parameters table on page 19 show the timing requirements for the serial interface.

## Serial Timing Diagram



SDO = SDI delayed by 15.5 SCLKs to allow daisy-chaining of multiple ISL59532s. SDO changes on the falling edge of SCLK.
TABLE 1. SERIAL TIMING PARAMETERS

| PARAMETER | RECOMMENDED OPERATING RANGE | DESCRIPTION |
| :---: | :---: | :--- |
| T | $\geq 200 \mathrm{~ns}$ | SCLK period |
| $\mathrm{t}_{\mathrm{W}}$ | $0.50 * \mathrm{~T}$ | Clock Pulse Width |
| $\mathrm{t}_{\mathrm{SD}}$ | $\geq 20 \mathrm{~ns}$ | Data Setup Time |
| $\mathrm{t}_{\mathrm{HD}}$ | $\geq 20 \mathrm{~ns}$ | Data Hold Time |
| $\mathrm{t}_{\mathrm{SL}}$ | $\geq 20 \mathrm{~ns}$ | Final SLCK rising edge (latching B15) to SLATCH rising edge |

## Programming Model

The ISL59532 is configured by a series of 16 -bit serial control words. The three MSBs (B15-13) of each serial word determine the basic command:

TABLE 2. COMMAND FORMAT

| B15 | B14 | B13 | COMMAND | NUMBER OF WRITES |
| :---: | :---: | :---: | :--- | :---: |
| 0 | 0 | 0 | INPUT/OUTPUT: Maps input channels to output channels | 32 (1 channel per write) |
| 0 | 0 | 1 | OUTPUT ENABLE: Output enable for individual channels | 4 (8 channels per write) |
| 0 | 1 | 0 | GAIN SET: Gain (x1 or x2) for each channel | 4 (8 channels per write) |
| 0 | 1 | 1 | BROADCAST: Enables broadcast mode and selects the input channel to be <br> broadcast to all output channels | 1 |
| 1 | 1 | 1 | CONTROL: Clamp on/off, operational/standby mode, and global output <br> enable/disable | 1 |

## Mapping Inputs to Outputs

Inputs are mapped to their desired outputs using the input/output control word. Its format is:
TABLE 3. INPUT/OUTPUT WORD

| B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $\mathrm{I}_{4}$ | $\mathrm{I}_{3}$ | $\mathrm{I}_{2}$ | $\mathrm{I}_{1}$ | $\mathrm{I}_{0}$ | - | - | - | $\mathrm{O}_{4}$ | $\mathrm{O}_{3}$ | $\mathrm{O}_{2}$ | $\mathrm{O}_{1}$ | $\mathrm{O}_{0}$ |

$\mathrm{I}_{4}: \mathrm{I}_{0}$ form the 5 bit word indicating the input channel ( 0 to 31 ), and $\mathrm{O}_{4}: \mathrm{O}_{0}$ determine the output channel which that input channel will map to. One input can be mapped to one or multiple outputs. To fully program the ISL59532, 32 INPUT/OUTPUT words must be transmitted - one for each input channel.

## Enabling Outputs

The output enable control word is used to enable individual outputs. There are 32 channels to configure, so this is accomplished by writing 4 serial words, each controlling a bank of eight outputs at a time. The bank is selected by bits B9 and B8. The output enable control word format is:

TABLE 4. OUTPUT ENABLE FORMAT

| B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 0 | 0 | $\mathbf{0}$ | $\mathbf{0}$ | $\mathrm{O}_{7}$ | $\mathrm{O}_{6}$ | $\mathrm{O}_{5}$ | $\mathrm{O}_{4}$ | $\mathrm{O}_{3}$ | $\mathrm{O}_{2}$ | $\mathrm{O}_{1}$ | $\mathrm{O}_{0}$ |
| 0 | 0 | 1 | 0 | 0 | 0 | $\mathbf{0}$ | $\mathbf{1}$ | $\mathrm{O}_{15}$ | $\mathrm{O}_{14}$ | $\mathrm{O}_{13}$ | $\mathrm{O}_{12}$ | $\mathrm{O}_{11}$ | $\mathrm{O}_{10}$ | $\mathrm{O}_{9}$ | $\mathrm{O}_{8}$ |
| 0 | 0 | 1 | 0 | 0 | 0 | $\mathbf{1}$ | $\mathbf{0}$ | $\mathrm{O}_{23}$ | $\mathrm{O}_{22}$ | $\mathrm{O}_{21}$ | $\mathrm{O}_{20}$ | $\mathrm{O}_{19}$ | $\mathrm{O}_{18}$ | $\mathrm{O}_{17}$ | $\mathrm{O}_{16}$ |
| 0 | 0 | 1 | 0 | 0 | 0 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathrm{O}_{31}$ | $\mathrm{O}_{30}$ | $\mathrm{O}_{29}$ | $\mathrm{O}_{28}$ | $\mathrm{O}_{27}$ | $\mathrm{O}_{26}$ | $\mathrm{O}_{25}$ | $\mathrm{O}_{24}$ |

Setting the $O_{N}$ bit $=0$ tri-states the output. Setting the $O_{N}$ bit = 1 enables the output if the Global Output Enable bit is also set (the individual output enable bits are ANDed with the Global Output Enable bit before they are sent to the output stage).

## Setting the Gain

The gain of each output may be set to $x 1$ or $x 2$ using the Gain Set word. It is in the same format as the output enable control word:
TABLE 5. GAIN SET FORMAT

| B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | B7 | $\mathbf{B 6}$ | B5 | B4 | B3 | B2 | B1 | B0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | $\mathbf{0}$ | $\mathbf{0}$ | $\mathrm{G}_{7}$ | $\mathrm{G}_{6}$ | $\mathrm{G}_{5}$ | $\mathrm{G}_{4}$ | $\mathrm{G}_{3}$ | $\mathrm{G}_{2}$ | $\mathrm{G}_{1}$ | $\mathrm{G}_{0}$ |
| 0 | 1 | 0 | 0 | 0 | 0 | $\mathbf{0}$ | $\mathbf{1}$ | $\mathrm{G}_{15}$ | $\mathrm{G}_{14}$ | $\mathrm{G}_{13}$ | $\mathrm{G}_{12}$ | $\mathrm{G}_{11}$ | $\mathrm{G}_{10}$ | $\mathrm{G}_{9}$ | $\mathrm{G}_{8}$ |
| 0 | 1 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | $\mathbf{0}$ | $\mathrm{G}_{23}$ | $\mathrm{G}_{22}$ | $\mathrm{G}_{21}$ | $\mathrm{G}_{20}$ | $\mathrm{G}_{19}$ | $\mathrm{G}_{18}$ | $\mathrm{G}_{17}$ | $\mathrm{G}_{16}$ |
| 0 | 1 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathrm{G}_{31}$ | $\mathrm{G}_{30}$ | $\mathrm{G}_{29}$ | $\mathrm{G}_{28}$ | $\mathrm{G}_{27}$ | $\mathrm{G}_{26}$ | $\mathrm{G}_{25}$ | $\mathrm{G}_{24}$ |

Set $\mathrm{G}_{\mathrm{N}}=0$ for a gain of x 1 or 1 for a gain of x 2 .

## Broadcast Mode

The Broadcast Mode routes one input to all 32 outputs. The broadcast control word is:
TABLE 6. BROADCAST FORMAT

| B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | $\mathrm{I}_{4}$ | $\mathrm{I}_{3}$ | $\mathrm{I}_{2}$ | $\mathrm{I}_{1}$ | $\mathrm{I}_{0}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Enable Broadcast <br> 0: Broadcast Mode Disabled <br> 1: Broadcast Mode Enabled |

$\mathrm{I}_{4}: \mathrm{I}_{0}$ form the 5 -bit word indicating the input channel ( 0 to 31 ) to be sent to all 32 outputs. Set the Enable Broadcast bit (B0) $=1$ to enable Broadcast Mode, or to 0 to disable Broadcast Mode. When Broadcast Mode is disabled, the previous channel assignments are restored.

## Control Word

The ISL59532's power-on reset disables all outputs and places the part in a low-power standby mode. To enable the device, the following control word should be sent:

TABLE 7. CONTROL WORD FORMAT

| B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 0 | Clamp <br> 0: Clamp Disabled <br> 1: Clamp Enabled | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Power <br> 0: Standby <br> 1: Operational | O: All outputs tristated <br> 1: Individual Output Enable bits control outputs |

The Clamp bit enables the input clamp function, forcing the AC-coupled signal's most negative point to be equal to $V_{\text {REF }}$.
Note: The Clamp bit turns the DC-Restore clamp function on or off for all channels - there is no DC-Restore on/off control for individual channels. The DC-Restore function only works with signals with sync tips (composite video). Signals that do not have sync tips (the Chroma/C signal in s-video and the Pb, Pr signals in Component video), will be severely distorted if run through a DC-Restore/clamp function.

For this reason, the ISL59532 must be in DC-coupled mode (Clamp Disabled) to be compatible with s-video and component video signals.

## Bandwidth Considerations

Wide frequency response (high bandwidth) in a video system means better video resolution. Four sets of frequency response curves are shown in Figure 47. Depending on the switch configurations, and the routing (the path from the input to the output), bandwidth can vary between 100 MHz and 350 MHz . A short discussion of the trade-offs - including matrix configuration, output buffer gain selection, channel selection, and loading - follows.


FIGURE 47. FREQUENCY RESPONSE FOR VARIOUS MODES
In multiplexer mode, one input typically drives one output channel, while in broadcast mode, one input drives all 32 outputs. As the number of outputs driven increases, the parasitic loading on that input increases. Broadcast Mode is the worst-case, where the capacitance of all 32 channels loads one input, reducing the overall bandwidth. In addition, due to internal device compensation, an output buffer gain of $x 2$ has higher bandwidth than a gain of $x 1$. Therefore, the highest bandwidth configuration is multiplexer mode (with each input mapped to only one output) and an output buffer gain of x 2 .

The relative locations of the input and output channels also have significant impact on the device bandwidth (due to the layout of the ISL59530 silicon). When the input and output channels are further away, there are additional parasitics as a result of the additional routing, resulting in lower bandwidth.
The bandwidth does not change significantly with resistive loading as shown in the typical performance curves. However several of the curves demonstrate that frequency response is sensitive to capacitance loading. This is most significant when laying out the PCB. If the PCB trace length between the output of the crosspoint switch and the backtermination resistor is not minimized, the additional parasitic capacitance will result in some peaking and eventually a reduction in overall bandwidth.

## Linear Operating Region

In addition to bandwidth optimization, to get the best linearity the ISL59532 should be configured to operate in its most linear operating region. Figure 48 shows the differential gain curve. The ISL59532 is a single supply 5 V design with its most linear region between 0.1 and 2 V . This range is fine for most video signals whose nominal signal amplitude is 1 V . The most negative input level (the sync tip for composite video) should be maintained at 0.3 V or above for best operation.


FIGURE 48. DIFFERENTIAL GAIN RESPONSE
In a DC-coupled application, it is the system designer's responsibility to ensure that the video signal is always in the optimum range.
When AC coupling, the ISL59532's Clamp (also called "DC restore") function automatically and continuously adjusts the DC level so that the most negative portion of the video is always equal to $\mathrm{V}_{\text {REF }}$.
A discussion of the benefits of the DC restoration function begins by understanding the Clamp circuit shown in Figure 49. The incoming video signal is typically terminated into $75 \Omega$, then AC coupled through $\mathrm{C}_{1}$, at which point it is connected to the base of the buffer's diff pair. These components form the video path.
The Clamp function consists of $\mathrm{Q}_{1}, \mathrm{D}_{1}, \mathrm{Q}_{2}, \mathrm{D}_{2}$, the two current sources, and the 3 switches controlled by the Clamp Enable signal. The $\mathrm{V}_{\text {REF }}$ voltage is level-shifted up two diode drops $\left(Q_{1}\right.$ and $\left.D_{1}\right)$ to the base of $Q_{2}$. If the voltage at the cathode of $D_{2}$ goes below $V_{R E F}, Q_{2}$ and $D_{2}$ will turn on, keeping the $I N_{x}$ voltage at $V_{R E F}$. If the voltage at $I N_{x}$ is greater than $V_{R E F}, Q_{2}$ and $D_{2}$ are off and the $I N_{x}$ node is high impedance. This is how the clamp function forces the lowest portion of the video signal (the sync tip) to always be equal to or greater than $V_{\text {REF }}$.
To make sure that the sync tip is always equal to (not equal to or greater than) $V_{R E F}, i_{1}$ is constantly sinking $\sim 2 \mu \mathrm{~A}$ of current from $\mathrm{C}_{1}$. This causes each sync tip to be slightly lower voltage than the previous sync tip, causing $Q_{2}$ and $D_{2}$ to turn on at each sync tip and raise the voltage to $\mathrm{V}_{\text {REF }}$. The $2 \mu \mathrm{~A}$ pulldown with a 0.1 uF capacitor and a 15 kHz HSYNC frequency results in 1.3 mV of "droop" across every line, or
$0.2 \%$ of the video signal. Because 1.3 mV is only $0.2 \%$ of a 0.7 V video signal, this droop is imperceptible to the human eye.


FIGURE 49. DC RESTORE BLOCK DIAGRAM
This is how the video is "DC-restored" after being AC coupled into the ISL59532. The sync tip voltage will be equal to $V_{\text {REF }}$ on the right side of $C_{1}$, regardless of the $D C$ level of the video on the left side of $C_{1}$. Due to various sources of offset in the actual clamp function, the actual sync tip level is typically about 75 mV higher than $\mathrm{V}_{\mathrm{REF}}$ (for $\mathrm{V}_{\mathrm{REF}}=0.4 \mathrm{~V}$ ).


FIGURE 50. DC RESTORE VIDEO WAVEFORMS
It is important to choose the correct value for $\mathrm{C}_{\mathrm{IN}}$. Too small a value will generate too much droop, and the image will be visibly darker on the right than on the left. $A C_{\text {IN }}$ value that is too large may cause the clamp to fail to converge. The droop rate ( $\mathrm{dV} / \mathrm{dt}$ ) is $\mathrm{i}_{1} / \mathrm{C}_{\mathrm{IN}}$ volts/second. In general, the droop voltage should be limited to <1 IRE over a period of one line of video; so for $1 \mathrm{IRE}=7 \mathrm{mV}, \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A}$ maximum, and an NTSC waveform we will set $\mathrm{C}_{\mathrm{IN}}>10 \mu \mathrm{~A} * 60 \mu \mathrm{~s} / 7 \mathrm{mV}=$
$0.086 \mu \mathrm{~F}$. Figure 50 shows the result of $\mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$ delivering acceptable droop and $\mathrm{C}_{\mathrm{IN}}=0.001 \mu \mathrm{~F}$ producing excessive droop

When the clamp function is disabled in the CONTROL register (Clamp $=0$ ) to allow DC-coupled operation, the ${ }^{\text {ICLAMP }}$ current sinks/sources are disabled and the input passes through the DC Restore block unaffected. In this application $V_{\text {REF }}$ may be tied to GND.

## Overlay Operation

The ISL59532 features an overlay feature, that allows an external video signal or DC level to be inserted in place of that output channel's video. When the OVER ${ }_{N}$ signal is taken high, the output signal on the $\mathrm{OUT}_{\mathrm{N}}$ pin is replaced with the signal on the $\operatorname{VOVER}_{N}$ pin.
There are several ways the overlay feature can be used. Toggling the $\mathrm{OVER}_{N}$ signal at the frame rate or slower will replace the video frame(s) on the $\mathrm{OUT}_{\mathrm{N}}$ pin with the video supplied on the $\operatorname{VOVER}_{N}$ pin.

Another option (for OSD displays, for example), is to put a DC level on the VOVER $N$ line and toggle the OVER $N_{N}$ signal at the pixel rate to create a monocolor image "overlaid" on channel N's output signal.

Finally, by enabling the $\mathrm{OVER}_{\mathrm{N}}$ signal for some portion of each line over a certain amount of lines, a picture-in-picture function can be constructed.

It's important to note that the overlay inputs do not have the DC Restore function previously described - the overlay signal is DC coupled into the output. It is the system designer's responsibility to ensure that the video levels are in the ISL59532's linear region and matching the output channel's offset and amplitude. One easy way to do this is to run the video to be overlaid through one of the ISL59532's unused channels and then into the VOVER $_{N}$ input.
The OVER ${ }_{N}$ pins all have weak pulldowns, so if they are unused, they can either be left unconnected or tied to GND.

## Power Dissipation and Thermal Resistance

With a large number of switches, it is possible to exceed the $+150^{\circ} \mathrm{C}$ absolute maximum junction temperature under certain load current conditions. Therefore, it is important to calculate the maximum junction temperature for an application to determine if load conditions or package types need to be modified to assure operation of the crosspoint switch in a safe operating area.

The maximum power dissipation allowed in a package is determined according to:

$$
\begin{equation*}
\mathrm{PD}_{\mathrm{MAX}}=\frac{\mathrm{T}_{\mathrm{JMAX}}-\mathrm{T}_{\mathrm{AMAX}}}{\Theta_{\mathrm{JA}}} \tag{EQ.1}
\end{equation*}
$$

Where:

- $\mathrm{T}_{\text {JMAX }}=$ Maximum junction temperature $=+125^{\circ} \mathrm{C}$
- $\mathrm{T}_{\text {AMAX }}=$ Maximum ambient temperature $=+85^{\circ} \mathrm{C}$
- $\theta_{\mathrm{JA}}=$ Thermal resistance of the package

The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the load, or:
$P D_{\text {MAX }}=V_{S} \times I_{\text {SMAX }}+\sum_{i=1}^{n}\left(V_{S}-V_{\text {OUTi }}\right) \times \frac{V_{\text {OUTi }}}{R_{\text {Li }}}$
Where:

- $\mathrm{V}_{\mathrm{S}}=$ Supply voltage $=5 \mathrm{~V}$
- $I_{\text {SMAX }}=$ Maximum quiescent supply current $=700 \mathrm{~mA}$
- $\mathrm{V}_{\text {OUT }}=$ Maximum output voltage of the application $=2 \mathrm{~V}$
- $R_{\text {LOAD }}=$ Load resistance tied to ground $=150$
- $\mathrm{n}=1$ to 32 channels
$P D_{\text {MAX }}=V_{S} \times I_{S M A X}+\sum_{i=1}^{n}\left(V_{S}-V_{\text {OUTi }}\right) \times \frac{V_{\text {OUTi }}}{R_{\text {Li }}}=4.8 \mathrm{~W}$
The required $\theta_{\mathrm{JA}}$ to dissipate 4.8 W is:
$\Theta_{J A}=\frac{T_{J M A X}-T_{\text {AMAX }}}{P_{\text {MAX }}}=8.33\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Table 8 shows $\theta_{\mathrm{JA}}$ thermal resistance results with a Wakefield heatsink and without heatsink and various airflow. At the thermal resistance equation shows, the required thermal resistance depends on the maximum ambient temperature.

TABLE 8. $\theta_{\mathrm{JA}}$ THERMAL RESISTANCE [ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ]

| Airflow [LFM] | $\mathbf{0}$ | $\mathbf{2 5 0}$ | $\mathbf{5 0 0}$ | $\mathbf{7 5 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| No Heatsink | $\mathbf{1 8}$ | 14.3 | 13.0 | 12.6 |
| Wakefield <br> 658-25AB <br> Heatsink | 16.0 | 7.0 | 6.0 | 4.7 |

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

## 356 Lead HBGA Package



