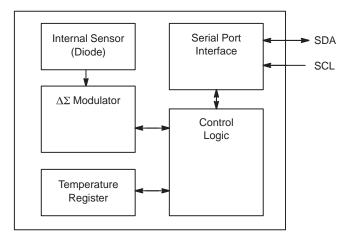
Serial Digital Temperature Sensor

The MC74 is a serial digital temperature sensor suited for low cost applications. Temperature data is converted from the integrated thermal sensing element and made available as an 8–bit serial digital word. Communication with the MC74 is accomplished via 2–wire SMBus/I²C–compatible serial port. Temperature resolution is 1°C. Conversion rate is a nominal 8 samples/sec. Power consumption is only 200 μ A (5 μ A Standby).

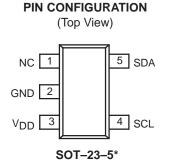

Features

- Tested Operating Temperature Range: -40°C to +125°C
- Simple Serial Port Interface
- Solid State Temperature Sensing:
 - ±2°C Accuracy from +25°C to +85°C
 - $\pm 3^{\circ}$ C Accuracy from 0° C to $+125^{\circ}$ C
- 3.3V and 5.5V Versions

Typical Applications

- Thermal Protection for Hard Disk Drives and Other PC Peripherals
- Low–Cost Thermostat Controls
- Power Supplies

FUNCTIONAL BLOCK DIAGRAM



ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

SOT-23-5 SN SUFFIX CASE TBD PRELIMINARY INFORMATION

NOTE: *SOT-23-5 is equivalent to EIAJ-SC74A

TO-220-5 T SUFFIX CASE TBD PRELIMINARY INFORMATION

ORDERING INFORMATION

Device	Package	Voltage
MC74A5-33SNTR	SOT-23-5	3.3V V _{DD}
MC74A5-50T	TO-220-5	5.0V V _{DD}

© Semiconductor Components Industries, LLC, 1999 **February, 2000 – Rev. 0**

1

PIN DESCRIPTION FOR TO-220-5

Pin No.	Symbol	Туре	Description
1	NC	None	Not Connected
2	SDA	Bi-directional	SMBus Serial Data
3	GND	Power	System Ground
4	SCL	Input	SMBus Serial Clock
5	V _{DD}	Power	Power Supply Input

PIN DESCRIPTION FOR SOT-23-5

Pin No.	Symbol	Туре	Description
1	NC	None	Not Connected
2	GND	Power	System Ground
3	V _{DD}	Power	Power Supply Input
4	SCL	Input	SMBus Serial Clock
5	SDA	Bi-directional	SMBus Serial Data

PIN DESCRIPTION

VDD

GND

Input. Power supply input. See electrical specifications.

Input. Ground return for all MC74 functions.

SCL

Input. SMBus serial clock. Clocks data into and out of the MC74. See System Management Bus Specification, rev. 1.0, for timing diagrams.

SDA

Bi–directional. Serial data is transferred on the SMBus in both directions using this pin. See System Management Bus Specification rev. 1.0 for timing diagrams.

ABSOLUTE MAXIMUM RATINGS*

Symbol Parameter Value Unit 6.0 V Power Supply Voltage VDD Voltage on Any Pin (GND - 0.3 V) to $(V_{DD} + 0.3 V)$ V -40 to +125 **Operating Temperature Range** °C TA -65 to +150 °C Storage Temperature Range T_{stg} Current on Any Pin ±50 mΑ mW P_{D} Maximum Power Dissipation 330

Maximum Ratings are those values beyond which damage to the device may occur.

MC74

DC ELECTRICAL	. CHARACTERISTICS (V _{DD} = 3.3 V or 5.0V ⁽⁵⁾ , –40°C \leq T _A \leq 125	5°C, unless othe	erwise noted.)	
Symbol	Characteristic	Min	Тур	Max

Symbol	Characteristic	Min	Тур	Max	Unit
Power Supply					
VPOR	Power–On Reset Threshold (V _{DD} Falling Edge or Rising Edge)	1.2	_	2.2	V
IDD	Operating Current (V _{DD} = 5.5V, Serial Port Inactive) ⁽¹⁾	_	200	350	μΑ
IDD-STANDBY			5.0	10	μΑ

Temperature-to-Bits Converter

Temperature to					
T _{ERR}	Temperature Accuracy MC74A +25°C $\leq T_A \leq +85°C$ 0°C $\leq T_A \leq +125°C$ -40°C $\leq T_A \leq 0°C$	-2.0 -3.0 	 ±2.0	+2.0 +3.0 —	°C
CR	Conversion Rate (2)	4.0	8.0	_	sa/sec

Serial Port Interface

VIH	Logic Input High	0.8 x V _{DD}	—	—	V
VIL	Logic Input Low	—	_	0.2 x V _{DD}	V
VOL	SDA Output Low $I_{OL} = 3 \text{ mA} (3)$ $I_{OL} = 6 \text{ mA} (3)$			0.4 0.6	V
C _{IN}	Input Capacitance SDA, SCL	—	5.0	—	pF
ILEAK	I/O Leakage	-1.0	0.1	1.0	μΑ

1. Operating current is an average value integrated over multiple conversion cycles. Transient current may exceed this specification.

2. Maximum guaranteed conversion time after Power–On RESET (POR to DATA_RDY) is 250 msec.

3. Output current should be minimized for best temperature accuracy. Power dissipation within the MC74 will cause self-heating and temperature drift error.

4. SDA and SCL must be connected to V_{DD} or GND.

 V_{DD}=3.3V for MC74A5–33SNTR. V_{DD}=5.0V for MC74A5–50T. All part types of the MC74 will operate properly over the wider power supply range of 2.7V to 5.5V. Each part type is tested and specified for rated accuracy at its nominal supply voltage. As V_{DD} varies from the nominal value, accuracy will degrade 1°C/V of V_{DD} change.

Symbol	Characteristic	Min	Тур	Max	Unit
fSMB	SMBus Clock Frequency	10	—	100	kHz
^t LOW	Low Clock Period (10% to 10%)	4.7	-	—	μsec
thigh	High Clock Period (90% to 90%)	4.0	-	-	μsec
t _R	SMBus Rise Time (10% to 90%)	—	-	1,000	nsec
tF	SMBus Fall Time (90% to 10%)	—	-	300	nsec
^t SU(START)	Start Condition Setup Time (90% SCL to 10% SDA) (for Repeated Start Condition)	4.0	-	—	μsec
^t H(START)	Start Condition Hold Time	4.0	—	—	μsec
^t SU–DATA	Data in Setup Time	1,000	-	—	nsec
^t H–DATA	-DATA Data in Hold Time		—	—	nsec
tSU(STOP) Stop Condition Setup Time		4.0	-	—	μsec
^t IDLE	Bus Free Time Prior to New Transition		-	_	μsec
^t POR	Power–On Reset Delay ($V_{DD} \ge V_{POR}$ (Rising Edge))	—	500	_	μsec

SERIAL PORT AC TIMING (V_{DD} = 3.3 V or 5.0V, $-40^{\circ}C \le (T_A = T_J) \le 125^{\circ}C$; C_L = 80 pF unless otherwise noted.)

DETAILED OPERATING DESCRIPTION

The MC74 acquires and converts temperature information from its integrated solid state sensor with a basic accuracy of $\pm 1^{\circ}$ C. It stores the data in an internal register which is read through the serial port. The system interface is a slave SMBus. The temperature data can be read at any time through the SMBus port. Eight SMBus addresses are programmable for the MC74, which allows for a multi–sensor configuration. Also, there is low–power Standby mode where temperature acquisition is suspended.

Standby Mode

The MC74 allows the host to put it into a low power (I_{DD} = 5µA, typical) Standby mode. In this mode, the A/D converter is halted and the temperature data registers are frozen. The SMBus port operates normally. Standby mode is enabled by setting the SHDN bit in the CONFIG register. The table below summarizes this operation.

Standby Mode Operation

SHDN Bit	Operating Mode
0	Normal
1	Standby

SMBus Slave Address

The MC74 is internally programmed to have a default SMBus address value of 1001 101b. Seven other addresses are available by custom order (contact factory).

SERIAL PORT OPERATION

The Serial Clock input (SCL) and bi-directional data port (SDA) form a 2-wire bi-directional serial port for programming and interrogating the MC74. The following conventions are used in this bus architecture:

MC74 Serial Bus Conventions

Term	Explanation
Transmitter	The device sending data to the bus.
Receiver	The device receiving data from the bus.
Master	The device which controls the bus: initiating transfers (START), generating the clock, and terminating transfers (STOP).
Slave	The device addressed by the master.
Start	A unique condition signaling the beginning of a transfer indicated by SDA falling (High — Low) while SCL is high.
Stop	A unique condition signaling the end of a transfer indicated by SDA rising (Low — High) while SCL is high.
ACK	A receiver acknowledges the receipt of each byte with this unique condition. The receiver drives SDA low during SCL high of the ACK clock–pulse. The Master pro- vides the clock pulse for the ACK cycle.
Busy	Communication is not possible because the bus is in use.
NOT Busy	When the bus is idle, both SDA and SCL will remain high.
Data Valid	The state of SDA must remain stable dur- ing the High period of SCL in order for a data bit to be considered valid. SDA only changes state while SCL is low during nor- mal data transfers (see Start and Stop conditions).

All transfers take place under control of a host, usually a CPU or microcontroller, acting as the Master which provides the clock signal for all transfers. The MC74 *always* operates as a Slave. The serial protocol is illustrated in Figure 1. All data transfers have two phases; all bytes are transferred MSB first. Accesses are initiated by a start condition (START), followed by a device address byte and one or more data bytes. The device address byte includes a Read/Write selection bit. Each access must be terminated by a Stop Condition (STOP). A convention called *Acknowledge* (ACK) confirms receipt of each byte. Note that SDA can change only during periods when SCL is LOW (SDA changes while SCL is HIGH are reserved for Start and Stop Conditions).

	S A	DDRE	SS	WR	AC	к	CON	IMAND	ACK	DATA	ACK		Р
		7 Bits	6				8	Bits		8 Bits	8		
Read	Slav d Byte Form	e Addı at	ess			W		nd Byte: se gister you).		into the	yte: data e register command	šet	
s	ADDRESS	WR	ACK	COMM	AND	ACK	S	ADDRES	S RD	ACK	DATA	NACK	Р
	7 Bits			8 Bit	s			7 Bits			8 Bits		
	Slave Addres ive Byte For	-		Comman which reg reading fr	gistér y		Э	Slave Add due to cha flow direct	ange in ḋ		the regi	/te: reac ster set nd byte.	by t
S	ADDRESS	RD	ACK	DATA	NAC	K P							
	7 Bits			8 Bits									
s – 1	Start Conditio	n	the	a Byte: re register c last Read	omma	anded b	m by						
P = \$	Stop Condition	n	aiaaiaa										

Start Condition (START)

Multa Duta Comont

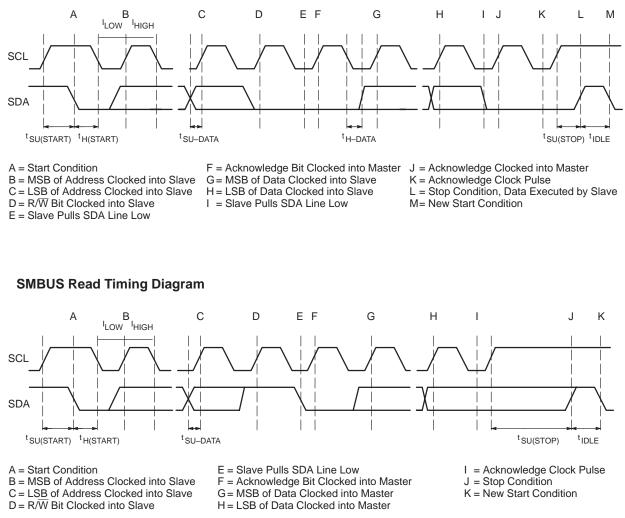
The MC74 continuously monitors the SDA and SCL lines for a start condition (a HIGH to LOW transition of SDA while SCL is HIGH) and will not respond until this condition is met.

Address Byte

Immediately following the Start Condition, the host must transmit the address byte to the MC74. The states of A1 and A0 determine the 7–bit SMBus address for the MC74. The 7–bit address transmitted in the serial bit stream must match for the MC74 to respond with an Acknowledge (indicating the MC74 is on the bus and ready to accept data). The eighth bit in the Address Byte is a Read–Write Bit. This bit is a 1 for a read operation or 0 for a write operation. During the first phase of any transfer this bit will be set = 0 to indicate that the command byte is being written.

Acknowledge (ACK)

Acknowledge (ACK) provides a positive handshake between the host and the MC74. The host releases SDA after transmitting eight bits, then generates a ninth clock cycle to allow the MC74 to pull the SDA line LOW to acknowledge that it successfully received the previous eight bits of data or address.


Data Byte

After a successful ACK of the address byte, the host must transmit the data byte to be written or clock out the data to be read. (See the appropriate timing diagrams.) ACK will be generated after a successful write of a data byte into the MC74.

Stop Condition (STOP)

Communications must be terminated by a stop condition (a LOW to HIGH transition of SDA while SCL is HIGH). The Stop Condition must be communicated by the transmitter to the MC74. NOTE: Refer to Timing Diagrams for serial bus timing.

SMBUS Write Timing Diagram

REGISTER SET and PROGRAMMER'S MODEL

MC74 Command Set (SMBus READ_BYTE and WRITE_BYTE)

Command Byte Description

Command	Code	Function
RTR	00h	Read Temperature (TEMP)
RWCR 01h		Read/Write Configuration (CONFIG)

Configuration Register (CONFIG), 8–BITS, READ/WRITE

Configuration Register (Config)

D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
SHDN	Data Rdy	Reserved					

Bit	POR	Function	Туре	Operation
D[7]	0	STANDBY switch	Read/ Write	1 = standby, 0 = normal
D[6]	0	Data Ready*	Read Only	1 = ready, 0 = not ready
D[5]—D[0]	0	Reserved — Al- ways returns zero when read.	N/A	N/A

*DATA_RDY bit reset at power-up and SHDN enable (see below).

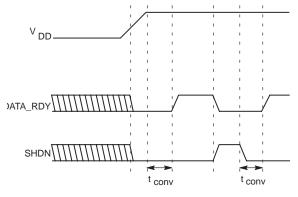


Figure 3. . DATA_RDY, SHDN Operation Logic Diagram

Temperature Register (TEMP), 8–Bits, READ–ONLY

The binary value (2's complement format) in this register represents temperature of the integrated sensor following a conversion cycle. The registers are automatically updated in an alternating manner.

Temperature Register (TEMP)

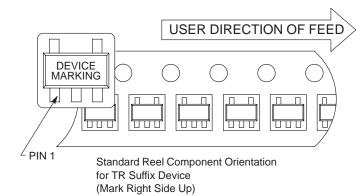
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
MSB	х	х	х	Х	Х	х	LSB

In the temperature data registers, each unit value represents one degree (Celsius). The value is in 2's-complement binary format such that a reading of 0000 0000b corresponds to 0°C. Examples of this temperature to binary value relationship are shown in the following table.

Temperature-to-Digital Value Conversion (TEMP)

ACTUAL TEMPERATURE	REGISTERED TEMPERATURE	BINARY HEX
+130.00°C	+127°C	0111 1111
+127.00°C	+127°C	0111 1111
+126.50°C	+127°C	0111 1111
+25.25°C	+25°C	0001 1001
+0.50°C	+1°C	0000 0001
+0.25°C	0°C	0000 0000
0.00°C	0°C	0000 0000
-0.25°C	0°C	0000 0000
-0.50°C	0°C	0000 0000
-0.75°C	-1°C	1111 1111
-1.00°C	-1°C	1111 1111
-25.00°C	-25°C	1110 0111
-25.25°C	-25°C	1110 0110
-54.75°C	-55°C	1100 1001
-55.00°C	-55°C	1100 1001
-65.00°C	-65°C	1011 1111

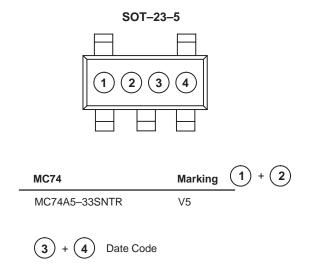
Register Set Summary


The MC74's register set is summarized below. All registers are 8-bits wide.

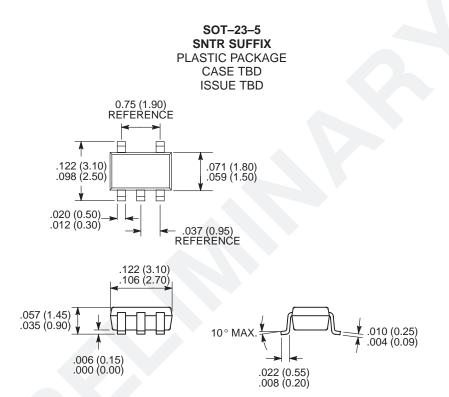
Name	Description	POR State	Read	Write
TEMP	Internal sensor temperature (2's complement)	0000 0000b*	\checkmark	
CONFIG	CONFIG register	0000 0000b	\checkmark	\checkmark

*NOTE: The TEMP register immediately will be updated by the A/D converter after the DATA_RDY bit goes high.

TAPING FORM


Component Taping Orientation for 5L SOT-23 Devices

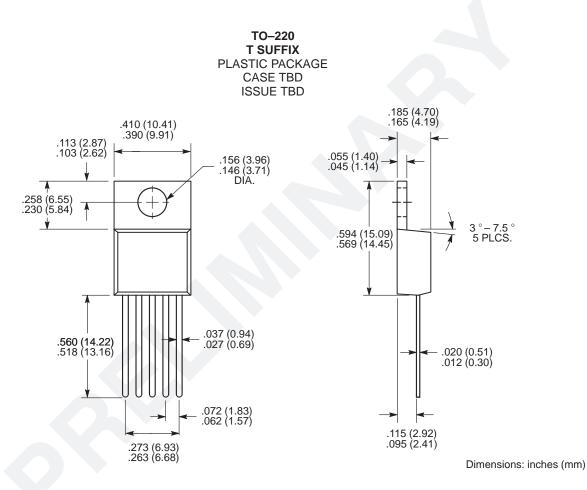
Tape & Reel Specifications Table


Package	Tape Width (W)	Pitch (P)	Part Per Full Reel	Diameter
5L SOT-23	8 mm	4 mm	3000	7 inches

MARKING

MC74

PACKAGE DIMENSIONS



NOTE: SOT-23-5 is equivalent to EIAJ-SC74A

Dimensions: inches (mm)

MC74

PACKAGE DIMENSIONS

Notes

MC74

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights not the rights of thers. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.