General Description

The MAX5062/MAX5063/MAX5064 high-frequency, 125V half-bridge, n-channel MOSFET drivers drive highand low-side MOSFETs in high-voltage applications. These drivers are independently controlled and their 35ns typical propagation delay, from input to output, are matched to within 3ns (typ). The high-voltage operation with very low and matched propagation delay between drivers, and high source/sink current capabilities in a thermally enhanced package make these devices suitable for the high-power, high-frequency telecom power converters. The 125V maximum input voltage range provides plenty of margin over the 100V input transient requirement of telecom standards. A reliable on-chip bootstrap diode connected between V_{DD} and BST eliminates the need for an external discrete diode.

The MAX5062A/C and the MAX5063A/C offer both noninverting drivers (see the *Selector Guide*). The MAX5062B/D and the MAX5063B/D offer a noninverting high-side driver and an inverting low-side driver. The MAX5064A/B offer two inputs per driver that can be either inverting or noninverting. The MAX5062A/B/C/D and the MAX5063A/B/C/D and the MAX5063A/B/C/D and the MAX5063A/B/C/D and the MAX5064A feature CMOS (V_{DD} / 2) logic inputs. The MAX5063A/B/C/D and the MAX5064A/B include a break-before-make adjustment input that sets the dead time between drivers from 16ns to 95ns. The drivers are available in the industry-standard 8-pin SO footprint and pin configuration, and a thermally enhanced 8-pin SO and 12-pin (4mm x 4mm) thin QFN packages. All devices operate over the -40°C to +125°C automotive temperature range.

Applications

Telecom Half-Bridge Power Supplies

Two-Switch Forward Converters

- Full-Bridge Converters
- Active-Clamp Forward Converters
- Power-Supply Modules

Motor Control

Features

MAX5062/MAX5063/MAX5064

- HIP2100/HIP2101 Pin Compatible (MAX5062A/ MAX5063A)
- Up to 125V Input Operation
- 8V to 12.6V VDD Input Voltage Range
- ♦ 2A Peak Source and Sink Current Drive Capability
- ♦ 35ns Typical Propagation Delay
- Guaranteed 8ns Propagation Delay Matching Between Drivers
- Programmable Break-Before-Make Timing (MAX5064)
- Up to 1MHz Combined Switching Frequency while Driving 100nC Gate Charge (MAX5064)
- Available in CMOS (V_{DD} / 2) or TTL Logic-Level Inputs with Hysteresis
- Up to 15V Logic Inputs Independent of Input Voltage
- ♦ Low 2.5pF Input Capacitance
- Instant Turn-Off of Drivers During Fault or PWM Start-Stop Synchronization (MAX5064)
- Low 200µA Supply Current
- Versions Available With Combination of Noninverting and Inverting Drivers (MAX5062B/D and MAX5063B/D)
- Available in 8-Pin SO, Thermally Enhanced SO, and 12-Pin Thin QFN Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK	PKG CODE
MAX5062AASA	-40°C to +125°C	8 SO	_	S8-5
MAX5062BASA	-40°C to +125°C	8 SO		S8-5
MAX5062CASA	-40°C to +125°C	8 SO-EP*		S8E-14
MAX5062DASA	-40°C to +125°C	8 SO-EP*	_	S8E-14

*EP = Exposed paddle.

Ordering Information continued at end of data sheet.

Selector Guide

PART	HIGH-SIDE DRIVER	LOW-SIDE DRIVER	LOGIC LEVELS	PIN COMPATIBLE
MAX5062AASA	Noninverting	Noninverting	CMOS (V _{DD} / 2)	HIP 2100IB
MAX5062BASA	Noninverting	Inverting	CMOS (V _{DD} / 2)	—
MAX5062CASA	Noninverting	Noninverting	CMOS (V _{DD} / 2)	—
MAX5062DASA	Noninverting	Inverting	CMOS (V _{DD} / 2)	—

Selector Guide continued at end of data sheet.

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)
V _{DD} , IN_H, IN_L, IN_L+, IN_L-, IN_H+, IN_H0.3V to +15V
DL, BBM0.3V to (V _{DD} + 0.3V)
HS5V to +130V
DH to HS $-0.3V$ to (V _{DD} + $0.3V$)
BST to HS0.3V to +15V
dV/dt at HS50V/ns
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
8-Pin SO (derate 5.9mW/°C above +70°C)470.6mW

*Per JEDEC 51 standard multilayer board.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = V_{BST} = +8V$ to +12.6V, $V_{HS} = GND = 0V$, BBM = open, $T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $V_{DD} = V_{BST} = +12V$ and $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS
POWER SUPPLIES							
Operating Supply Voltage	V _{DD}	(Note 2)		8.0		12.6	V
VDD Quiescent Supply Current	מחן	IN_H = IN_L = GND	MAX5062_/ MAX5063_		70	140	μA
	UU	(no switching)	MAX5064_		120	260	μ
V _{DD} Operating Supply Current	IDDO	$f_{SW} = 500$ kHz, $V_{DD} = +$	12V			3	mA
BST Quiescent Supply Current	IBST	$IN_H = IN_L = GND$ (no	switching)		15	40	μΑ
BST Operating Supply Current	IBSTO	$f_{SW} = 500 \text{kHz}, V_{DD} = V$	BST = +12V			3	mA
UVLO (V _{DD} to GND)	UVLOVDD	V _{DD} rising		6.5	7.3	8.0	V
UVLO (BST to HS)	UVLO _{BST}	BST rising		6.0	6.9	7.8	V
UVLO Hysteresis					0.5		V
LOGIC INPUT							
Input-Logic High	VIH_	MAX5062_/MAX5064A, CMOS (V _{DD} / 2) version		0.67 x V _{DD}	0.55 x V _{DD}		V
		MAX5063_/MAX5064B,	TTL version	2	1.65		
Input-Logic Low	V _{IL} _	MAX5062_/MAX5064A, CMOS (V _{DD} / 2) version			0.4 x V _{DD}	0.33 x V _{DD}	V
		MAX5063_/MAX5064B,	TTL version		1.4	0.8	
Logic-Input Hysteresis	V _{HYS}	MAX5062_/MAX5064A, CMOS (V _{DD} / 2) versior			1.6		V
		MAX5063_/MAX5064B,	TTL version		0.25		

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = V_{BST} = +8V \text{ to } +12.6V, V_{HS} = GND = 0V, BBM = \text{open}, T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ unless otherwise noted}.$ Typical values are at $V_{DD} = V_{BST} = +12V$ and $T_A = +25^{\circ}\text{C}.)$ (Note 1)

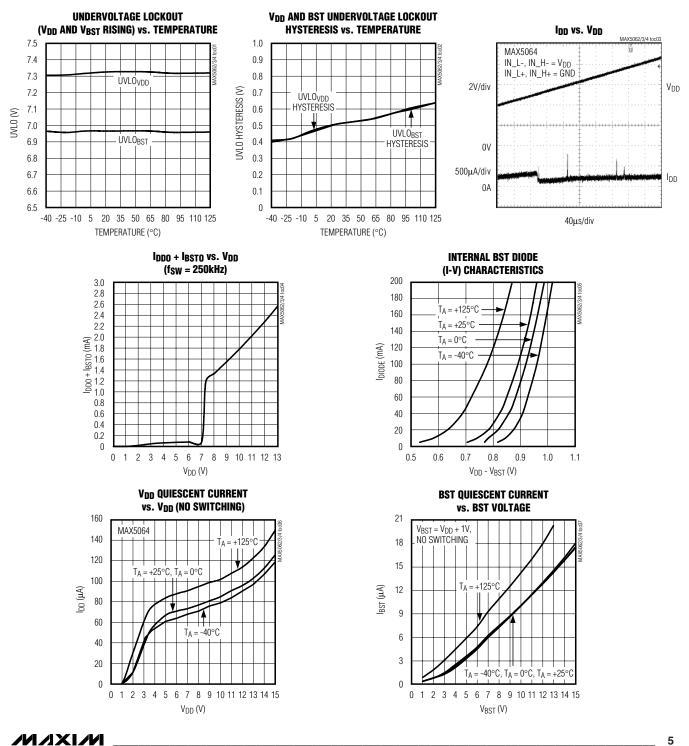
PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
		$V_{IN_H+}, V_{IN_L+} = 0V$					
		$V_{IN_L} = V_{DD}$ for MAX50628	B/D, MAX5063B/D	-1			
Logic-Input Current	I_IN	$V_{IN_H-}, V_{IN_L-}, V_{IN_H} = V_{DD}$			0.001	+1	μA
		$V_{IN_L} = 0V$ for MAX5062A/					
		IN_H+, IN_L+ IN_H, to GN	ID				
Input Resistance	R _{IN}	IN_L to V _{DD} for MAX5062E MAX5063B/D	3/D,		1		MΩ
		IN_H-, IN_L-, IN_H, to V _{DD})				
		IN L for MAX5062A/C, MAX					
Input Capacitance	CIN				2.5		pF
HIGH-SIDE GATE DRIVER							
HS Maximum Voltage	V _{HS_MAX}			125			V
BST Maximum Voltage	VBST_MAX			140			V
Driver Output Resistance	_	$V_{DD} = 12V, I_{DH} = 100mA$	$T_A = +25^{\circ}C$		2.5	3.3	
(Sourcing)	RON_HP	(sourcing)	T _A = +125°C		3.5	4.6	Ω
Driver Output Resistance		$V_{DD} = 12V, I_{DH} = 100mA$	$T_A = +25^{\circ}C$		2.1	2.8	0
(Sinking)	R _{ON_HN}	(sinking) $T_A = +125^{\circ}C$			3.2	4.2	<u>Ω</u>
DH Reverse Current (Latchup Protection)		(Note 3)		400			mA
Power-Off Pulldown Clamp Voltage		$V_{BST} = 0V$ or floating, $I_{DH} = 1mA$ (sinking)			0.94	1.16	V
Peak Output Current (Sourcing)		$C_L = 10nF, V_{DH} = 0V$			2		А
Peak Output Current (Sinking)	DH_PEAK	$C_{L} = 10 nF, V_{DH} = 12 V$			2		А
LOW-SIDE GATE DRIVER							
Driver Output Resistance	Device	$V_{DD} = 12V, I_{DL} = 100mA$	$T_A = +25^{\circ}C$		2.5	3.3	Ω
(Sourcing)	Ron_lp	(sourcing)	$T_A = +125^{\circ}C$		3.5	4.6	52
Driver Output Resistance	Ronin	$V_{DD} = 12V, I_{DL} = 100mA$	$T_A = +25^{\circ}C$		2.1	2.8	Ω
(Sinking)	Ron_ln	(sinking)	$T_A = +125^{\circ}C$		3.2	4.2	52
Reverse Current at DL (Latchup Protection)		(Note 3)		400			mA
Power-Off Pulldown Clamp Voltage		$V_{DD} = 0V$ or floating, $I_{DL} = 1mA$ (sinking)			0.95	1.16	V
Peak Output Current (Sourcing)	I _{PK_LP}	$C_L = 10nF, V_{DL} = 0V$			2		А
Peak Output Current (Sinking)	- Ipk_ln	$C_L = 10nF, V_{DL} = 12V$			2		Α
INTERNAL BOOTSTRAP DIODE							
Forward Voltage Drop	Vf	I _{BST} = 100mA			0.91	1.11	V
Turn-On and Turn-Off Time	t _R	I _{BST} = 100mA			40		ns

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = V_{BST} = +8V \text{ to } +12.6V, V_{HS} = GND = 0V, BBM = \text{open}, T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ unless otherwise noted}.$ Typical values are at $V_{DD} = V_{BST} = +12V$ and $T_A = +25^{\circ}\text{C}.)$ (Note 1)

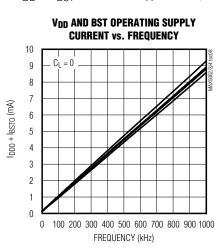
PARAMETER	SYMBOL	CONDITIO	NS	MIN	ТҮР	МАХ	UNITS
SWITCHING CHARACTERISTICS	FOR HIGH-	AND LOW-SIDE DRIVERS	$(V_{DD} = V_{BST} = +1)$	2V)			•
		$C_{L} = 1000 pF$			7		
Rise Time	t _R	$C_{L} = 5000 pF$			33		ns
		$C_{L} = 10,000 pF$			65		
		$C_{L} = 1000 pF$			7		
Fall Time	t⊨	$C_{L} = 5000 pF$			33		ns
		$C_{L} = 10,000 pF$			65		
	to out	Figure 1, C _L = 1000pF (Note 3)	CMOS		30	55	ns
Turn-On Propagation Delay Time	td_on		TTL		35	63	
Turn Off Propagation Dalay Time	to 0.55	Figure 1, $C_L = 1000pF$	CMOS		30	55	20
Turn-Off Propagation Delay Time	tD_OFF	(Note 3)	TTL		35	63	ns
Delay Matching Between Inverting Input to Output and Noninverting Input to Output	tMATCH1	$C_L = 1000pF$, BBM open for MAX5064, Figure 1 (Note 3)			2	8	ns
Delay Matching Between Driver- Low and Driver-High	tMATCH2	C _L = 1000pF, BBM open for MAX5064, Figure 1 (Note 3)			2	8	ns
		$R_{BBM} = 10k\Omega$			16		
Break-Before-Make Accuracy (MAX5064 Only)		$R_{BBM} = 47 k\Omega$ (Notes 3, 4)		40	56	72	ns
		$R_{BBM} = 100 k\Omega$			95		
Internal Nonoverlap					1		ns

Note 1: All devices are 100% tested at $T_A = +125$ °C. Limits over temperature are guaranteed by design.

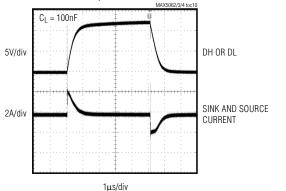

Note 2: Ensure that the V_{DD}-to-GND or BST-to-HS voltage does not exceed 13.2V.

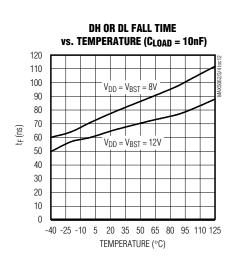
Note 3: Guaranteed by design, not production tested.

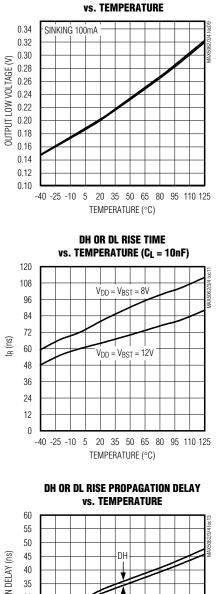
Note 4: Break-before-make time is calculated by t_{BBM} = 8ns x (1 + R_{BBM} / 10k Ω).

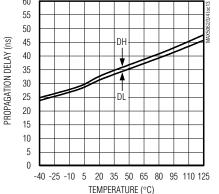

Typical Operating Characteristics

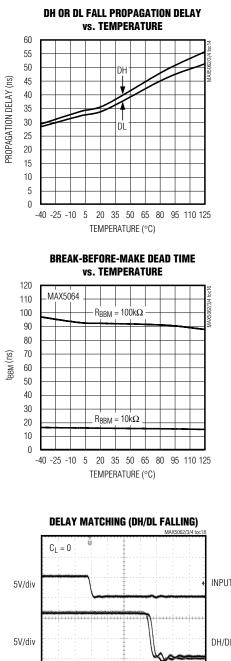
(Typical values are at $V_{DD} = V_{BST} = +12V$ and $T_A = +25$ °C, unless otherwise specified.)

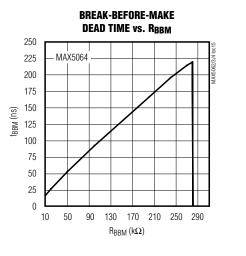



Typical Operating Characteristics (continued)

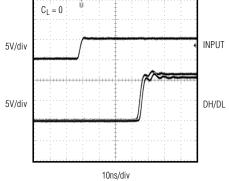

(Typical values are at $V_{DD} = V_{BST} = +12V$ and $T_A = +25^{\circ}C$, unless otherwise specified.)

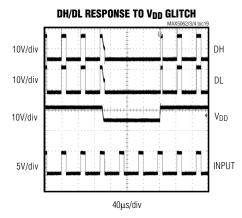



DH OR DL OUTPUT LOW VOLTAGE


MIXIM

Typical Operating Characteristics (continued)


(Typical values are at $V_{DD} = V_{BST} = +12V$ and $T_A = +25^{\circ}C$, unless otherwise specified.)



10ns/div

DELAY MATCHING (DH/DL RISING) MAX5062/3/4 toc1

HING (DH/DL FALLING)

MAX5062/MAX5063 Pin Description

PIN	NAME	FUNCTION
1	V _{DD}	Power Input. Bypass to GND with a parallel combination of $0.1\mu F$ and $1\mu F$ ceramic capacitor.
2	BST	Boost Flying Capacitor Connection. Connect a $0.1 \mu F$ ceramic capacitor between BST and HS for the high-side MOSFET driver supply.
3	DH	High-Side-Gate Driver Output. Driver output for the high-side MOSFET gate.
4	HS	Source Connection for High-Side MOSFET. Also serves as a return terminal for the high-side driver.
5	IN_H	High-Side Noninverting Logic Input
6	IN_L	Low-Side Noninverting Logic Input (MAX5062A/C, MAX5063A/C). Low-side inverting logic input (MAX5062B/D, MAX5063B/D).
7	GND	Ground. Use GND as a return path to the DL driver output and IN_H/IN_L inputs.
8	DL	Low-Side-Gate Driver Output. Drives low-side MOSFET gate.
	EP	Exposed Pad. Internally connected to GND. Externally connect the exposed pad to a large ground plane to aid in heat dissipation (MAX5062C/D, MAX5063C/D only).

MAX5064 Pin Description

PIN	NAME	FUNCTION
1	BST	Boost Flying Capacitor Connection. Connect a 0.1μ F ceramic capacitor between BST and HS for the high-side MOSFET driver supply.
2	DH	High-Side-Gate Driver Output. Drives high-side MOSFET gate.
3	HS	Source Connection for High-Side MOSFET. Also serves as a return terminal for the high-side driver.
4	AGND	Analog Ground. Return path for low-switching current signals. IN_H/IN_L inputs referenced to
5	BBM	Break-Before-Make Programming Resistor Connection. Connect a $10k\Omega$ to $100k\Omega$ resistor from BBM to AGND to program the break-before-make time (t _{BBM}) from 16ns to 95ns. Resistance values greater than $200k\Omega$ disables the BBM function and makes t _{BBM} = 1ns. Bypass this pin with at least a 1nF capacitor to AGND.
6	IN_H-	High-Side Inverting CMOS (V_{DD} / 2) (MAX5064A), or TTL (MAX5064B) Logic Input. Connect to AGND when not used.
7	IN_H+	High-Side Noninverting CMOS (V_{DD} / 2) (MAX5064A), or TTL (MAX5064B) Logic Input. Connect to V_{DD} when not used.
8	IN_L-	Low-Side Inverting CMOS (V_{DD} / 2) (MAX5064A), or TTL (MAX5064B) Logic Input. Connect to AGND when not used.
9	IN_L+	Low-Side Noninverting CMOS (V _{DD} / 2) (MAX5064A), or TTL (MAX5064B) Logic Input. Connect to V _{DD} when not used.
10	PGND	Power Ground. Return path for high-switching current signals. Use PGND as a return path for the low-side driver.
11	DL	Low-Side-Gate Driver Output. Drives the low-side MOSFET gate.
12	V _{DD}	Power Input. Bypass to PGND with a 0.1 μ F ceramic in parallel with a 1 μ F ceramic capacitor.
	EP	Exposed Pad. Internally connected to AGND. Externally connect to a large ground plane to aid in heat dissipation.

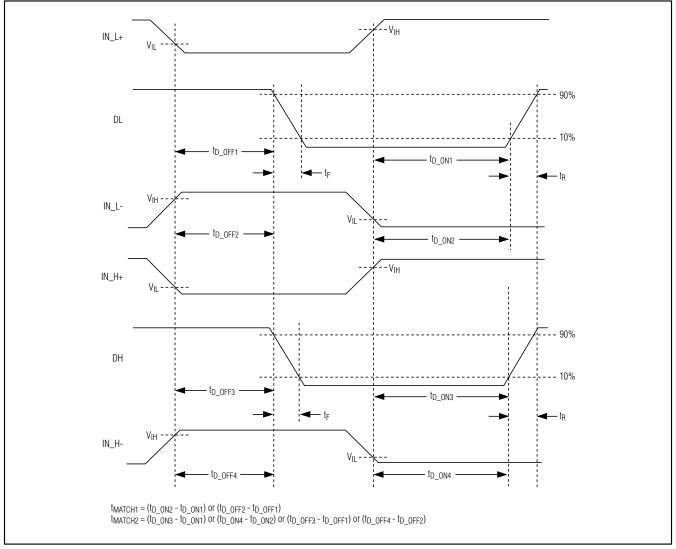


Figure 1. Timing Characteristics for Noninverting and Inverting Logic Inputs

Detailed Description

The MAX5062/MAX5063/MAX5064 are 125V/2A highspeed, half-bridge MOSFET drivers that operate from a supply voltage of +8V to +12.6V. The drivers are intended to drive a high-side switch without any isolation device like an optocoupler or drive transformer. The high-side driver is controlled by a TTL/CMOS logic signal referenced to ground. The 2A source and sink drive capability is achieved by using low RDS_ON pand n-channel driver output stages. The BiCMOS process allows extremely fast rise/fall times and low propagation delays. The typical propagation delay from the logic-input signal to the drive output is 35ns with a matched propagation delay of 3ns typical. Matching these propagation delays is as important as the absolute value of the delay itself. The high 125V input voltage range allows plenty of margin above the 100V transient specification per telecom standards.

The MAX5064 is available in a thermally enhanced TQFN package, which can dissipate up to 1.95W (at +70°C) and allow up to 1MHz switching frequency while driving 100nC combined gate-charge MOSFETs.

MAX5062/MAX5063/MAX5064

Undervoltage Lockout

Both the high- and low-side drivers feature undervoltage lockout (UVLO). The low-side driver's UVLO_{LOW} threshold is referenced to GND and pulls both driver outputs low when V_{DD} falls below 6.8V. The high-side driver has its own undervoltage lockout threshold (UVLO_{HIGH}), referenced to HS, and pulls DH low when BST falls below 6.4V with respect to HS.

During turn-on, once V_{DD} rises above its UVLO threshold, DL starts switching and follows the IN_L logic input. At this time, the bootstrap capacitor is not charged and the BST-to-HS voltage is below UVLO_{BST}. For synchronous buck and half-bridge converter topologies, the bootstrap capacitor can charge up in one cycle and normal operation begins in a few microseconds after the BST-to-HS voltage exceeds UVLO_{BST}. In the two-switch forward topology, the BST capacitor takes some time (a few hundred microseconds) to charge and increase its voltage above UVLO_{BST}.

The typical hysteresis for both UVLO thresholds is 0.5V. The bootstrap capacitor value should be selected carefully to avoid unintentional oscillations during turn-on and turn-off at the DH output. Choose the capacitor value about 20 times higher than the total gate capacitance of the MOSFET. Use a low-ESR-type X7R dielectric ceramic capacitor at BST (typically a 0.1 μ F ceramic is adequate) and a parallel combination of 1 μ F and 0.1 μ F ceramic capacitors from VDD to GND (MAX5062_, MAX5063_) or to PGND (MAX5064_). The high-side MOSFET's continuous on-time is limited due to the charge loss from the high-side driver's quiescent current. The maximum on-time is dependent on the size of CBST, IBST (50 μ A max), and UVLOBST.

Output Driver

The MAX5062/MAX5063/MAX5064 have low 2.5 Ω RDS_ON p-channel and n-channel devices (totem pole) in the output stage. This allows for a fast turn-on and turn-off of the high gate-charge switching MOSFETs. The peak source and sink current is typically 2A. Propagation delays from the logic inputs to the driver outputs are matched to within 8ns. The internal p- and n-channel MOSFETs have a 1ns break-before-make logic to avoid any cross conduction between them. This internal break-before-make logic eliminates shoot-through currents reducing the operating supply current as well as the spikes at VDD. The DL voltage is approximately equal to VDD and the DH-to-HS voltage, a diode drop below VDD, when they are in a high state and to

zero when in a low state. The driver R_{DS_ON} is lower at higher V_{DD} . Lower R_{DS_ON} means higher source and sink currents and faster switching speeds.

Internal Bootstrap Diode

An internal diode connects from V_{DD} to BST and is used in conjunction with a bootstrap capacitor externally connected between BST and HS. The diode charges the capacitor from V_{DD} when the DL low-side switch is on and isolates V_{DD} when HS is pulled high as the highside driver turns on (see the *Typical Operating Circuit*).

The internal bootstrap diode has a typical forward voltage drop of 0.9V and has a 10ns typical turn-off/turn-on time. For lower voltage drops from V_{DD} to BST, connect an external Schottky diode between V_{DD} and BST.

Programmable Break-Before-Make (MAX5064)

Half-bridge and synchronous buck topologies require that the high- or low-side switch be turned off before the other switch is turned on to avoid shoot-through currents. Shoot-through occurs when both high- and low-side switches are on at the same time. This condition is caused by the mismatch in the propagation delay from IN_H/IN_L to DH/DL, driver output impedance, and the MOSFET gate capacitance. Shootthrough currents increase power dissipation, radiate EMI, and can be catastrophic, especially with high input voltages.

The MAX5064 offers a break-before-make (BBM) feature that allows the adjustment of the delay from the input to the output of each driver. The propagation delay from the rising edges of IN_H and IN_L to the rising edges of DH and DL, respectively, can be programmed from 16ns to 95ns. Note that the BBM time (tBBM) has a higher percentage error at lower value because of the fixed comparator delay in the BBM block. The propagation delay mismatch (tMATCH_) needs to be included when calculating the total tBBM error. The low 8ns (maximum) delay mismatch reduces the total tBBM variation. Use the following equations to calculate RBBM for the required BBM time and tBBM_ERROR:

$$R_{BBM} = 10k\Omega \times \left(\frac{t_{BBM}}{8ns} - 1\right) \text{ for } R_{BBM} < 200k\Omega$$

$$t_{BBM} = 0.15 \times t_{BBM} + t_{MATCH}$$

MIXIM

where tBBM is in nanoseconds.

The voltage at BBM is regulated to 1.3V. The BBM circuit adjusts t_{BBM} depending on the current drawn by R_{BBM}. Bypass BBM to AGND with a 1nF or smaller ceramic capacitor (C_{BBM}) to avoid any effect of ground bounce caused during switching. The charging time of C_{BBM} does not affect t_{BBM} at turn-on because the BBM voltage is stabilized before the UVLO clears the device turn-on.

Topologies like the two-switch forward converter, where both high- and low-side switches are turned on and off simultaneously, can have the BBM function disabled by leaving BBM unconnected. When disabled, t_{BBM} is typically 1ns.

Driver Logic Inputs (IN_H, IN_L, IN_H+, IN_H-, IN_L+, IN_L-)

The MAX5062_/MAX5064A are CMOS (VDD / 2) logicinput drivers while the MAX5063 /MAX5064B have TTLcompatible logic inputs. The logic-input signals are independent of V_{DD}. For example, the IC can be powered by a 10V supply while the logic inputs are provided from a 12V CMOS logic. Also, the logic inputs are protected against voltage spikes up to 15V, regardless of the VDD voltage. The TTL and CMOS logic inputs have 400mV and 1.6V hysteresis, respectively, to avoid double pulsing during transition. The logic inputs are high-impedance pins and should not be left floating. The low 2.5pF input capacitance reduces loading and increases switching speed. The noninverting inputs are pulled down to GND and the inverting inputs are pulled up to V_{DD} internally using a $1M\Omega$ resistor. The PWM output from the controller must assume a proper state while powering up the device. With the logic inputs floating, the DH and DL outputs pull low as VDD rises up above the UVLO threshold.

The MAX5064_ has two logic inputs per driver, which provide greater flexibility in controlling the MOSFET. Use IN_H+/IN_L+ for noninverting logic and IN_H-/IN_L- for inverting logic operation. Connect IN_H+/IN_L+ to V_{DD} and IN_H-/IN_L- to GND if not used. Alternatively, the unused input can be used as an ON/OFF function. Use IN_+ for active-low and IN_- for active-high shutdown logic.

Table 1	. MAX5064_	Truth Table
---------	------------	-------------

IN_H+/IN_L+	IN_H-/IN_L-	DH/DL
Low	Low	Low
Low	High	Low
High	Low	High
High	High	Low

_Applications Information

Supply Bypassing and Grounding

Pay extra attention to bypassing and grounding the MAX5062/MAX5063/MAX5064. Peak supply and output currents may exceed 4A when both drivers are driving large external capacitive loads in-phase. Supply drops and ground shifts create forms of negative feedback for inverters and may degrade the delay and transition times. Ground shifts due to insufficient device grounding may also disturb other circuits sharing the same AC ground return path. Any series inductance in the V_{DD}, DH, DL, and/or GND paths can cause oscillations due to the very high di/dt when switching the MAX5062/ MAX5063/MAX5064 with any capacitive load. Place one or more 0.1µF ceramic capacitors in parallel as close to the device as possible to bypass V_{DD} to GND (MAX5062/MAX5063) or PGND (MAX5064). Use a ground plane to minimize ground return resistance and series inductance. Place the external MOSFET as close as possible to the MAX5062/MAX5063/MAX5064 to further minimize board inductance and AC path resistance. For the MAX5064_ the low-power logic ground (AGND) is separated from the high-power driver return (PGND). Apply the logic-input signal between IN_ to AGND and connect the load (MOSFET gate) between DL and PGND.

Power Dissipation

Power dissipation in the MAX5062/MAX5063/MAX5064 is primarily due to power loss in the internal boost diode and the nMOS and pMOS FETS.

For capacitive loads, the total power dissipation for the device is:

$$P_{D} = \left(C_{L} \times V_{DD}^{2} \times f_{SW}\right) + \left(I_{DDO} + I_{BSTO}\right) \times V_{DD}$$

where C_L is the combined capacitive load at DH and DL. V_{DD} is the supply voltage and f_{SW} is the switching frequency of the converter. P_D includes the power dissipated in the internal bootstrap diode. The internal power dissipation reduces by P_{DIODE}, if an external bootstrap Schottky diode is used. The power dissipation in the internal bootst diode (when driving a capacitive load) will be the charge through the diode per switching period multiplied by the maximum diode forward voltage drop (V_f = 1V).

$$P_{\text{DIODE}} = C_{\text{DH}} \times (V_{\text{DD}} - 1) \times f_{\text{SW}} \times V_{\text{f}}$$

The total power dissipation when using the internal boost diode will be P_D and, when using an external Schottky diode, will be P_D - P_{DIODE}. The total power dissipated in the device must be kept below the maximum of 1.951W for the 12-pin TQFN package, 1.5W for the 8-pin SO with exposed pad, and 0.471W for the regular 8-pin SO package at $T_A = +70^{\circ}C$ ambient.

Layout Information

The MAX5062/MAX5063/MAX5064 drivers source and sink large currents to create very fast rise and fall edges at the gates of the switching MOSFETs. The high di/dt can cause unacceptable ringing if the trace lengths and impedances are not well controlled. Use the following PC board layout guidelines when designing with the MAX5062/MAX5063/MAX5064:

- It is important that the V_{DD} voltage (with respect to ground) or BST voltage (with respect to HS) does not exceed 13.2V. Voltage spikes higher than 13.2V from V_{DD} to GND or BST to HS can damage the device. Place one or more low ESL 0.1µF decoupling ceramic capacitors from V_{DD} to GND (MAX5062/MAX5063) or to PGND (MAX5064), and from BST to HS as close as possible to the part. The ceramic decoupling capacitors should be at least 20 times the gate capacitance being driven.
- There are two AC current loops formed between the device and the gate of the MOSFET being driven. The MOSFET looks like a large capacitance from gate to source when the gate is being pulled low. The active current loop is from the MOSFET driver output (DL or DH) to the MOSFET gate, to the MOSFET source, and to the return terminal of the MOSFET driver (either GND or HS). When the gate of the MOSFET is being pulled high, the active current loop is from the MOSFET driver output, (DL or DH), to the MOSFET gate, to the MOSFET source, to the return terminal of the drivers decoupling capacitor, to the positive terminal of the decoupling capacitor, and to the supply connection of the MOSFET driver. The decoupling capacitor will be either the flying capacitor connected between BST and HS or the decoupling capacitor for VDD. Care must be taken to minimize the physical distance and the impedance of these AC current paths.
- Solder the exposed pad of the TQFN (MAX5064) or SO (MAX5062C/D and MAX5063C/D) package to a large copper plane to achieve the rated power dissipation. Connect AGND and PGND at one point near V_{DD}'s decoupling capacitor return.

Typical Application Circuits

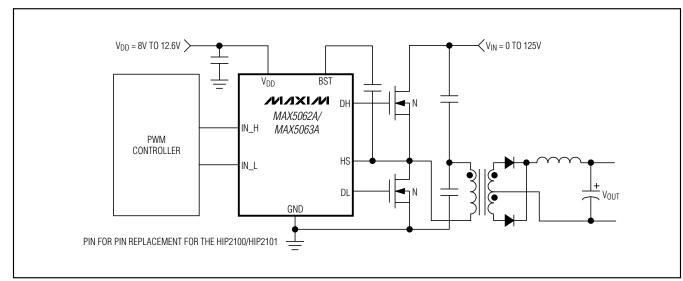


Figure 2. MAX5062 Half-Bridge Conversion

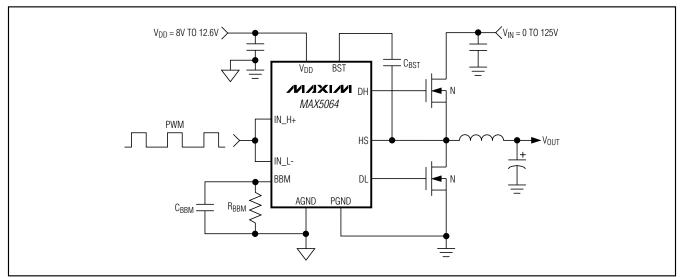


Figure 3. Synchronous Buck Converter

MAX5062/MAX5063/MAX5064

Typical Application Circuits (continued) V_{DD} = 8V TO 12.6V > V_{IN} = 0 TO 125V CBST V_{DD} BS Ν MAX5064 HS IN H+ ►V_{OUT} PWM IN_L+ BBM DL AGND PGND

Figure 4. Two-Switch Forward Conversion

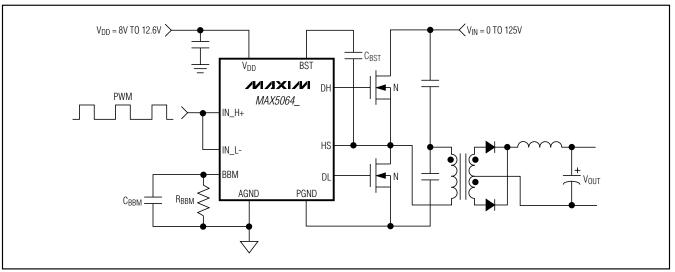
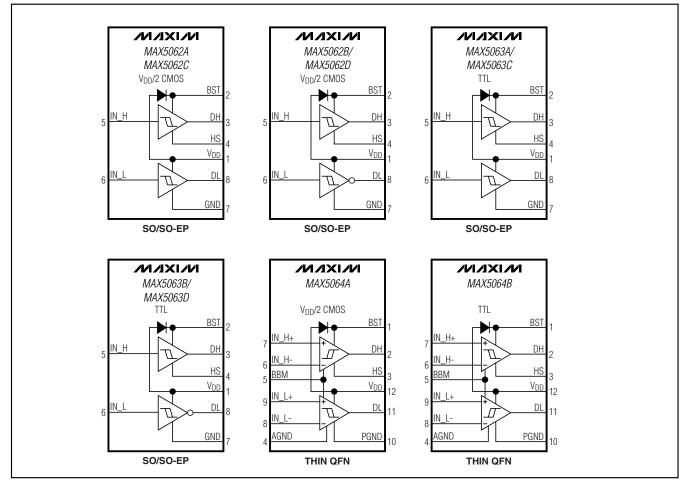
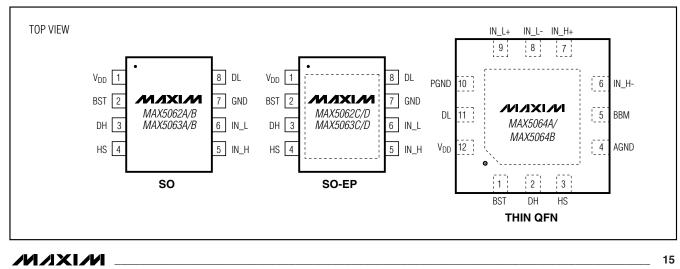
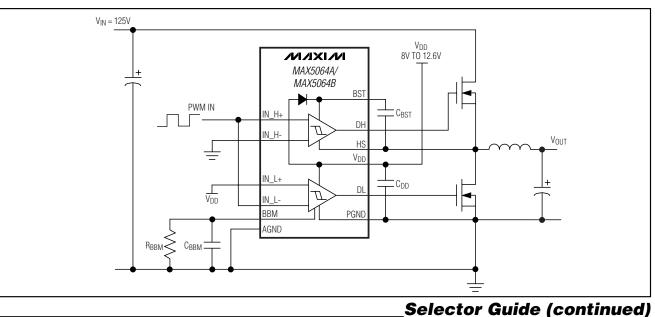




Figure 5. MAX5064 Half-Bridge Converter


_Functional Diagrams

_Pin Configurations

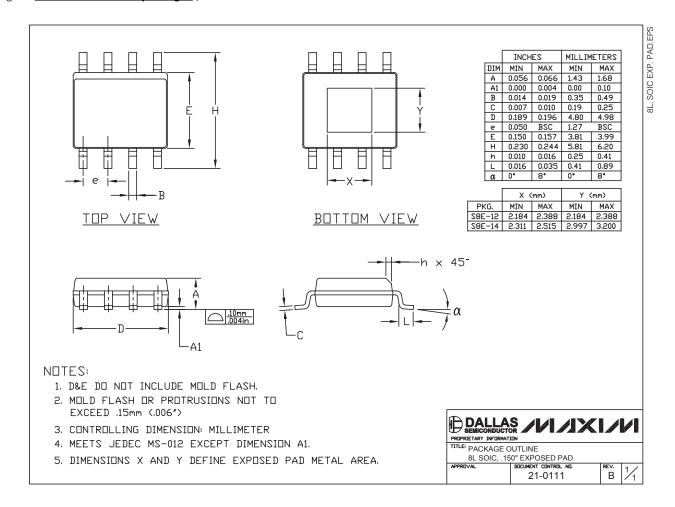
Typical Operating Circuit

PART	HIGH-SIDE DRIVER	LOW-SIDE DRIVER	LOGIC LEVELS	PIN COMPATIBLE
MAX5063AASA	Noninverting	Noninverting	TTL	HIP2101IB
MAX5063BASA	Noninverting	Inverting	TTL	
MAX5063CASA	Noninverting	Noninverting	TTL	
MAX5063DASA	Noninverting	Inverting	TTL	
MAX5064AATC	Both Inverting and Noninverting	Both Inverting and Noninverting	CMOS (V _{DD} / 2)	_
MAX5064BATC	Both Inverting and Noninverting	Both Inverting and Noninverting	TTL	_

_Ordering Information (continued)

TEMP RANGE	PIN- PACKAGE	TOP MARK	PKG CODE
-40°C to +125°C	8 SO	_	S8-5
-40°C to +125°C	8 SO	_	S8-5
-40°C to +125°C	8 SO-EP*	_	S8E-14
-40°C to +125°C	8 SO-EP*	_	S8E-14
-40°C to +125°C	12 TQFN	AAEF	T1244-4
-40°C to +125°C	12 TQFN	AAEG	T1244-4
	RANGE -40°C to +125°C -40°C to +125°C	RANGE PACKAGE -40°C to +125°C 8 SO -40°C to +125°C 8 SO -40°C to +125°C 8 SO-EP* -40°C to +125°C 8 SO-EP* -40°C to +125°C 12 TQFN -40°C to +125°C 12 TQFN	RANGE PACKAGE MARK -40°C to +125°C 8 SO — -40°C to +125°C 8 SO — -40°C to +125°C 8 SO-EP* — -40°C to +125°C 8 SO-EP* — -40°C to +125°C 12 TQFN AAEF

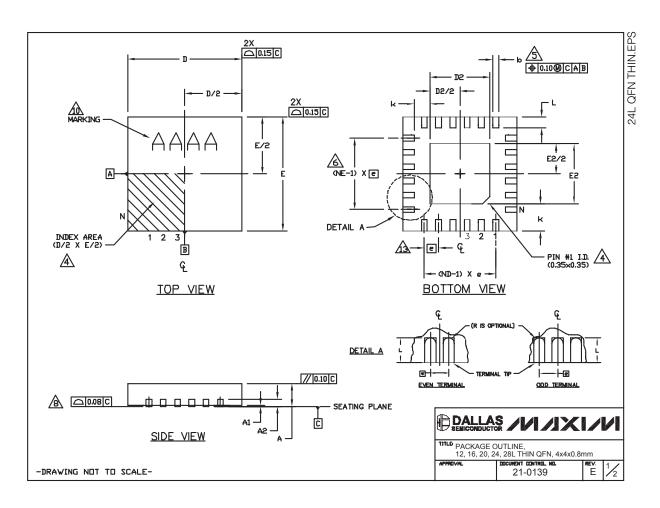
*EP = Exposed paddle.


16

Chip Information

TRANSISTOR COUNT: 790 PROCESS: HV BICMOS

Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

04/6					10N	DIME	IIZN	SNC									E	XPDS	ED	PAD	VAR	IATI	ONS	
PKG	12	2L 4×	:4	16	L 4x4	۴ I	20)L 4×	4	2	4L 4x	4	28	3L 4×	(4	1	PKG.		D2			E2		DOWN BONDS
REF.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.		CODES	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80		T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	0.02	0.05	0.0	20.0	0.05	0,0	0.02	0.05	0,0	0.02	0.05	0,0	20,0	0.05		T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
A2	0	.20 RE	F	0	20 REF	-	0	20 RE	F	0	20 REF	F	0.	20 RE	F		T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
ło	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25		T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
D	3,90	4,00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10		T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
£	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10		T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	ND
e .	+ - ·	0.80 BS	SC.		65 BS0			.50 BS	с. Г –).50 BS(C.		.40 BS	1		T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
<u>к</u>	0.25	0.55	- 0.65	0.25	0.55	- 0.65	0.25	0.55	0.65	0.25	0.40	0.50	0.25	0.40	0.50		T2444-3	2.45	2.60	2.63 2.63	2.45 2.45	2.60	2.63	YES
L N	0.45	12	0.65	0.43	16	0.65	0.45	20	0.65	0.30	24	0.50	0.30	28	0.50		T2444-4 T2844-1	2.45	2.60	2.63	2.40	2.60 2.60	2.63	
	-	3			4			5			6			7			1044-1	6.00	2.00	2.70	C.JU	C.00	2.70	
NE	-	3			4			5			6			7										
ledec		VGGD		VGGC			WGGD-1		WGGD-2			VGGE			1									
2. 3.		vensio He tot Rminal	NSARI IAL NUI	in Mi Meer (Dentifie	LLIMETE DF TERN	RS, AN AINALS, TERMI	igles Val ni	are in JMBERI	i degr	EES.	ON SHA													
2. 3.	ALL DI N IS T THE TE JESD 9 THE ZC DIMENS	MENSIO HE TOT RMINAL 5-1 S DNE INI SION 6	NS ARI	in Mi Mber (Dentifie 2. Deta). The	LUMETE DF TERN IR AND ILS OF TERMIN	rs. An IINALS. Termin Termin AL #1	igles Val Ni Ial #1 Identi	ARE IN Imberi Identi Fier M	I DEGR NG CO FIER A AY BE	ees. Nventk Re opt Eithef	ON SHA 10NAL, R A MOI 9 BETWE	BUT N LD OR	ust be Marke	ED FEA	TURE.		I							
2. 3. 4. 5. 7.	ALL DIN N IS THE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPT	Mensio He tot 15-1 S DNE INE SION 6 TERMIN D NE F ULATION	NS ARI TAL NUI PP-01: DICATEL APPLIE AL TIP. REFER	E IN MI MEER (2. DETA 2. DETA 3. THE 15. TO 1 TO THE DSSIBLE	LUNETE DF TERM R AND ILS OF TERMIN METALLI NUMBI	RS. AN TERMIN TERMIN AL #1 ZED TE ER OF SYMME	IGLES VAL NU IAL #1 IDENTI RMINAI TERMII	ARE IN IDENTI FIER M . AND NALS (FASHI	I DEGR NG CO FIER A IS MEA IS MEA DN EAC ON.	EES. NVENTK RE OPT EITHEF SURED H D A	nonal, R A Moi Detwe ND E S	BUT M LD OR IEN 0.: IDE RE	UST BE MARKE 25 mm SPECTI	E LOCAT ED FEA I AND IVELY.	TURE.		I							
2. 3. 4. 5. 7. 6. 7.	ALL DI N IS T THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPI COPLAN	MENSIO HE TOT RMINAL 5-1 S XNE INI 10N b TERMIN D NE F ULATION NARITY	NS ARI TAL NUI PP-012 DICATEL APPLIE AL TIP. REFER N IS PO APPLIE	IN MI MEER (DENTIFIE 2. DETA 0. THE 2. TO I 3. TO I TO THE DSSIBLE 5. TO 1	LUMETE DF TERM ILS OF TERMIN METALLI NUMBE IN A	RS. AN INALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED	IGLES VAL NU IDENTI RMINAI TERMII TRICAL HEAT	ARE IN IDENTI FIER M AND NALS (FASHI SINK S	I DEGR NG CO FIER AL IS MEA IS MEA IS MEA ON EAC ON.	EES. NVENTIK RE OPT EITHEF SURED H D A S WELL	ND E S	BUT M LD OR EN 0.: IDE RE	UST BE MARKE 25 mm SPECTI MINALS	E LOCAT ED FEA AND IVELY.	TURE.		I							
2. 3. 4. 5. 7. 6. 7. 9.	ALL DIN N IS THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPH COPLAY DRAWIN	MENSIO HE TOT RMINAL 5-1 S NE INI 50N b TERMIN D NE F ULATION VARITY IG CON	NS ARI AL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PI APPLIE IFORMS	E IN MI MEBER (DENTIFIE 2. DETA 2. DE	LUMETE DF TERM R AND ILS OF TERMIN METALLI NUMBI IN A THE EXP DEC NO	RS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED D220,	IGLES IAL MIL IDENTI RMINAI TERMII TRICAL HEAT EXCEPT	ARE IN IDENTI FIER M AND NALS C FASHI SINK S F FOR	I DEGR NG CO FIER AI AY BE IS MEA IS MEA ON EAC ON. SLUG AI T2444	EES. NVENTIK RE OPT EITHEF SURED H D A S WELL	nonal, R A Moi Detwe ND E S	BUT M LD OR EN 0.: IDE RE	UST BE MARKE 25 mm SPECTI MINALS	E LOCAI ED FEA AND IVELY.	TURE.		I							
2. 3. 4. 7. 6. 7. 9. 9.	ALL DII N IS TI THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPI COPLAT DRAWIN (ARKING	MENSIO HE TOT RMINAL 5-1 S SNE INI 50NE INI 10N b TERMIN D NE F ULATION NARITY NG CON G IS FC	NS ARI TAL NUI PP-012 DICATEL APPLIE APPLIE REFER N IS PI APPLIE IFORMS DIR PAC	E IN MI MEBER (DENTIFIE 2. DETA 2. DE	LUMETE DF TERM TR AND ILS OF TERMIN METALUZ IN METALUZ IN METALUZ IN METALUZ IN METALUZ	RS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED D220, TION R	IGLES	ARE IN IDENTI FIER M AND NALS C FASHI SINK S F FOR	I DEGR NG CO FIER AI AY BE IS MEA IS MEA ON EAC ON. SLUG AI T2444	EES. NVENTIK RE OPT EITHEF SURED H D A S WELL	ND E S	BUT M LD OR EN 0.: IDE RE	UST BE MARKE 25 mm SPECTI MINALS	E LOCAI ED FEA AND IVELY.	TURE.		I							
2. 3. 4. 7. 9. 11.	ALL DI N IS T THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPT COPLAN MARKING COPLAN	MENSIO HE TOT RMINAL 5-1 S DNE INI 50NE INI 50NE INI 50NE FO ULATION NARITY 50 CON 5 IS FO ARITY 5	NS ARI TAL NUI PP-012 DICATED APPLIE APPLIE APPLIE IFORMS DR PAC SHALL 1	E IN MI MEER (DENTIFIE 2. DETA 2. DETA 2. DETA 2. DETA 3. THE 5. TO I 5. TO I 5. TO I TO JE KAGE (NOT EX	LUMETE DF TERM IR AND ILS OF TERMIN METALLIZ NUMBI IN A THE EXF DEC MIC DRIENTA CEED 0	RS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED D220, TION R .08mm	IGLES	ARE IN IDENTI FIER M AND NALS C FASHI SINK S F FOR	I DEGR NG CO FIER AI AY BE IS MEA IS MEA ON EAC ON. SLUG AI T2444	EES. NVENTIK RE OPT EITHEF SURED H D A S WELL	ND E S	BUT M LD OR EN 0.: IDE RE	UST BE MARKE 25 mm SPECTI MINALS	E LOCAI ED FEA AND IVELY.	TURE.		- 							
2; 3; 4 5 7; 9; 11. (12: V) 11. (ALL DI N IS T THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPH COPLAN MARKING COPLAN/ WARPAG	MENSIO HE TOT RMINAL 5-1 S 5-1	APPLIE APPLIE APPLIE ALTIP. REFER NIS PI APPLIE IFORMS DR PAC BHALL I L NOT	E IN MI MERT (DENTIFIE 2. DETA 5. THE 5. TO I 5. TO I 5. TO I 5. TO I 5. TO I 5. TO I 6. TO JE KAGE (NOT EX EXCEE 5. BE A	LUMETE DF TERM ILS OF TERMIN METALLIZ IN METALLIZ IN M	RS. AN INALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME COSED D220, TION R .08mm D700 POSIT	IGLES	ARE IN IDENTIFIER M AND NALS (FASHI SINK S F FOR NCE OF	I DEGR NG CO FIER A SI MEA DN EAC ON. ELUG A T2444 NLY.	EES. NVENTIK RE OPT EITHEF SURED H D A S WELL -3, T2	ND E S	BUT M LD OR EN 0.: IDE RE IDE RE AND 1	ust be Marke 25 mm Specti Ninals 2844-	E LOCAT ED FEA I AND IVELY.	TURE.								×	1/1
2; 3; 4 5 7; 9; 11. (12: V) 11. (ALL DIN N IS T THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPT COPLAY MARKING COPLAN/ WARPAG LEAD GE	MENSIO HE TOT RMINAL 5-1 S 5-1	APPLIE APPLIE APPLIE ALTIP. REFER NIS PI APPLIE IFORMS DR PAC BHALL I L NOT	E IN MI MERT (DENTIFIE 2. DETA 5. THE 5. TO I 5. TO I 5. TO I 5. TO I 5. TO I 5. TO I 6. TO JE KAGE (NOT EX EXCEE 5. BE A	LUMETE DF TERM ILS OF TERMIN METALLIZ IN METALLIZ IN M	RS. AN INALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME COSED D220, TION R .08mm D700 POSIT	IGLES	ARE IN IDENTIFIER M AND NALS (FASHI SINK S F FOR NCE OF	I DEGR NG CO FIER A SI MEA DN EAC ON. ELUG A T2444 NLY.	EES. NVENTIK RE OPT EITHEF SURED H D A S WELL -3, T2	ional, R A Moi D Betwe ND E S AS TH 444-4	BUT M LD OR EN 0.: IDE RE IDE RE AND 1	ust be Marke 25 mm Specti Ninals 2844-	E LOCAT ED FEA I AND IVELY.	TURE.			PAC	KAGE	OUTLI				I / F

MAX5062/MAX5063/MAX5064

____ 19

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2005 Maxim Integrated Products

Printed USA *MAXIM* is a registered trademark of Maxim Integrated Products, Inc.