INTEGRATED CIRCUITS

Product specification

1998 May 19

IC24 Data Handbook

Semiconductors

Philips

74LVCH16541A

FEATURES

- 5 volt tolerant inputs/outputs for interfacing with 5V logic
- Wide supply voltage range of 1.2 V to 3.6 V
- Drive capability ±24mA @ 3.3V
- Complies with JEDEC standard no. 8-1A
- CMOS low power consumption
- MULTIBYTETM flow-through standard pin-out architecture
- Low inductance multiple power and ground pins for minimum noise and ground bounce
- Direct interface with TTL levels
- All data inputs have bushold
- Bushold inputs eliminate the need for external pull-up resistors to hold unused inputs

DESCRIPTION

The 74LVCH16541A is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families. Inputs can be driven from either 3.3V or 5V devices. In 3-State operation, outputs can handle 5V. These features allow the use of these devices in a mixed 3.3V/5V environment.

The 74LVCH16541A is a 16-bit inverting buffer/line driver with 3-State outputs. The 3-State outputs are controlled by the output enable inputs $1\overline{OE}_n$ and $2\overline{OE}_n$. A HIGH on $n\overline{OE}_n$ causes the outputs to assume a high impedance OFF-state.

To ensure the high impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

PIN CONFIGURATION

	/
10E ₁ 1	48 10E ₂
1Y0 2	47 1A0
1Y1 3	46 1A1
GND 4	45 GND
1Y2 5	44 1A2
1Y3 6	43 1A3
V _{CC} 7	42 V _{CC}
1Y4 8	41 1A4
1Y5 9	40 1A5
GND 10	39 GND
1Y6 11	38 1A6
1Y7 12	37 1A7
2Y0 13	36 2A0
2Y1 14	35 2A1
GND 15	34 GND
2Y2 16	33 2A2
2Y3 17	32 2A3
V _{CC} 18	31 V _{CC}
2Y4 19	30 2A4
2Y5 20	29 2A5
GND 21	28 GND
2Y6 22	27 2A6
2Y7 23	26 2A7
20E ₁ 24	25 20E2
	SW00113

QUICK REFERENCE DATA

GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

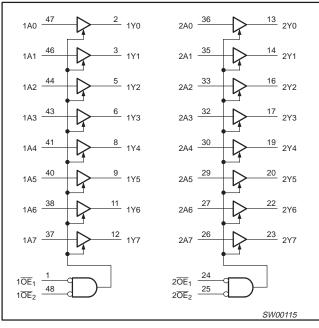
SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay 1An to 1Yn; 2An to 2Yn	$C_L = 50 pF$ $V_{CC} = 3.3V$	2.7	ns
Cl	Input capacitance		5.0	pF
C _{PD}	Power dissipation capacitance per buffer	V _I = GND to V _{CC} ¹ outputs enabled output disabled	32 5	pF

NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W): $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: $f_i =$ input frequency in MHz; $C_L =$ output load capacitance in pF; $f_o =$ output frequency in MHz; $V_{CC} =$ supply voltage in V;

 $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

ORDERING INFORMATION


PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	–40°C to +85°C	74LVCH16541A DL	VCH16541A DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74LVCH16541A DGG	VCH16541A DGG	SOT362-1

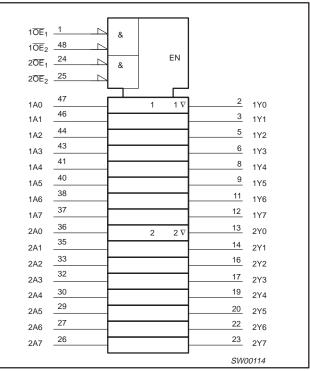
74LVCH16541A

PIN DESCRIPTION

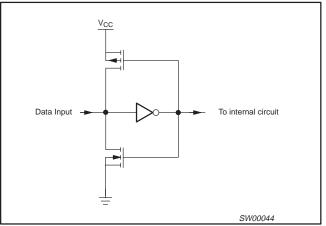
PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 24	n <mark>OE</mark> 1	Output enable input (active LOW)
2, 3, 5, 6, 8, 9, 11, 12	1Y0 to 1Y7	Data outputs
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage
13, 14, 16, 17, 19, 20, 22, 23	2Y0 to 2Y7	Data outputs
25, 48	$n\overline{OE}_2$	Output enable input (active LOW)
36, 35, 33, 32, 30, 29, 27, 26	2A0 to 2A7	Data inputs
47, 46, 44, 43, 41, 40, 38, 37	1A0 to 1A7	Data inputs

LOGIC SYMBOL

FUNCTION TABLE


	INPUTS					
nOE ₁	$n\overline{OE}_2$	nAn	nYn			
L	L	L	L			
L	L	Н	Н			
Х	Н	Х	Z			
Н	Х	Х	Z			

H = HIGH voltage level


L = LOW voltage level

X = don't care

Z = high impedance OFF-state

BUSHOLD CIRCUIT

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT	
N	DC supply voltage (for maximum speed performance)		2.7	3.6	v	
V _{CC}	DC supply voltage (for low-voltage applications)		1.2	3.6		
		For data input pins with bus hold	0	V _{CC}	v	
VI	DC Input voltage range	For data input pins without bus hold	0	5.5	V	
Vo	DC output voltage range; output HIGH or LOW state		0	V _{CC}	V	
	DC output voltage range; output 3-State		0	5.5		
T _{amb}	Operating ambient temperature range in free air		-40	+85	°C	
t _r , t _f	Input rise and fall times	$V_{CC} = 1.2 \text{ to } 2.7 \text{V}$ $V_{CC} = 2.7 \text{ to } 3.6 \text{V}$	0 0	20 10	ns/V	

ABSOLUTE MAXIMUM VALUES^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNIT
V _{CC}	DC supply voltage		-0.5	+6.5	V
I _{IK}	DC input diode current	V ₁ < 0	-	-50	mA
VI	DC input voltage	Note 3	-0.5	+6.5	V
I _{OK} DC output diode current		$V_{O} > V_{CC}$ or $V_{O} < 0$	-	±50	mA
Vo	DC output voltage; output HIGH or LOW state	Note 3	-0.5	V _{CC} + 0.5	V
-	DC output voltage; output 3-State		-0.5	6.5	
Ι _Ο	DC output source or sink current	$V_{O} = 0$ to V_{CC}	-	±50	mA
I _{GND} , I _{CC}	DC V _{CC} or GND current		_	±100	mA
T _{stg}	Storage temperature range		-65	+150	°C
Power dissipation per package P _{tot} – SSOP (plastic medium-shrink)		For temperature range: -40 to +125°C above +70°C derate linearly 8mW/K above +60°C derate linearly 5.5mW/K		500 500	mW

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction 2. temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed. 3.

74LVCH16541A

74LVCH16541A

DC CHARACTERISTICS

Over recommended operating conditions

Voltages are	referenced to GND	(ground = 0V)
--------------	-------------------	---------------

			1	UNIT			
SYMBOL	PARAMETER	TEST CONDITIONS	Temp = ·				
			MIN	MIN TYP ¹ MAX		-	
		V _{CC} = 1.2V	V _{CC}			N	
VIH	HIGH level input voltage	V _{CC} = 2.7 to 3.6V	2.0			V	
M		V _{CC} = 1.2V			GND	v	
VIL	LOW level input voltage	V _{CC} = 2.7 to 3.6V			0.8		
		$V_{CC} = 2.7$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -12mA$	V _{CC} -0.5				
N/		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -100 \mu A$	V _{CC} -0.2	V _{CC}			
V _{OH}	HIGH level output voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -18mA$	V _{CC} -0.6				
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -24mA$	V _{CC} -0.8			1	
		$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 12mA$			0.40		
V _{OL}	LOW level output voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$			0.20	V	
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 24\text{mA}$			0.55	1	
h	Input leakage current	$V_{CC} = 3.6V; V_I = 5.5V \text{ or } GND^6$		±0.1	±5	μΑ	
I _{OZ}	3-State output OFF-state current	V_{CC} = 3.6V; V_{I} = V_{IH} or $V_{IL};$ V_{O} = 5.5V or GND		0.1	±5	μΑ	
I _{OFF}	Power off leakage current	V_{CC} = 0.0V; V _I or V _O = 5.5V		0.1	±10	μΑ	
I _{CC}	Quiescent supply current	$V_{CC} = 3.6V; V_I = V_{CC} \text{ or GND}; I_O = 0$		0.1	20	μΑ	
ΔI_{CC}	Additional quiescent supply current given per input pin	$V_{CC} = 2.7$ to 3.6V; $V_{I} = V_{CC} - 0.6V$; $I_{O} = 0$		5	500	μA	
I _{BHL}	Bus hold LOW sustaining current	$V_{CC} = 3.0V; V_1 = 0.8V^{2, 3, 4}$	75			μA	
I _{BHH}	Bus hold HIGH sustaining current	$V_{CC} = 3.0V; V_1 = 2.0V^{2, 3, 4}$	-75			μA	
I _{BHLO}	Bus hold LOW overdrive current	$V_{CC} = 3.6 V^{2, 3, 5}$	500			μΑ	
I _{BHHO}	Bus hold HIGH overdrive current	$V_{\rm CC} = 3.6 V^{2, 3, 5}$	-500			μΑ	

NOTES:

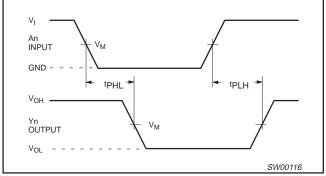
All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.
Valid for data inputs of bus hold parts (LVCH16-A) only.
For data inputs only, control inputs do not have a bus hold circuit.
The specified sustaining current at the data input holds the input below the specified V_I level.
The specified overdrive current at the data input forces the data input to the opposite logic input state.
For bus hold parts, the bus hold circuit is switched off when V_i exceeds V_{CC} allowing 5.5V on the input terminal.

74LVCH16541A

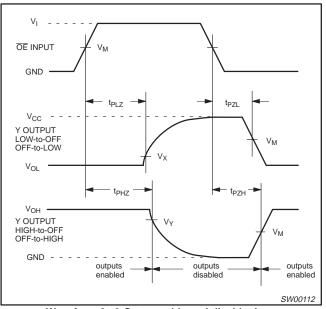
AC CHARACTERISTICS

GND = 0V; $t_R = t_F \le 2.5$ ns; $C_L = 50$ pF; $R_L = 500\Omega$; $T_{amb} = -40$ °C to +85°C.

					LIM	ITS		
SYMBOL	PARAMETER	WAVEFORM	Vco	_C = 3.3V ±0	.3V	V _{CC} = 2	2.7V	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	
t _{PHL} t _{PLH}	Propagation delay 1An to 1Yn; 2An to 2Yn	1, 3	1.5	2.7	4.5	1.5	5.5	ns
^t PZH ^t PZL	3-State output enable time 10En to 1Yn; 20En to 2Yn	2, 3	1.5	3.5	5.9	1.5	6.9	ns
^t PHZ ^t PLZ	3-State output disable time 10En to 1Yn; 20En to 2Yn	2, 3	1.5	3.9	5.5	1.5	6.5	ns

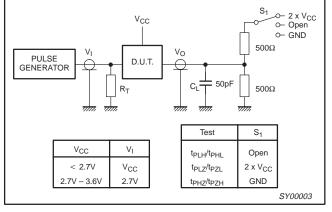

NOTE:

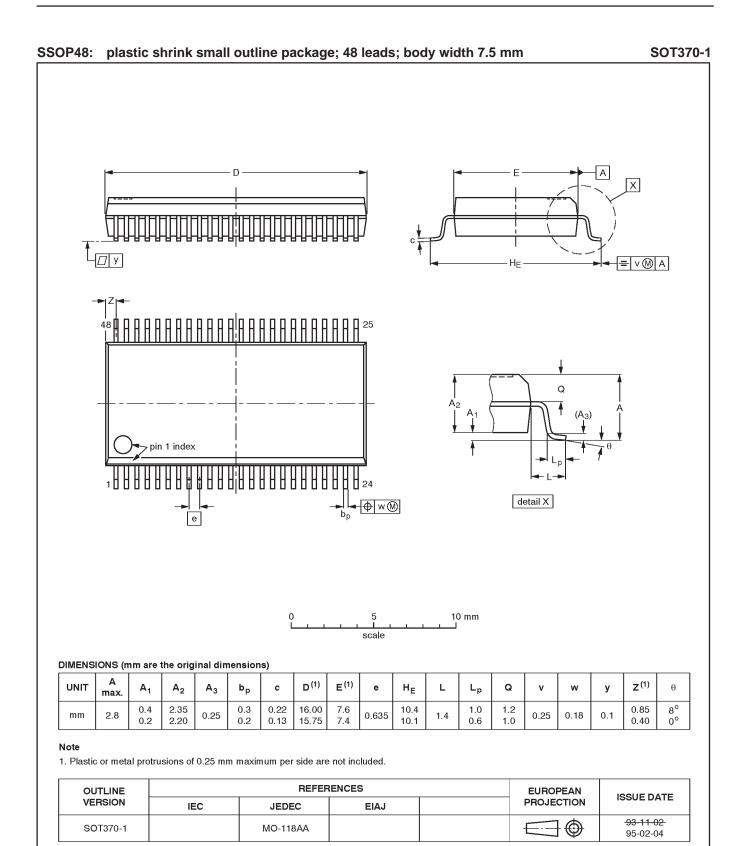
1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.


AC WAVEFORMS

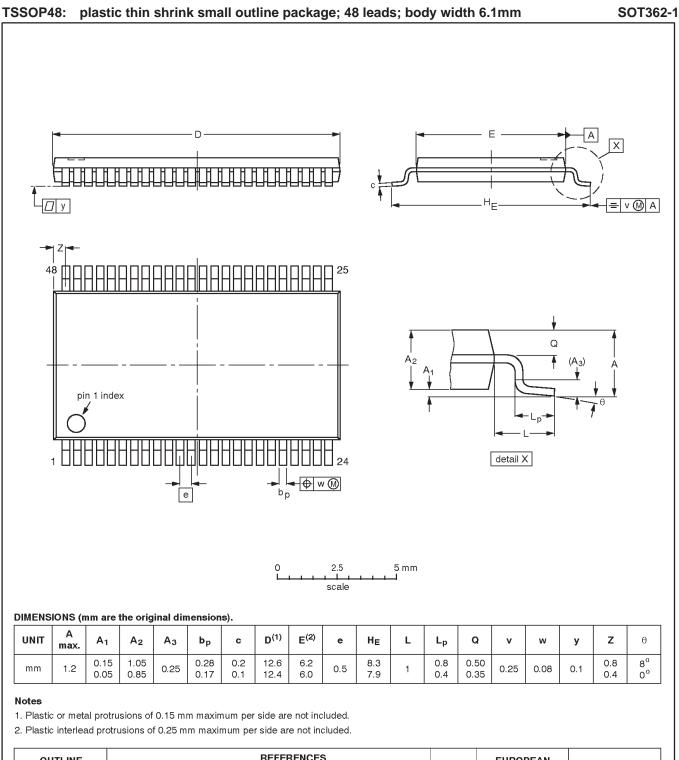
 V_M = 1.5V at $V_{CC} \geq$ 2.7V; V_M = 0.5 V_{CC} at $V_{CC} <$ 2.7V. V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

 $\begin{array}{l} {\sf V}_X = {\sf V}_{OL} + 0.3 {\sf V} \mbox{ at } {\sf V}_{CC} \eqref{eq: 2.7V}; \mbox{ } {\sf V}_X = {\sf V}_{OL} + 0.1 \mbox{ } {\sf V}_{CC} \mbox{ at } {\sf V}_{CC} \eqref{eq: 2.7V} \\ {\sf V}_Y = {\sf V}_{OH} - 0.3 {\sf V} \mbox{ at } {\sf V}_{CC} \eqref{eq: 2.7V}; \mbox{ } {\sf V}_Y = {\sf V}_{OH} - 0.1 \mbox{ } {\sf V}_{CC} \mbox{ at } {\sf V}_{CC} \eqref{eq: 2.7V} \end{array}$




Waveform 2. 3-State enable and disable times

TEST CIRCUIT



Waveform 3. Load circuitry for switching times

74LVCH16541A

74LVCH16541A

OUTLINE		NEFER	TENCE3		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1330E DATE
SOT362-1		MO-153ED				- 93-02-03- 95-02-10

74LVCH16541A

NOTES

74LVCH16541A

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

9397-750-04535

Date of release: 08-98

Let's make things better.

