
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC12

Product specification

256 to 1024 \times 8-bit CMOS EEPROMs with I²C-bus interface

PCF85xxC-2 family

CONTEN	NTS	9	LIMITING VALUES
1	FEATURES	10	CHARACTERISTICS
2	GENERAL DESCRIPTION	11	I ² C-BUS CHARACTERISTICS
_		12	WRITE CYCLE LIMITS
3		13	EXTERNAL CLOCK TIMING
4	ORDERING INFORMATION	14	PACKAGE OUTLINES
5	DEVICE SELECTION	15	SOLDERING
6	BLOCK DIAGRAM	-	
7	PINNING	15.1 15.2	Introduction DIP
7.1	Pin description PCF8582C-2	15.2.1	Soldering by dipping or by wave
7.2	Pin description PCF8594C-2	15.2.2	Repairing soldered joints
7.3	Pin description PCF8598C-2	15.3	SO
8	I ² C-BUS PROTOCOL	15.3.1	Reflow soldering
8.1	Bus conditions	15.3.2	Wave soldering
8.2	Data transfer	15.3.3	Repairing soldered joints
8.3	Device addressing	16	DEFINITIONS
8.4	Write operations	17	LIFE SUPPORT APPLICATIONS
8.4.1 8.4.2	Byte/word write	18	PURCHASE OF PHILIPS I ² C COMPONENTS
8.4.2 8.4.3	Page write Remark		
8.5	Read operations		
0.0	Demark		

- 6

8

- 8
- 8
- 8
- 8
- 8
- 8
- 8
- 8
- 8.5.1 Remark

256 to 1024×8 -bit CMOS EEPROMs with I²C-bus interface

PCF85xxC-2 family

1 FEATURES

- Low power CMOS:
 - maximum operating current:
 2.0 mA (PCF8582C-2)
 2.5 mA (PCF8594C-2)
 4.0 mA (PCF8598C-2)
 - maximum standby current 10 μA (at 6.0 V), typical 4 μA
- Non-volatile storage of:
 - 2 kbits organized as 256 × 8-bit (PCF8582C-2)
 - 4 kbits organized as 512×8 -bit (PCF8594C-2)
 - 8 kbits organized as 1024 × 8-bit (PCF8598C-2)
- Single supply with full operation down to 2.5 V
- On-chip voltage multiplier
- Serial input/output I²C-bus
- Write operations:
 - byte write mode
 - 8-byte page write mode (minimizes total write time per byte)
- Read operations:
 - sequential read
 - random read
- Internal timer for writing (no external components)
- Power-on-reset

3 QUICK REFERENCE DATA

- · High reliability by using a redundant storage code
- Endurance: 1000000 Erase/Write (E/W) cycles at $T_{amb} = 22 \ ^{\circ}C$
- 10 years non-volatile data retention time
- Pin and address compatible to: PCF8570, PCF8571, PCF8572 and PCF8581.

2 GENERAL DESCRIPTION

The PCF85xxC-2 is a family of floating gate Electrically Erasable Programmable Read Only Memories (EEPROMs) with 2, 4 and 8 kbits (256, 512 and 1024×8 -bit). By using an internal redundant storage code it is fault tolerant to single bit errors. This feature dramatically increases the reliability compared to conventional EEPROMs. Power consumption is low due to the full CMOS technology used. The programming voltage is generated on-chip, using a voltage multiplier.

As data bytes are received and transmitted via the serial I²C-bus, a package using eight pins is sufficient. Up to eight PCF85xxC-2 devices may be connected to the I²C-bus. Chip select is accomplished by three address inputs (A0, A1 and A2).

Timing of the E/W cycle is carried out internally, thus no external components are required. Pin 7 (PTC) must be connected to either V_{DD} or left open-circuit. There is an option of using an external clock for timing the length of an E/W cycle.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DD}	supply voltage		2.5	6.0	V
I _{DDR}	supply current read	f _{SCL} = 100 kHz			
		V _{DD} = 2.5 V	-	60	μA
		$V_{DD} = 6 V$	-	200	μA
I _{DDW}	supply current E/W	f _{SCL} = 100 kHz			
	PCF8582C-2	V _{DD} = 2.5 V	-	0.6	mA
		$V_{DD} = 6 V$	-	2.0	mA
	PCF8594C-2	V _{DD} = 2.5 V	-	0.8	mA
		$V_{DD} = 6 V$	-	2.5	mA
	PCF8598C-2	V _{DD} = 2.5 V	-	1.0	mA
		$V_{DD} = 6 V$	-	4.0	mA
I _{DD(stb)}	standby supply current	V _{DD} = 2.5 V	-	3.5	μA
		V _{DD} = 6 V	_	10	μA

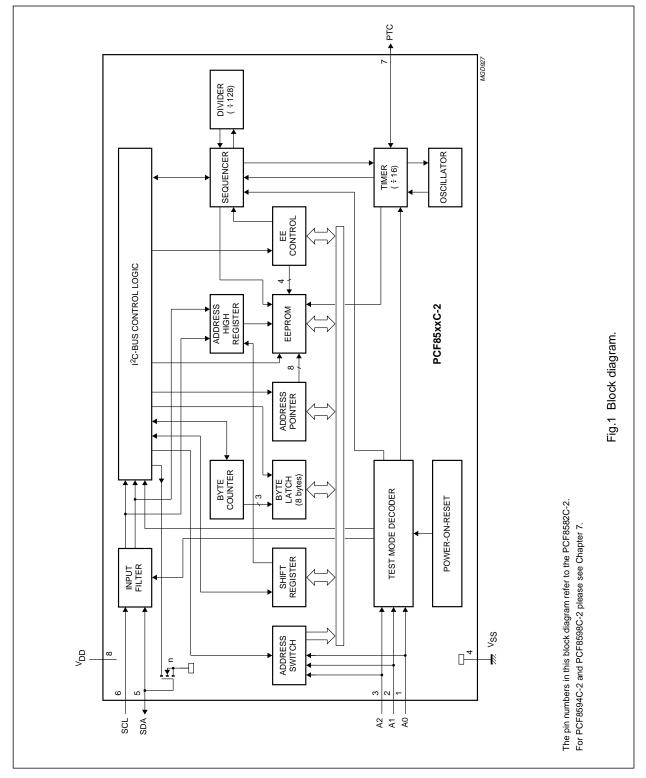
PCF85xxC-2 family

4 ORDERING INFORMATION

ТҮРЕ		PACKAGE					
NUMBER	NAME	DESCRIPTION	VERSION				
PCF8582C-2P							
PCF8594C-2P	DIP8	plastic dual in-line package; 8 leads (300 mil)					
PCF8598C-2P							
PCF8582C-2T	SO8	plastic amall outling pockage: 8 loads (straight); hady width 2.0 mm	SOT96-1				
PCF8594C-2T	306	plastic small outline package; 8 leads (straight); body width 3.9 mm	30190-1				
PCF8598C-2T	T SO8 plastic small outline package; 8 leads; body width 7.5 mm		SOT176-1				

5 DEVICE SELECTION

Table 1Device selection code


SELECTION	DEVICE CODE				C	R/W		
Bit	b7 ⁽¹⁾	b6	b5	b4	b3	b2	b1	b0
Device	1	0	1	0	A2	A1	A0	R/W

Note

1. The Most Significant Bit (MSB) 'b7' is sent first.

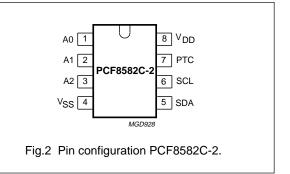
PCF85xxC-2 family

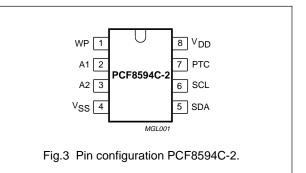
6 BLOCK DIAGRAM

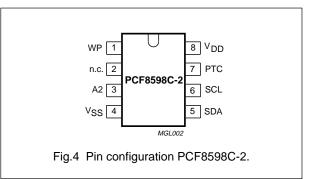
PCF85xxC-2 family

7 PINNING

7.1 Pin description PCF8582C-2


SYMBOL	PIN	DESCRIPTION
A0	1	address input 0
A1	2	address input 1
A2	3	address input 2
V _{SS}	4	negative supply voltage
SDA	5	serial data input/output (I ² C-bus)
SCL	6	serial clock input (I ² C-bus)
PTC	7	programming time control output
V _{DD}	8	positive supply voltage


7.2 Pin description PCF8594C-2


SYMBOL	PIN	DESCRIPTION
WP	1	write-protection input
A1	2	address input 1
A2	3	address input 2
V _{SS}	4	negative supply voltage
SDA	5	serial data input/output (I ² C-bus)
SCL	6	serial clock input (I ² C-bus)
PTC	7	programming time control output
V _{DD}	8	positive supply voltage

7.3 Pin description PCF8598C-2

SYMBOL	PIN	DESCRIPTION
WP	1	write-protection input
n.c.	2	not connected
A2	3	address input 2
V _{SS}	4	negative supply voltage
SDA	5	serial data input/output (I ² C-bus)
SCL	6	serial clock input (I ² C-bus)
PTC	7	programming time control output
V _{DD}	8	positive supply voltage

PCF85xxC-2 family

256 to 1024×8 -bit CMOS EEPROMs with I²C-bus interface

8 I²C-BUS PROTOCOL

The I²C-bus is for 2-way, 2-line communication between different ICs or modules. The serial bus consists of two bidirectional lines: one for data signals (SDA), and one for clock signals (SCL).

Both the SDA and SCL lines must be connected to a positive supply voltage via a pull-up resistor.

The following protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

8.1 Bus conditions

The following bus conditions have been defined:

- Bus not busy: both data and clock lines remain HIGH.
- Start data transfer: a change in the state of the data line, from HIGH-to-LOW, while the clock is HIGH, defines the START condition.
- Stop data transfer: a change in the state of the data line, from LOW-to-HIGH, while the clock is HIGH, defines the STOP condition.
- Data valid: the state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. There is one clock pulse per bit of data.

8.2 Data transfer

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of the data bytes, transferred between the START and STOP conditions is limited to 7 bytes in the E/W mode and 8 bytes in the page E/W mode.

Data transfer is unlimited in the read mode. The information is transmitted in bytes and each receiver acknowledges with a ninth bit.

Within the I²C-bus specifications a low-speed mode (2 kHz clock rate) and a high speed mode (100 kHz clock rate) are defined. The PCF85xxC-2 operates in both modes.

By definition a device that sends a signal is called a 'transmitter', and the device which receives the signal is called a 'receiver'. The device which controls the signal is called the 'master'. The devices that are controlled by the master are called 'slaves'.

Each byte is followed by one acknowledge bit. This acknowledge bit is a HIGH level, put on the bus by the transmitter. The master generates an extra acknowledge related clock pulse. The slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte.

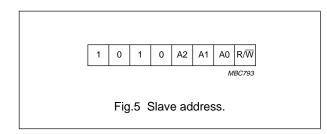
The master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse.

Set-up and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master generation of the STOP condition.

PCF85xxC-2 family

256 to 1024×8 -bit CMOS EEPROMs with I²C-bus interface


8.3 Device addressing

Following a START condition the bus master must output the address of the slave it is accessing. The 4 MSBs of the slave address are the device type identifier (see Fig.5). For the PCF85xxC-2 this is fixed to '1010'.

The next three significant bits address a particular device or memory page (page = 256 bytes of memory). A system could have up to eight PCF8582C-2 (or four PCF8594C-2 containing two memory pages each or two PCF8598C-2 containing four memory pages each, respectively) devices on the bus. The eight addresses are defined by the state of the A0, A1 and A2 inputs.

The last bit of the slave address defines the operation to be performed. When set to logic 1 a read operation is selected.

Address bits must be connected to either V_{DD} or V_{SS}.

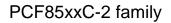
8.4 Write operations

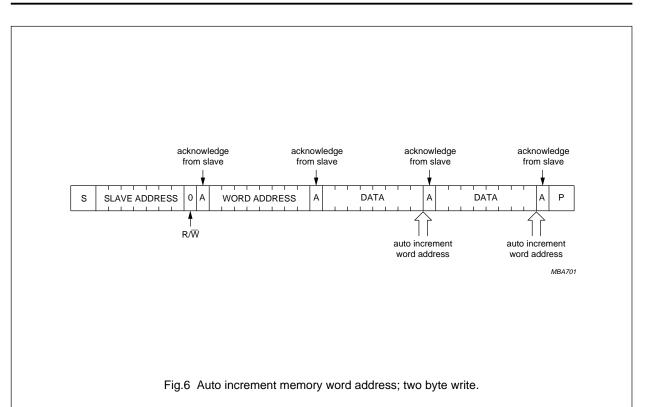
8.4.1 BYTE/WORD WRITE

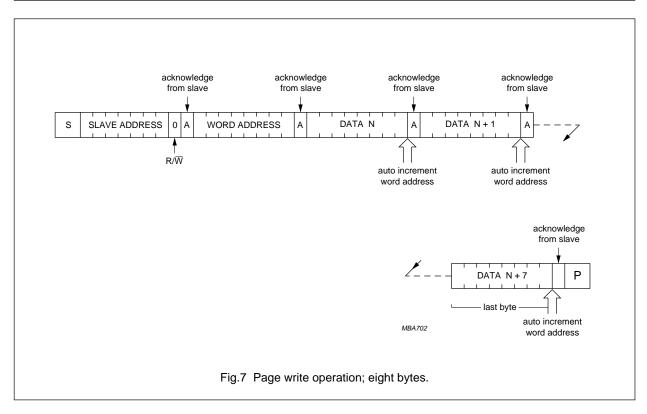
For a write operation the PCF85xxC-2 requires a second address field. This address field is a word address providing access to the 256 words of memory. Upon receipt of the word address the PCF85xxC-2 responds with an acknowledge and awaits the next eight bits of data, again responding with an acknowledge. Word address is automatically incremented. The master can now terminate the transfer by generating a STOP condition or transmit up to six more bytes of data and then terminate by generating a STOP condition.

After this STOP condition the E/W cycle starts and the bus is free for another transmission. Its duration is 10 ms per byte.

During the E/W cycle the slave receiver does not send an acknowledge bit if addressed via the l²C-bus.


8.4.2 PAGE WRITE

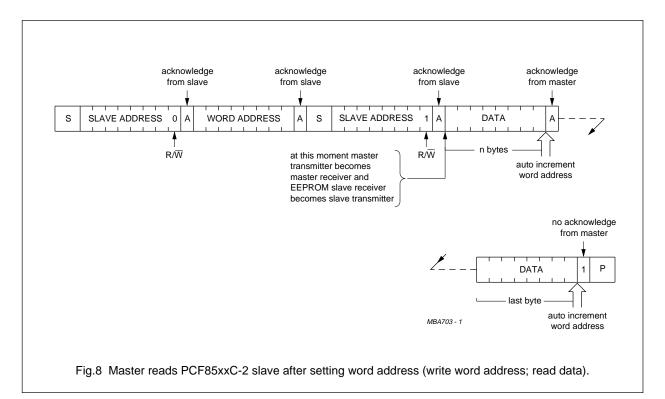

The PCF85xxC-2 is capable of an eight-byte page write operation. It is initiated in the same manner as the byte write operation. The master can transmit eight data bytes within one transmission. After receipt of each byte the PCF85xxC-2 will respond with an acknowledge. The typical E/W time in this mode is 9×3.5 ms = 31.5 ms. Erasing a block of 8 bytes in page mode takes typical 3.5 ms and sequential writing of these 8 bytes another typical 28 ms.

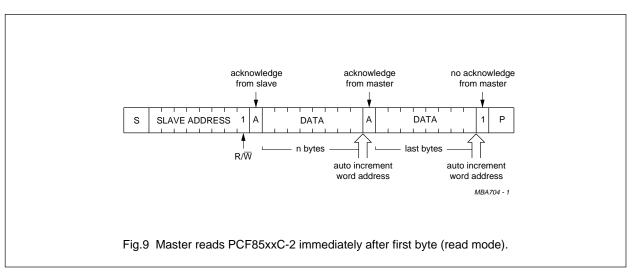

After the receipt of each data byte the three low order bits of the word address are internally incremented. The high order five bits of the address remain unchanged. The slave acknowledges the reception of each data byte with an ACK. The I²C-bus data transfer is terminated by the master after the 8th byte with a STOP condition. If the master transmits more than eight bytes prior to generating the STOP condition, no acknowledge will be given on the ninth (and following) data bytes and the whole transmission will be ignored and no programming will be done. As in the byte write operation, all inputs are disabled until completion of the internal write cycles.

8.4.3 REMARK

A write to the EEPROM is always performed if the pin WP is LOW (not on PCF8582C-2). If WP is HIGH, then the upper half of the EEPROM is write-protected and no acknowledge will be given by the PCF85xxC-2 when one of the upper 256 EEPROM bytes (PCF8594C-2) or 512 EEPROM bytes (PCF8598C-2) is addressed. However, an acknowledge will be given after the slave address and the word address.

256 to 1024 \times 8-bit CMOS EEPROMs with I²C-bus interface


8.5 Read operations


Read operations are initiated in the same manner as write operations with the exception that the LSB of the slave address is set to logic 1.

There are three basic read operations; current address read, random read and sequential read sequential read.

8.5.1 REMARK

The lower 8 bits of the word address are incremented after each transmission of a data byte (read or write). The MSB of the word address, which is defined in the slave address, is not changed when the word address count overflows. Thus, the word address overflows from 255 to 0 and from 511 to 256.

PCF85xxC-2 family

9 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DD}	supply voltage		-0.3	+6.5	V
VI	input voltage on any input pin	Z _i > 500 Ω	V _{SS} – 0.8	+6.5	V
l _l	input current on any input pin		-	1	mA
I _O	output current		-	10	mA
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	operating ambient temperature		-40	+85	°C

10 CHARACTERISTICS

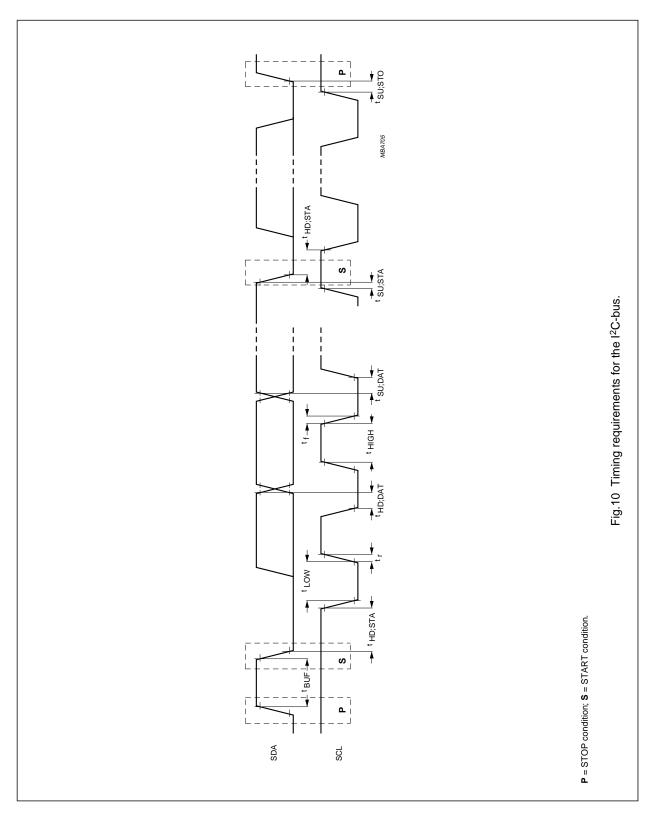
 V_{DD} = 2.5 to 6.0 V; V_{SS} = 0 V; T_{amb} = –40 to +85 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Supplies			- F		
V _{DD}	supply voltage		2.5	6.0	V
I _{DDR}	supply current read	f _{SCL} = 100 kHz			
		V _{DD} = 2.5 V	-	60	μA
		V _{DD} = 6.0 V	-	200	μA
I _{DDW}	supply current E/W	f _{SCL} = 100 kHz			
	PCF8582C-2	V _{DD} = 2.5 V	-	0.6	mA
		$V_{DD} = 6.0 V$	-	2.0	mA
	PCF8594C-2	V _{DD} = 2.5 V	-	0.8	mA
		V _{DD} = 6.0 V	-	2.5	mA
	PCF8598C-2	V _{DD} = 2.5 V	-	1.0	mA
		V _{DD} = 6.0 V	-	4.0	mA
I _{DD(stb)}	standby supply current	V _{DD} = 2.5 V	-	3.5	μA
		V _{DD} = 6.0 V	-	10	μA
PTC outpu	ut (pin 7)		ł		
V _{IL}	LOW level input voltage		-0.8	0.1V _{DD}	V
VIH	HIGH level input voltage		0.9V _{DD}	V _{DD} + 0.8	V
SCL input	: (pin 6)				
V _{IL}	LOW level input voltage		-0.8	0.3V _{DD}	V
VIH	HIGH level input voltage		0.7V _{DD}	+6.5	V
ILI	input leakage current	$V_{I} = V_{DD} \text{ or } V_{SS}$	-	±1	μA
f _{SCL}	clock input frequency		0	100	kHz
CI	input capacitance	$V_{I} = V_{SS}$	-	7	pF

PCF85xxC-2 family

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
SDA input/	output (pin 5)			-	•
V _{IL}	LOW level input voltage		-0.8	0.3V _{DD}	V
V _{IH}	HIGH level input voltage		0.7V _{DD}	+6.5	V
V _{OL}	LOW level output voltage	I _{OL} = 3 mA; V _{DD(min)}	-	0.4	V
I _{LO}	output leakage current	V _{OH} = V _{DD}	-	1	μA
CI	input capacitance	V _I = V _{SS}	-	7	pF
Data retent	tion time				
t _S	data retention time	T _{amb} = 55 ℃	10	-	years

11 I²C-BUS CHARACTERISTICS

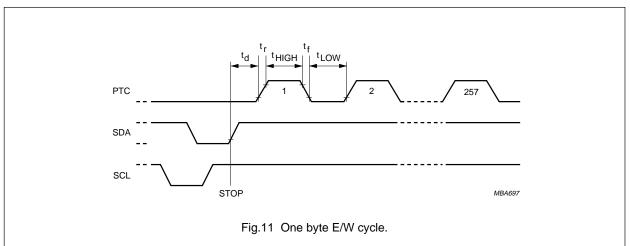

All of the timing values are valid within the operating supply voltage and ambient temperature range and refer to V_{IL} and V_{IH} with an input voltage swing from V_{SS} to V_{DD} ; see Fig.10.

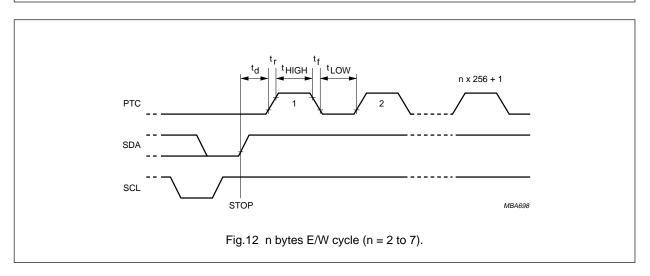
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
f _{SCL}	clock frequency		0	100	kHz
t _{BUF}	bus free time between a STOP and START condition		4.7	-	μs
t _{HD;STA}	START condition hold time after which first clock pulse is generated		4.0	-	μs
t _{LOW}	LOW level clock period		4.7	-	μs
t _{HIGH}	HIGH level clock period		4.0	-	μs
t _{SU;STA}	set-up time for STARt condition	repeated start	4.7	-	μs
t _{HD;DAT}	data hold time				
	for bus compatible masters		5	-	μs
	for bus devices	note 1	0	_	ns
t _{SU;DAT}	data set-up time		250	-	ns
t _r	SDA and SCL rise time		_	1	μs
t _f	SDA and SCL fall time		_	300	ns
t _{SU;STO}	set-up time for STOP condition		4.0	-	μs

Note

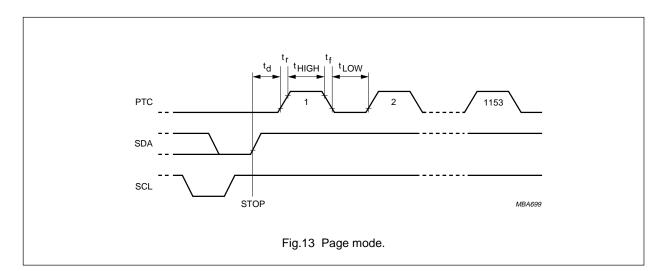
1. The hold time required (not greater than 300 ns) to bridge the undefined region of the falling edge of SCL must be internally provided by a transmitter.

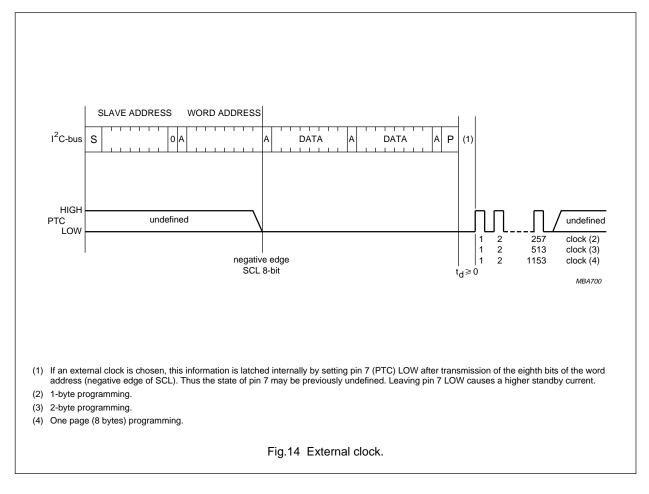
PCF85xxC-2 family


PCF85xxC-2 family

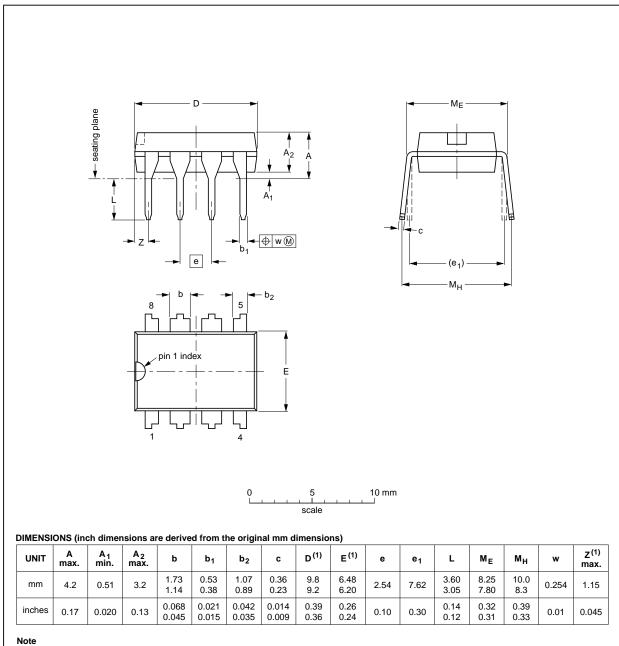

12 WRITE CYCLE LIMITS

Selection of the chip address is achieved by connecting the A0, A1 and A2 inputs to either V_{SS} or V_{DD} .


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
E/W cycle	timing					
t _{E/W}	E/W cycle time	internal oscillator	-	7	-	ms
		external clock	4	-	10	ms
Endurance	e					
N _{E/W}	E/W cycle per byte	$T_{amb} = -40$ to +85 °C	100000	-	_	cycles
		T _{amb} = 22 °C	-	1000000	-	cycles


13 EXTERNAL CLOCK TIMING

PCF85xxC-2 family


SOT97-1

PCF85xxC-2 family

256 to 1024 \times 8-bit CMOS EEPROMs with I²C-bus interface

14 PACKAGE OUTLINES

DIP8: plastic dual in-line package; 8 leads (300 mil)

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1350E DATE
SOT97-1	050G01	MO-001AN				92-11-17 95-02-04

PCF85xxC-2 family

			Julin	e pacr	aye,		3, 00	ay wi		9 mm							2	бот
					— D -				c			- E 				<u>M</u>		
			8	z				→ w (M)				detail		(A ₃) ↓ ↓	Α θ			
			_	► e	-		bp 🖵											
		nch dim	hansion		rived 6		0 	l mm d	2.5 scale		5 mm	I						
DIMENS	IONS (ii A max.	nch dim	nension		rived fr		0 	l mm di E ⁽²⁾	scale	ns) H _E	5 mm	Lp	Q	v	w	У	Z ⁽¹⁾	θ
	Α	A ₁	A ₂	s are de	b p 0.49	om the c	0 origina D ⁽¹⁾ 5.0	E⁽²⁾ 4.0	scale	HE	 	L р 1.0	0.7	v 0.25	w 0.25	y 0.1	0.7	
	A max.			s are de	bp	om the	origina	E ⁽²⁾	scale mensio		L	Lp						
UNIT mm inches Notes 1. Plastic	A max. 1.75 0.069	A1 0.25 0.10 0.0098 0.0039	A ₂ 1.45 1.25 0.057 0.049	s are de A ₃ 0.25 0.01	b p 0.49 0.36 0.019 0.014	rom the c 0.25 0.19 0.0098 0.0075	0 0 0 0 0 0 0 0 0 0 0 0 0 0	E ⁽²⁾ 4.0 3.8 0.16 0.15 e not inc	scale mensio e 1.27 0.050	HE	L	L р 1.0	0.7				0.7	80
UNIT mm inches Notes 1. Plastic 2. Plastic	A max. 1.75 0.069 c or meta c or meta	A ₁ 0.25 0.10 0.0098 0.0039 al protru al protru	A ₂ 1.45 1.25 0.057 0.049	s are de A ₃ 0.25 0.01	b p 0.49 0.36 0.019 0.014	rom the c 0.25 0.19 0.0098 0.0075	0 0 0 0 0 0 0 0 0 0 0 0 0 0	E ⁽²⁾ 4.0 3.8 0.16 0.15 e not inc	scale mensio e 1.27 0.050	H _E 6.2 5.8 0.24	L 1.05	Lp 1.0 0.4 0.039	0.7 0.6 0.028 0.024	0.25 0.01 EUROI	0.25 0.01 PEAN	0.1	0.7 0.3 0.028 0.012	8 ^c 0 ^c
UNIT mm inches Notes 1. Plastic 2. Plastic	A max. 1.75 0.069	A ₁ 0.25 0.10 0.0098 0.0039 al protru al protru	A ₂ 1.45 1.25 0.057 0.049	s are de A ₃ 0.25 0.01	b p 0.49 0.36 0.019 0.014	rom the c 0.25 0.19 0.0098 0.0075	0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0	E (2) 4.0 3.8 0.16 0.15 e not inc	scale mensio e 1.27 0.050	H _E 6.2 5.8 0.24	L 1.05	Lp 1.0 0.4 0.039	0.7 0.6 0.028 0.024	0.25	0.25 0.01 PEAN	0.1	0.7 0.3 0.028	8° 0°

256 to 1024×8 -bit CMOS EEPROMs with I²C-bus interface

PCF85xxC-2 family

	Stic S	mall c	outline	e pac	kage;	8 lead	is; bo	dy wi	atn 7.	5 mm							S	OT17
		Ţ	Г Г У					c				E				(b) A		
		_	- Z - 8	pin 1 inc		5 	w (M)			2 A ₁		detail X		$\begin{array}{c} A_{3} \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \uparrow \\ \hline \end{array} \\ \theta$	A V			
						0 L		I	5 scale	I	1	0 mm						
			ension A ₂	s are de A ₃	erived fr bp	om the c	origina D ⁽¹⁾	l mm d E ⁽¹⁾	imensio e	ns) H _E	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	A	A1			40		7.65	7.6	1.27	10.65	1.45	1.1	1.1	0.25	0.25	0.1	2.0	
UNIT	A max. 2.65	A ₁	2.45	0.25	0.49	0.32		74	1.21				1.0		-	1	1.8	
	max.			0.25 0.01	0.49 0.36 0.019 0.014	0.32 0.23 0.013 0.009	7.45 0.30 0.29	7.4 0.30 0.29	0.050	10.00 0.42 0.39	0.057	0.45 0.043 0.018	0.043	0.01	0.01	0.004	0.079 0.071	8° 0°
UNIT mm inches Note 1. Plastic	max. 2.65 0.10	0.3 0.1 0.012 0.004	2.45 2.25 0.096 0.089	0.01	0.36	0.23 0.013 0.009	7.45 0.30 0.29 side are	0.30 0.29 e not inc	0.050	0.42		0.043	0.043			0.004	0.079 0.071	8° 0°
UNIT mm inches Note 1. Plastic	max. 2.65 0.10	0.3 0.1 0.012 0.004	2.45 2.25 0.096 0.089	0.01	0.36 0.019 0.014	0.23 0.013 0.009	7.45 0.30 0.29 side are	0.30 0.29	0.050	0.42		0.043	0.043 0.039	0.01 EUROI PROJE	PEAN		0.079 0.071	0°

256 to 1024×8 -bit CMOS EEPROMs with I²C-bus interface

PCF85xxC-2 family

15 SOLDERING

15.1 Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

15.2 DIP

15.2.1 SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

15.2.2 REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

15.3 SO

15.3.1 REFLOW SOLDERING

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45 \,^{\circ}$ C.

15.3.2 WAVE SOLDERING

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

15.3.3 REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

PCF85xxC-2 family

16 DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
more of the limiting values n of the device at these or at a	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or nay cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification imiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

17 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

18 PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

PCF85xxC-2 family

NOTES

PCF85xxC-2 family

NOTES

PCF85xxC-2 family

NOTES

Philips Semiconductors – a worldwide company

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Tel. +64 9 849 4160, Fax. +64 9 849 7811 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Philippines: Philips Semiconductors Philippines Inc. Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Portugal: see Spain Tel. +359 2 689 211, Fax. +359 2 689 102 Romania: see Italy Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Slovakia: see Austria Czech Republic: see Austria Slovenia: see Italy Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580/xxx France: 4 Rue du Port-aux-Vins BP317 92156 SURESNES Cedex Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS. Piazza IV Novembre 3. 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Tel. +1 800 234 7381 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Uruguay: see South America Tel. +60 3 750 5214, Fax. +60 3 757 4880 Vietnam: see Singapore Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy

106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: UI. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 Spain: Balmes 22 08007 BARCELONA Tel. +34 3 301 6312. Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI. Taiwan Tel. +886 2 2134 2870. Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd. 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Haves,

MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777

For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 1997

SCA53

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

417067/1200/01/pp24

Date of release: 1997 Feb 13

Document order number: 9397 750 01773

Let's make things better.

Internet: http://www.semiconductors.philips.com

Semiconductors

Philips