
INTEGRATED CIRCUITS

Product specification Supersedes data of 1997 Jul 15 IC24 Data Handbook

1998 Jun 23

Philips Semiconductors

74LV4052

FEATURES

- Optimized for low voltage applications: 1.0 to 6.0 V
- \bullet Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Low typ "ON" resistance:
- Logic level translation: to enable 3 V logic to communicate with ± 3 V analog signals
- Typical "break before make" built in
- Analog/Digital multiplexing and demultiplexing
- Signal gating
- Output capability: non-standard
- I_{CC} category: MSI

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5$ ns

DESCRIPTION

The 74LV4052 is a low-voltage CMOS device and is pin and function compatible with the 74HC/HCT4052.

The 74LV4052 is a dual 4-channel analog multiplexer/demultiplexer with a common select logic. Each multiplexer has four independent inputs/outputs (nY $_0$ to nY $_3$) and a common input/output (nZ). The common channel select logics include two digital select inputs (S0 and S_1) and an active LOW enable input (\overline{E}).

With E LOW, one of the four switches is selected (low impedance ON-state) by S_0 and S_1 . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S $_0$ and S $_1$. V_{CC} and GND are the supply voltage pins for the digital control inputs (S_0 , S_1 and \overline{E}). The V_{CC} to GND ranges are 1.0 to 6.0 V. The analog inputs/outputs (nY₀, to nY₃, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. V_{CC} - V_{EE} may not exceed 6.0 V. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT	
t _{PZH} /t _{PZL}	Turn "ON" time Ē or V _{OS} S _n	$C_L = 15 \text{ pF}$ $R_L = 1K\Omega$	30		
t _{PHZ} /t _{PLZ}	Turn "OFF" time Ē or V _{OS} S _n	$V_{CC} = 3.3 V$	22	ns	
Cl	Input capacitance		3.5		
C _{PD}	Power dissipation capacitance per switch	See Notes 1 and 2	57	pF	
C _S	Maximum switch capacitance independent (Y) common (Z)		5 12	P.	

NOTES:

 C_{PD} is used to determine the dynamic power dissipation (P_D in μW) 1.

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum ((C_L + C_S) \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz; C_L = output load capacity in pF

fo = output frequency in MHz; C_S = maximum switch capacitance in pF;

 V_{CC} = supply voltage in V; $\sum ((C_L + C_S) \times V_{CC}^2 \times f_0)$ = sum of the outputs.

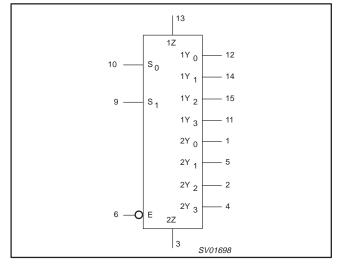
2. The condition is $V_I = GND$ to V_{CC} .

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	Code
16-Pin Plastic DIL	-40°C to +125°C	74LV4052 N	74LV4052 N	SOT38-4
16-Pin Plastic SO	-40°C to +125°C	74LV4052 D	74LV4052 D	SOT109-1
16-Pin Plastic SSOP Type II	-40°C to +125°C	74LV4052 DB	74LV4052 DB	SOT338-1
16-Pin Plastic TSSOP Type I	-40°C to +125°C	74LV4052 PW	74LV4052PW DH	SOT403-1

PIN CONFIGURATION

2Y ₀ 1		16 V _{CC}
2Y ₂ 2		15 1Y ₂
2Z 3		14 1Y ₁
2Y ₃ 4		13 1Z
2Y ₁ 5		12 1Y ₀
Ē 6		11 1Y ₃
V _{EE} 7		10 S ₀
GND 8		9 S ₁
	SV	1 /01697

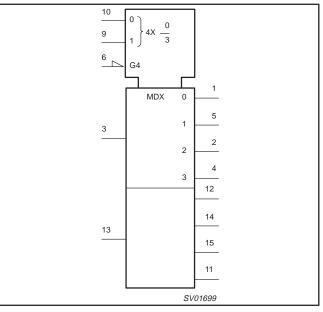

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1, 5, 2, 4	2Y ₀ , 2Y ₃	Independent inputs/outputs
6	Ē	Enable input (active LOW)
7	V _{EE}	Negative supply voltage
8	GND	Ground (0 V)
10, 9	S ₀ , S ₁	Select inputs
12, 14, 15, 11	$1Y_0$ to $1Y_3$	Independent inputs/outputs
13, 3	1Z, 2Z	Common inputs/outputs
16	V _{CC}	Positive supply voltage

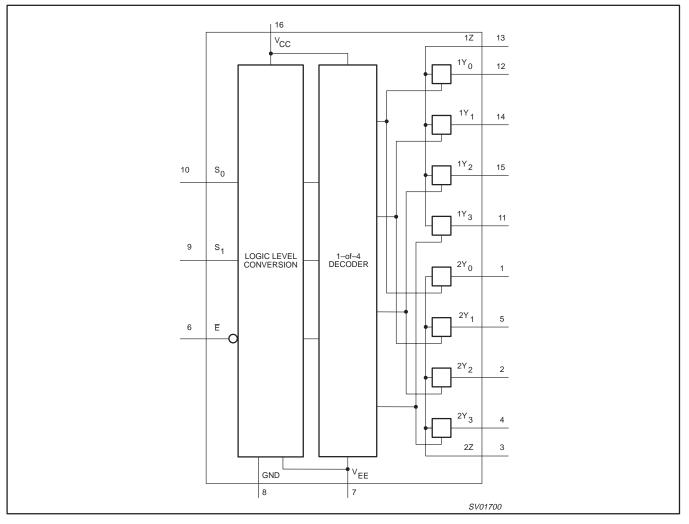
Downloaded from Elcodis.com electronic components distributor

74LV4052

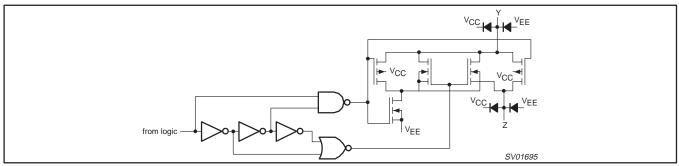
LOGIC SYMBOL


FUNCTION TABLE

	CHANNEL		
Ē	S ₁	S ₀	ON
L	L	L	nY ₀ – nZ
L	L	н	nY ₁ – nZ
L	н	L	nY ₂ – nZ
L	Н	Н	nY ₃ – nZ
Н	Х	Х	None


NOTES:

H = HIGH voltage level
L = LOW voltage level
X = don't care


LOGIC SYMBOL (IEEE/IEC)

FUNCTIONAL DIAGRAM

SCHEMATIC DIAGRAM (ONE SWITCH)

74LV4052

Product specification

74LV4052

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER CONDITIONS		RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
$\pm I_{IK}$	DC input diode current	$V_{\rm I}$ < -0.5 or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	20	mA
$\pm I_{SK}$	DC switch diode current	$V_{\rm S}$ < -0.5 or $V_{\rm S}$ > $V_{\rm CC}$ + 0.5 V	20	mA
$\pm I_{S}$	DC switch current	$-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	25	mA
T _{stg}	Storage temperature range		-65 to +150	°C
Power dissipation per package fc – plastic DIL al – plastic mini-pack (SO) al		for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	DC supply voltage	See Note 1 and Figure 5	1.0	3.3	6.0	V
VI	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 1.0 V \text{ to } 2.0 V$ $V_{CC} = 2.0 V \text{ to } 2.7 V$ $V_{CC} = 2.7 V \text{ to } 6.0 V$	- - -	- - -	500 200 100	ns/V

NOTE:

1. The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 6.0V.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, voltages are referenced to GND (ground = 0 V)

				LIMITS					
SYMBOL	PARAMETER	TEST CO	NDITIONS	-4	0°C to +8	5°C	-40°C to	o +125°C	דואט 🏳
				MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2 V		0.9			0.9		
		V _{CC} = 2.0 V		1.4			1.4		1
VIH	HIGH level Input voltage	V _{CC} = 2.7 to 3.6 V		2.0			2.0		V
		V _{CC} = 4.5 V		3.15			3.15		1
		V _{CC} = 6.0 V		4.20			4.20		1
		V _{CC} = 1.2 V				0.3		0.3	
		V _{CC} = 2.0 V				0.6		0.6	1
VIL	LOW level Input voltage	V_{CC} = 2.7 to 3.6 V				0.8		0.8	V
	Vollago	V _{CC} = 4.5 V				1.35		1.35	1
		$V_{CC} = 6.0 V$				1.80		1.80	1
±łı	Input leakage	V _{CC} = 3.6	$V_{I} = V_{CC}$ or GND			1.0		1.0	μA
<u>-</u> ц	current	$V_{CC} = 6.0$				2.0		2.0	
	Analog switch	V _{CC} = 3.6	$V_{I} = V_{IH} \text{ or } V_{IL}$			1.0		1.0	
±ls	OFF-state current per channel $V_{CC} = 6.0$ $IV_SI = V_{CC} - GND$ (See Figure 2)					2.0		2.0	μΑ
	Analog switch	V _{CC} = 3.6	$V_{I} = V_{IH} \text{ or } V_{IL}$			1.0		1.0	
	ON-state current	V _{CC} = 6.0	IV _S I = V _{CC} - GND (See Figure 3)			2.0		2.0	- μΑ
	Quiescent supply	V _{CC} = 3.6 V	$V_I = V_{CC}$ or GND;			20.0		40	
Icc	current	V _{CC} = 6.0 V	$V_{IS} = GND \text{ or } V_{CC};$ $V_{OS} = V_{CC} \text{ or } GND$			40.0		80	- μΑ
ΔI_{CC}	Additional quiescent supply current per input	$V_{CC} = 2.7 \text{ to } 3.6 \text{ V}$	$V_{I} = V_{CC} - 0.6 V$			500		850	μA
		V _{CC} = 1.2 V							
	ON-resistance	V _{CC} = 2.0 V			145	325		375	1
R _{ON}	(peak)	$V_{CC} = 2.7 V$	$V_I = V_{IH} \text{ or } V_{IL};$		90	200		235	Ω
		V_{CC} = 3.0 to 3.6 V	I _S = 1000 μA;		80	180		210	
		$V_{CC} = 4.5 V$	$V_{IS} = V_{CC}$ to GND		60	135		160	7
		$V_{CC} = 6.0 V$			55	125		145	
		V _{CC} = 1.2 V			225				
	ON-resistance	V _{CC} = 2.0 V			110	235		270	Ω
R _{ON}	(rail)	V _{CC} = 2.7 V	$V_{I} = V_{IH} \text{ or } V_{IL}$		70	145		165	
		$V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$	I _S = 1000 _μ A;		60	130		150	
		V _{CC} = 4.5 V	V _{IS =} GND		45	100		115	1
		$V_{CC} = 6.0 V$	1 1		40	85		100	1

NOTES:
1. All typical values are measured at T_{amb} = 25°C.
2. At supply voltages approaching 1.2 V, the analog switch ON-resistance becomes extremely non-linear. Therefore, it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
2. Dev: (MAX) data is preliminary.

74LV4052

						LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS		-40°C to +85°C			-40°C to	o +125°C	
				MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2 V	$V_{I} = V_{IH} \text{ or } V_{IL};$ $I_{S} = 100 \ _{\mu}A;$ $V_{IS} = V_{CC}$		250				Ω
	ON-resistance	V _{CC} = 2.0 V			120	320		370	
R _{ON}	(rail)	V _{CC} = 2.7 V	$V_{I} = V_{IH} \text{ or } V_{IL};$		75	195		225	Ω
		V _{CC} = 3.0 to 3.6 V	$I_{S} = 1000 \mu A;$ $V_{IS} = V_{CC}$		70	175		205	
		V _{CC} = 4.5 V	$V_{IS} = V_{CC}$		50	130		150	1
		V _{CC} = 6.0 V	1		45	120		135	1
		V _{CC} = 1.2 V							
	Maximum variation	V _{CC} = 2.0 V	1		5				1
ΔR _{ON}	of ON-resistance	V _{CC} = 2.7 V	$V_I = V_{IH} \text{ or } V_{IL;}$ $V_{IS} = V_{CC} \text{ to } GND$		4			1	\prod_{Ω}
- VON	between any two	V _{CC} = 3.0 to 3.6 V	V _{IS =} V _{CC} to GND		4			1	
	channels	V _{CC} = 4.5 V	1		3			1	1
		V _{CC} = 6.0 V	1		2				1

NOTES:

All typical values are measured at T_{amb} = 25°C.
At supply voltages approaching 1.2 V, the analog switch ON-resistance becomes extremely non-linear. Therefore, it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

3. R_{ON} (MAX) data is preliminary.

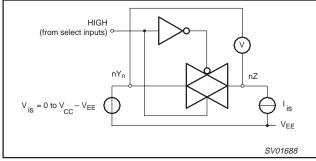


Figure 1. Test circuit for measuring ON-resistance (R_{ON}).

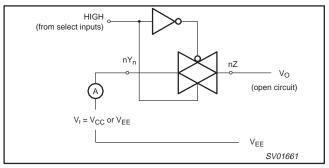


Figure 3. Test circuit for measuring ON-state current.

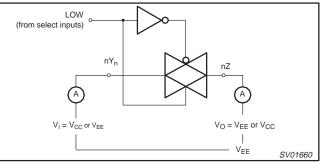
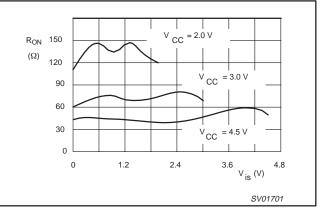
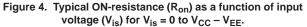




Figure 2. Test circuit for measuring OFF-state current.

74LV4052

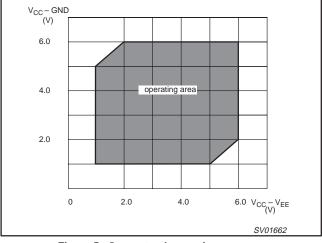


Figure 5. Guaranteed operating area as a function of the supply voltages.

AC CHARACTERISTICS

GND = 0 V; $t_r = t_f \le 2.5$ ns; $C_L = 50$ pF

		CONDIT							
SYMBOL	PARAMETER	CONDIT		−40 to +85 °C			–40 to +125 °C		UNIT
		V _{CC} (V)	OTHER	MIN	TYP ¹	МАХ	MIN	МАХ	
		1.2			25				
		2.0	R _L = ∞;		9	17		20	
t t	Propagation delay	2.7	$C_L = 50 \text{ pF}$		6	13		15	ns
t _{PHL} /t _{PLH}	V _{is} to V _{os}	3.0 to 3.6			5 ²	10		12	115
		4.5	Figure 12		4	9		10	
		6.0			3	7		8	
		1.2			190				ns
		2.0	$R_L = 1k\Omega;$		65	121		146	
+ /+	Turn-on time	2.7	$C_{L} = 50 \text{pF}$		48	89		108	
t _{PZH} /t _{PZL}	Ē, S _n to V _{OS}	3.0 to 3.6	Figures 13		36 ²	71		86	
		4.5	and 1		32	60		73	
		6.0			25	46		56	
		1.2			125				
		2.0	$R_L = 1k\Omega$:		43	80		95	ns
+/+	Turn-off time	2.7	$C_{L} = 50 \text{pF}$		33	59		71	
t _{PHZ} /t _{PLZ}	E, Sn to V _{OS}	3.0 to 3.6	Figures 13		26 ²	48		57	
		4.5	and 1		23	41		49	
		6.0			18	32		38	

NOTES:

1. Unless otherwise stated, all typical values are measured at $T_{amb} = 25^{\circ}C$ 2. Typical values are measured at $V_{CC} = 3.3 V$.

74LV4052

ADDITIONAL AC CHARACTERISTICS

Recommended conditions and typical values

 $GND = 0 V; t_r = t_f \le 2.5 ns$

SYMBOL	PARAMETER	TYP.	UNIT	V _{CC} (V)	V _{is(p-p)} (V)	CONDITIONS
	Sine-wave distortion f = 1 kHz	0.80 0.40	%	3.0 6.0	2.75 5.50	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pf}$ Figure 9 and 10
	Sine-wave distortion f = 10 kHz	2.40 1.20	%	3.0 6.0	2.75 5.50	$R_L = 10 k\Omega; C_L = 50 pf$ Figure 9 and 10
	Switch "OFF" signal feed through	-50 -50	dB	3.0 6.0	Note 1	R_L = 600 Ω; C_L = 50 pf; f= 1 MHz Figures 5 and 11
	Crosstalk between any two switches/multiplexers	-60 -60	dB	3.0 6.0	Note 1	R_L = 600 Ω; C_L = 50 pf; f= 1 MHz Figure 8
V _(p-p)	Crosstalk voltage between enable or address input to any switch (peak-to-peak value)	110 120	mV	3.0 6.0		$R_L = 600 \ \Omega$; $C_L = 50 \ pf$; f= 1 MHz (S _n or E, square wave between V _{CC} and GND t _r = t _f = 6 ns) Figure 8
f _{max}	Minimum frequency response (–3 dB)	180 200	MHz	3.0 6.0	Note 2	$R_L = 50 \Omega$; $C_L = 50 pF$ Figures 6, 8 and 9
C _S	Maximum switch capacitance	5	pf			

GENERAL NOTES:

1. V_{is} is the input voltage at nY or nZ terminal, whichever is assigned as an input.

2. V_{OS} is the output voltage at nY or nZ terminal, whichever is assigned as an output.

NOTES:

1. Adjust input voltage V_{is} is 0 dBm level (0 dBm = 1 mW into 600 Ω).

2. Adjust input voltage V_{is} is 0 dBm level at V_{OS} for 1 MHz (0 dBm = 1 mW into 50 Ω).

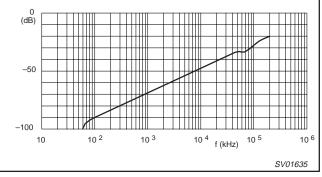


Figure 6. Typical switch "OFF" signal feed-through as a function of frequency.

NOTES TO FIGURES 6 AND 7:

Test conditions: V_{CC} = 3.0 V; GND = 0 V; V_{EE} = -3.0 V; R_L = 50 Ω ; R_{SOURCE} = 1k Ω .

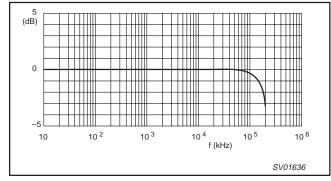


Figure 7. Typical frequency response.

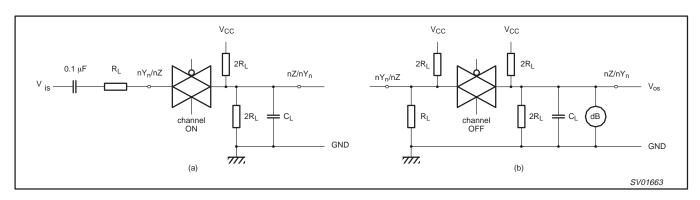
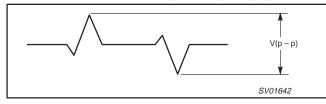



Figure 8. Test circuit for measuring crosstalk between any two switches. (a) channel ON condition; (b) channel OFF condition.

74LV4052

NOTE TO FIGURE 8:

The crosstalk is defined as follows (oscilloscope output):

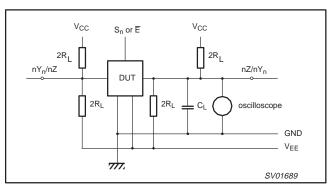
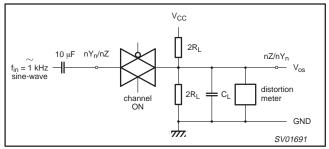
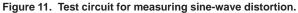




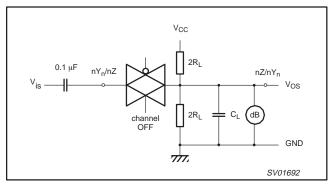
Figure 9. Test circuit for measuring crosstalk between control and any switch.

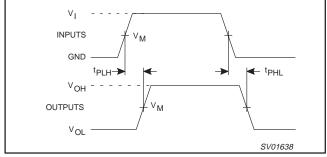
V_{CC} $2R_{L}$ 0.1 mF nY/nZ nZ/nY Vis Vos sine-wave $2 R_L$ = CL dB channel ON GND 777. SV01667

Figure 10. Test circuit for measuring minimum frequency response.

NOTE TO FIGURE 9:

Adjust input voltage to obtain 0 dBm at V_{OS} when F_{in} = 1 MHz. After set-up frequency of f_{in} is increased to obtain a reading of –3 dB at V_{OS}.




Figure 12. Test circuit for measuring switch "OFF" signal feed-through.

74LV4052

WAVEFORMS

NOTES:

- 1.
- V_{OL}^{M} and V_{OH} are the typical output voltage drop that occur with 2. the output load
- $\begin{array}{l} \mathsf{V_x} = \mathsf{V_{OL}} + 0.3 \ \mathsf{V} \ at 2.7 \ \mathsf{V} \leq \mathsf{V_{CC}} \leq 3.6 \ \mathsf{V} \\ \mathsf{V_X} = \mathsf{V_{OL}} + 0.1 \times \mathsf{V_{CC}} \ at 2.7 \ \mathsf{V} > \mathsf{V_{CC}} > 3.6 \ \mathsf{V} \\ \mathsf{V_Y} = \mathsf{V_{OH}} 0.3 \ \mathsf{V} \ at 2.7 \ \mathsf{V} \leq \mathsf{V_{CC}} \leq 3.6 \ \mathsf{V} \\ \mathsf{V_Y} = \mathsf{V_{OH}} 0.1 \times \mathsf{V_{CC}} \ at 2.7 \ \mathsf{V} > \mathsf{V_{CC}} > 3.6 \ \mathsf{V} \\ \end{array}$ 3.

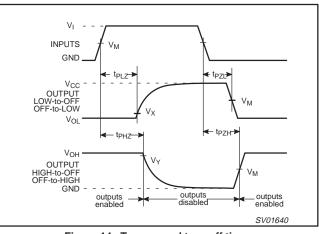


Figure 14. Turn-on and turn-off times for the inputs (S_n, \overline{E}) to the output (V_{os}) .

TEST CIRCUIT

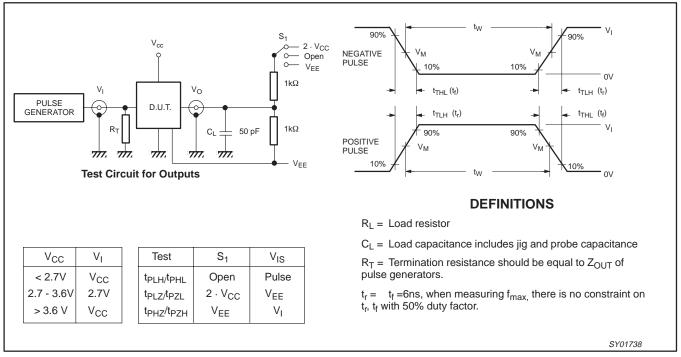
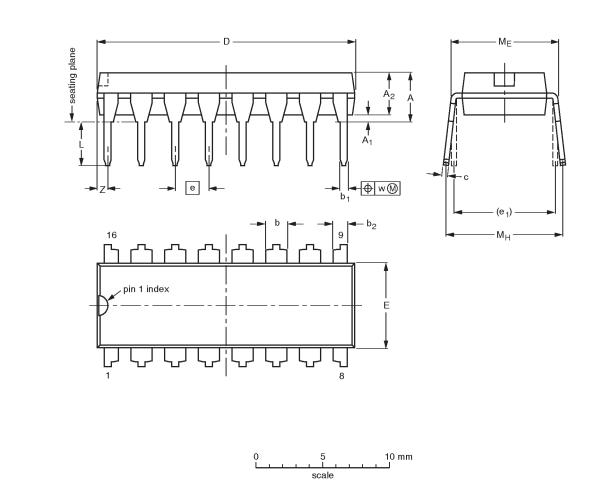


Figure 15. Load circuitry for switching times.

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	c	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.030

Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT38-4						-92-11-17 95-01-14	

12

1998 Jun 23 Downloaded from <u>Elcodis.com</u> electronic components distributor

Philips Semiconductors

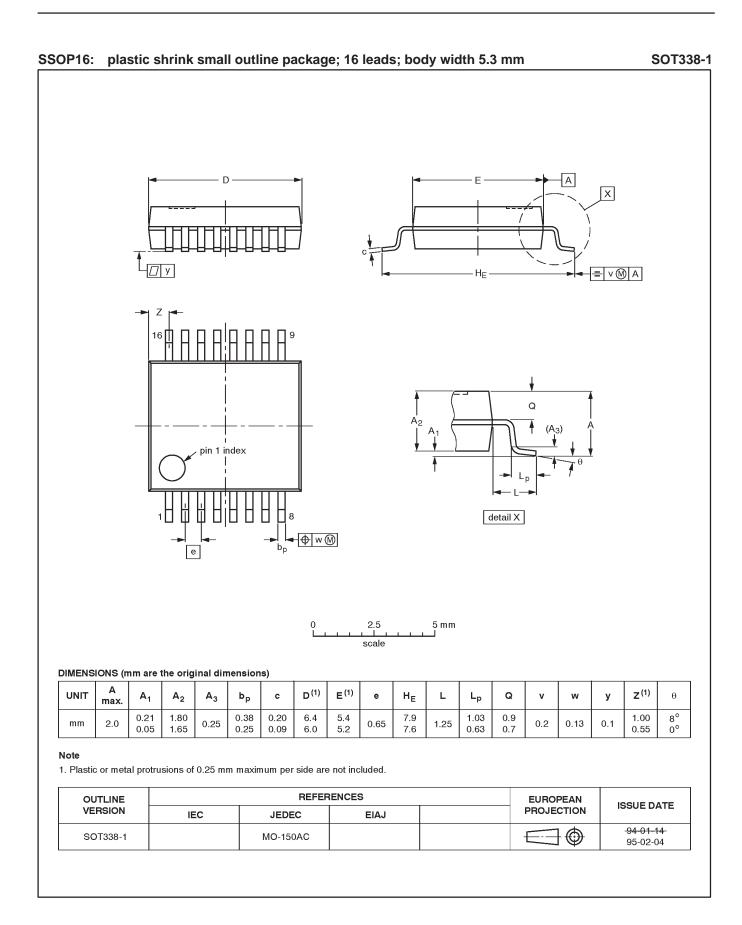
DIP16: plastic dual in-line package; 16 leads (300 mil)

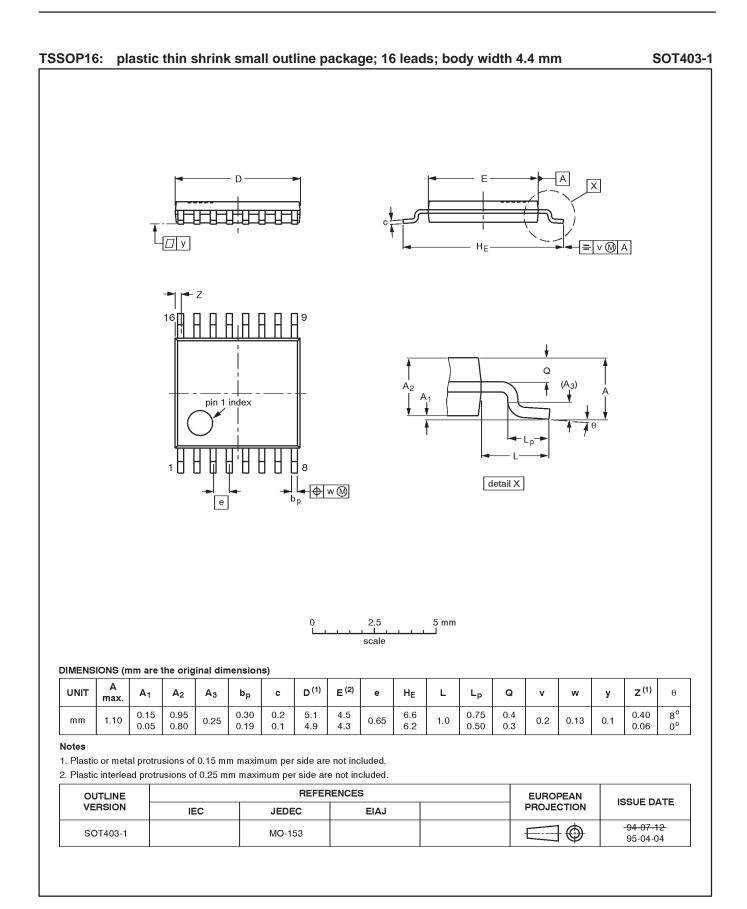
Product specification

1998 Jun 23 Downloaded from Elcodis.com electronic components distributor

Dual 4-channel analog multiplexer/demultiplexer

plastic small outline package; 16 leads; body width 3.9 mm


А X v = v 🕅 A Q A_2 A₁ pin 1 index Ā Lp H Ш 8 е detail X 2.5 5 m m 0 scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) А E⁽¹⁾ D⁽¹⁾ Z⁽¹⁾ UNIT **A**₁ A_2 A_3 bp с е H_E L Lp Q ۷ w у θ max. 0.25 1.45 0.49 0.25 10.0 4.0 6.2 0.7 1.0 0.7 1.75 1.27 1.05 0.25 0.25 mm 0.25 0.1 0.10 1.25 0.36 0.19 9.8 3.8 5.8 0.4 0.6 0.3 8° 0° 0.0098 0.057 0.019 0.0098 0.39 0.16 0.24 0.039 0.028 0.028 inches 0.069 0.01 0.050 0.041 0.01 0.01 0.004 0.0039 0.049 0.014 0.0075 0.38 0.15 0.23 0.016 0.020 0.012 Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. REFERENCES OUTLINE EUROPEAN ISSUE DATE VERSION PROJECTION IEC JEDEC EIAJ 91-08-13] 🔘 SOT109-1 076E07S MS-012AC E 95-01-23


SO16:

SOT109-1

Product specification

74LV4052

DEFINITIONS						
Data Sheet Identification	Product Status	Definition				
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.				

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-04461

Let's make things better.

Semiconductors

Philips