

HD74LV1GT00A

2-input NAND Gate / CMOS Logic Level Shifter

REJ03D0115-0900 Rev.9.00 Mar 21, 2008

Description

The HD74LV1GT00A is high-speed CMOS two input NAND gate using silicon gate CMOS process. With CMOS low power dissipation, it provides high-speed equivalent to LS-TTL series. The internal circuit of three stages construction with buffer provides wide noise margin and stable output. The input protection circuitry on this device allows over voltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0 V CMOS Logic to 5.0 V CMOS Logic or from 1.8 V CMOS logic to 3.0 V CMOS Logic while operating at the high-voltage power supply. Low voltage and high-speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life.

Features

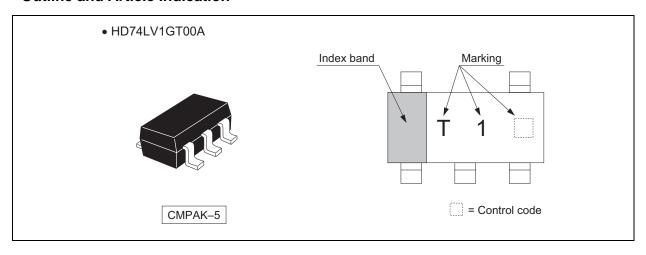
- The basic gate function is lined up as Renesas uni logic series.
- Supplied on emboss taping for high-speed automatic mounting.
- TTL compatible input level.

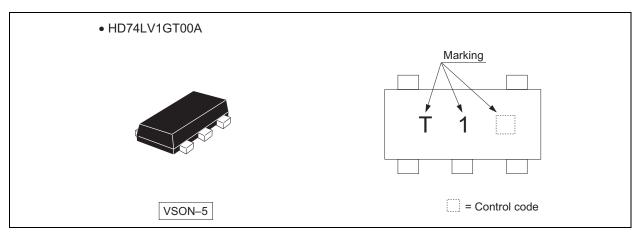
Supply voltage range: 3.0 to 5.5 V

Operating temperature range: -40 to +85°C

• Logic-level translate function

 $3.0 \text{ V CMOS logic} \rightarrow 5.0 \text{ V CMOS logic} (@V_{CC} = 5.0 \text{ V})$

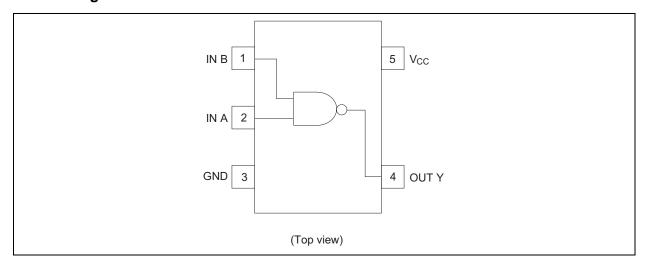

1.8 V or 2.5 V CMOS logic \rightarrow 3.3 V CMOS logic (@V_{CC} = 3.3 V)


- All inputs V_{IH} (Max.) = 5.5 V (@ V_{CC} = 0 V to 5.5 V) All outputs V_{O} (Max.) = 5.5 V (@ V_{CC} = 0 V)
- Output current $\pm 6 \text{ mA}$ (@V_{CC} = 3.0 V to 3.6 V), $\pm 12 \text{ mA}$ (@V_{CC} = 4.5 V to 5.5 V)
- All the logical input has hysteresis voltage for the slow transition.
- Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74LV1GT00ACME	CMPAK-5 pin	PTSP0005ZC-A (CMPAK-5V)	СМ	E (3000 pcs/reel)
HD74LV1GT00AVSE	VSON-5 pin	PUSN0005KA-A (TNP-5DV)	VS	E (3000 pcs/reel)

Note: Please consult the sales office for the above package availability.

Outline and Article Indication



Function Table

Inp	Quitnut V	
Α	В	Output Y
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

H : High level L : Low level

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	V _{CC}	-0.5 to 7.0	V	
Input voltage range *1	Vı	-0.5 to 7.0	V	
Output voltage range *1, 2	1/	-0.5 to V_{CC} + 0.5	V	Output : H or L
Output voltage range	Vo	-0.5 to 7.0] v	V _{CC} : OFF
Input clamp current	I _{IK}	-20	mA	V _I < 0
Output clamp current	lok	±50	mA	$V_O < 0$ or $V_O > V_{CC}$
Continuous output current	lo	±25	mA	$V_O = 0$ to V_{CC}
Continuous current through V _{CC} or GND	I _{CC} or I _{GND}	±50	mA	
Maximum power dissipation at Ta = 25°C (in still air) *3	P _T	200	mW	
Storage temperature	Tstg	-65 to 150	°C	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

- 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 2. This value is limited to 5.5 V maximum.
- 3. The maximum package power dissipation was calculated using a junction temperature of 150 $^{\circ}$ C.

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V_{CC}	3.0	5.5	V	
Input voltage range	V_{I}	0	5.5	V	
Output voltage range	Vo	0	V _{CC}	V	
	I.	_	6		$V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$
Output current	l _{OL}	_	12	l mA	$V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$
Output current	I _{OH}	_	-6		$V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$
		_	-12		$V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$
Input transition rice or fall rate	Δt / Δν	0	100	ns / V	$V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$
Input transition rise or fall rate		0	20	115 / V	V _{CC} = 4.5 to 5.5 V
Operating free-air temperature	Ta	-40	85	°C	

Note: Unused or floating inputs must be held high or low.

Electrical Characteristic

• $Ta = -40 \text{ to } 85^{\circ}\text{C}$

Item	Symbol	V _{CC} (V) *	Min	Тур	Max	Unit	Test condition
	V _{IH}	3.0 to 3.6	1.5	1			
Input voltage	V IH	4.5 to 5.5	2.0		_	V	
input voltage	VIL	3.0 to 3.6	_		0.6	V	
	V IL	4.5 to 5.5		1	0.8		
Hysteresis voltage	V _H	3.3		0.10		V	$V_T^+ - V_T^-$
Trysteresis voltage	VH	5.0		0.15		V	V1 - V1
		Min to Max	V _{CC} -0.1				$I_{OH} = -50 \mu A$
	V _{OH}	3.0	2.48				$I_{OH} = -6 \text{ mA}$
Output voltage		4.5	3.8			V	$I_{OH} = -12 \text{ mA}$
Output voltage	V _{OL}	Min to Max			0.1		$I_{OL} = 50 \mu A$
		3.0	_	_	0.44		$I_{OL} = 6 \text{ mA}$
		4.5	_	_	0.55		I _{OL} = 12 mA
Input current	I _{IN}	0 to 5.5	_	_	±1	μΑ	$V_{IN} = 5.5 \text{ V or GND}$
Quiescent	Icc	5.5		_	10	μА	$V_{IN} = V_{CC}$ or GND,
supply current	100	0.0			10	μΛ	$I_{O} = 0$
	ΔI_{CC}	5.5	_	_	1.5	mA	One input $V_{IN} = 3.4 \text{ V}$,
							other input V _{CC} or GND
Output leakage current	I _{OFF}	0	_	_	5	μΑ	V_{IN} or $V_O = 0$ to 5.5 V
Input capacitance	C _{IN}	5.0	_	2.5	_	pF	$V_{IN} = V_{CC}$ or GND

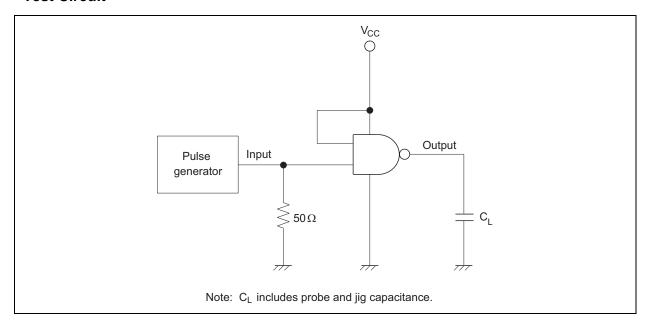
Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

Switching Characteristics

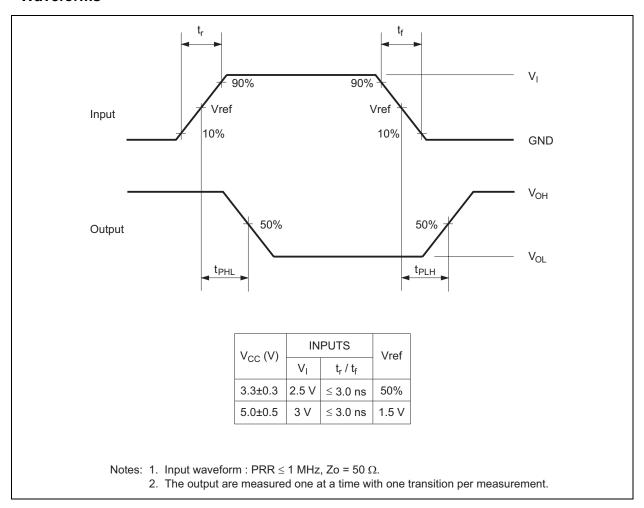
• $V_{CC} = 3.3 \pm 0.3 \text{ V}$

Item	Symbol	7	Γa = 25°C	;	Ta = -40	to 85°C	Unit	Test	FROM	ТО	
item	Syllibol	Min	Тур	Max	Min	Max	Offic	Conditions	(Input)	(Output)	
Propagation	t _{PLH}	_	7.0	10.0	1.0	12.0	ns	$C_L = 15 pF$	A or B	V	
delay time	t _{PHL}	_	7.5	12.0	1.0	14.0				C _L = 50 pF	AUID

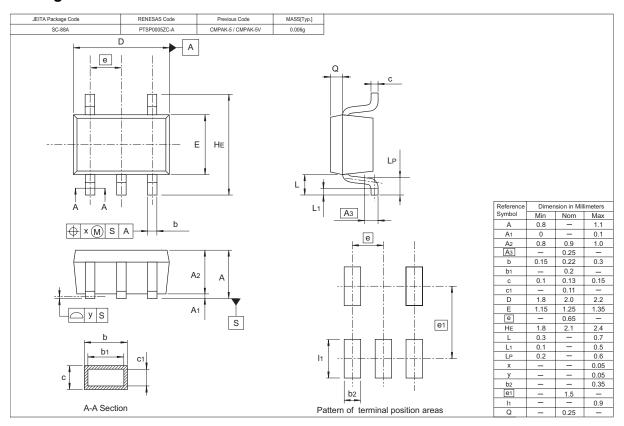
• $V_{CC} = 5.0 \pm 0.5 \text{ V}$

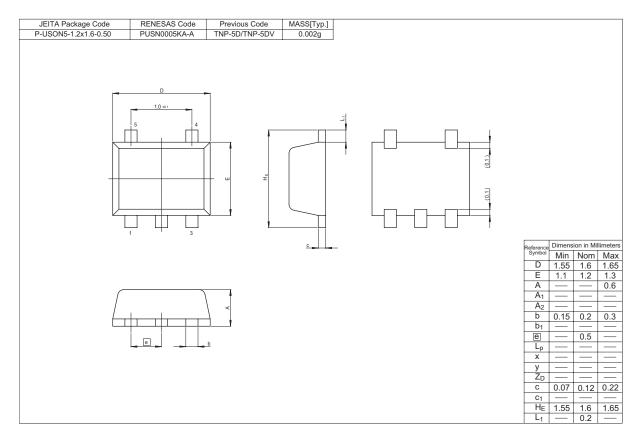

Item	Symbol		Ta = 25°C		Ta = -40 to 85°C		Unit	Test	FROM	то
item	Syllibol	Min	Тур	Max	Min	Max	Unit	Conditions	(Input)	(Output)
Propagation	t _{PLH}	_	5.0	6.9	1.0	8.0		$C_L = 15 pF$	A or B	
delay time	t _{PHL}	_	5.5	7.9	1.0	9.0	ns	$C_L = 50 pF$	AUID	I

Operating Characteristics


• $C_L = 50 \text{ pF}$

Item	Symbol	V _{CC} (V)		Ta = 25°C		Unit	Test Conditions	
item	Syllibol	VCC (V)	Min	Тур	Max	Onit	rest Conditions	
Power dissipation capacitance	C_{PD}	5.0	_	11.0	_	pF	f = 10 MHz	


Test Circuit



Waveforms

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

 Notes:

 1. This document is provided for reference purposes only so that Penesas customers may select the appropriate Renesas products for their use. Renesas neither makes in the selection of the provided for reference purposes only so that Penesas customers may select the appropriate Renesas products for their use. Renesas neither makes are all the secondary of the products of the secondary of completeness of the information in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document nor grants any license to any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of ways and application circuit examples. It can be applicable export control laws and included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information however, is subject to change without any prior notice. Before purchase or such as a function of the products of the comment of the products of the prod

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

L		