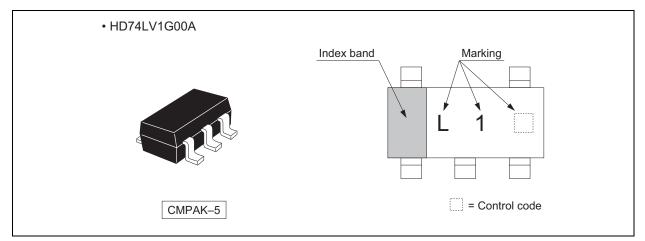
HD74LV1G00A

2-input NAND Gate

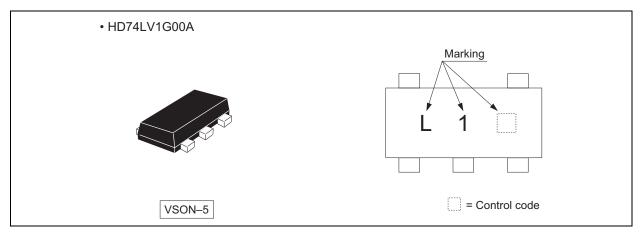
REJ03D0062-0800 Rev.8.00 Mar 21, 2008

Description

The HD74LV1G00A has two-input NAND gate in a 5 pin package. Low voltage and high-speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life.


Features

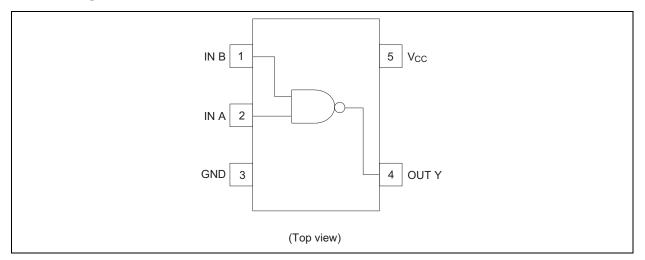
- The basic gate function is lined up as Renesas uni logic series.
- Supplied on emboss taping for high-speed automatic mounting.
- Electrical characteristics equivalent to the HD74LV00A Supply voltage range : 1.65 to 5.5 V Operating temperature range : -40 to +85°C
- All inputs V_{IH} (Max.) = 5.5 V (@V_{CC} = 0 V to 5.5 V) All outputs V_0 (Max.) = 5.5 V (@V_{CC} = 0 V)
- Output current $\pm 6 \text{ mA}$ (@V_{CC} = 3.0 V to 3.6 V), $\pm 12 \text{ mA}$ (@V_{CC} = 4.5 V to 5.5 V)
- All the logical input has hysteresis voltage for the slow transition.
- Ordering Information


Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74LV1G00ACME	CMPAK–5 pin	PTSP0005ZC-A (CMPAK-5V)	СМ	E (3000 pcs/reel)
HD74LV1G00AVSE	VSON–5 pin	PUSN0005KA-A (TNP-5DV)	VS	E (3000 pcs/reel)

Note: Please consult the sales office for the above package availability.

Outline and Article Indication

Outline and Article Indication


Function Table

Inp	Output Y			
A	В			
L	L	Н		
L	н	н		
Н	L	Н		
Н	Н	L		

H : High level

L : Low level

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	V _{cc}	-0.5 to 7.0	V	
Input voltage range *1	VI	-0.5 to 7.0	V	
Output voltage range *1, 2	N/	–0.5 to V _{CC} + 0.5	V	Output : H or L
Output voltage range	Vo	-0.5 to 7.0	v	V _{CC} : OFF
Input clamp current	l _{iK}	-20	mA	V ₁ < 0
Output clamp current	loк	±50	mA	$V_0 < 0$ or $V_0 > V_{CC}$
Continuous output current	lo	±25	mA	$V_{O} = 0$ to V_{CC}
Continuous current through V_{CC} or GND	I _{CC} or I _{GND}	±50	mA	
Maximum power dissipation at Ta = 25° C (in still air) ^{*3}	PT	200	mW	
Storage temperature	Tstg	-65 to 150	°C	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

- 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 2. This value is limited to 5.5 V maximum.
- 3. The maximum package power dissipation was calculated using a junction temperature of 150°C.

Recommended Operating Conditions

ltem	Symbol	Min	Max	Unit	Conditions			
Supply voltage range	V _{cc}	1.65	5.5	V				
Input voltage range	VI	0	5.5	V				
Output voltage range	Vo	0	Vcc	V				
		—	1		$V_{CC} = 1.65$ to 1.95 V			
	Le.	—	2		V _{CC} = 2.3 to 2.7 V			
	l _{oL}	—	6		V_{CC} = 3.0 to 3.6 V			
		—	12	- mA	$V_{CC} = 4.5$ to 5.5 V			
Output current		—	-1		V _{CC} = 1.65 to 1.95 V			
		—	-2		V_{CC} = 2.3 to 2.7 V			
	I _{ОН}	—	-6		$V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$ $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$			
		—	-12		V_{CC} = 4.5 to 5.5 V			
		0	300		V _{CC} = 1.65 to 1.95 V			
Input transition rise or fall rate	Δt / Δv	0	200	ns / V	V _{CC} = 2.3 to 2.7 V			
Input transition rise or fall rate	$\Delta t / \Delta v$	0	100	115 / V	V _{CC} = 3.0 to 3.6 V			
		0	20		V_{CC} = 4.5 to 5.5 V			
Operating free-air temperature	Ta	-40	85	°C				

Note: Unused or floating inputs must be held high or low.

Electrical Characteristic

• Ta = -40 to $85^{\circ}C$

Item	Symbol	V _{cc} (V) *	Min	Тур	Max	Unit	Test condition
		1.65 to 1.95	V _{CC} ×0.75	_	—		
	V	2.3 to 2.7	V _{CC} ×0.7	_	—		
	VIH	3.0 to 3.6	V _{CC} ×0.7	_	—		
Input voltage		4.5 to 5.5	V _{CC} ×0.7	_	—	V	
Input voltage		1.65 to 1.95	—	_	V _{CC} ×0.25	v	
	VIL	2.3 to 2.7	—	_	V _{CC} ×0.3		
	VIL	3.0 to 3.6	—	_	V _{CC} ×0.3		
		4.5 to 5.5	—	—	V _{CC} ×0.3		
		1.8	—	0.25	—		
Hysteresis voltage	V _H	2.5	—	0.30	—	V	$V_T^+ - V_T^-$
Hysteresis voltage	Vн	3.3	—	0.35	—	v	$v_{\uparrow} - v_{\uparrow}$
		5.0	—	0.45	—		
		Min to Max	V _{CC} -0.1	—	—		I _{OH} = –50 μA
		1.65	1.4	_	—		$I_{OH} = -1 \text{ mA}$
	V _{OH}	2.3	2.0	—	_		$I_{OH} = -2 \text{ mA}$
		3.0	2.48	—	—		I _{OH} = —6 mA
		4.5	3.8	—	—	V	I _{OH} = –12 mA
Output voltage		Min to Max	—	—	0.1	v	I _{OL} = 50 μA
		1.65	—	—	0.3		I _{OL} = 1 mA
	Vol	2.3	—	—	0.4		$I_{OL} = 2 \text{ mA}$
		3.0	—	—	0.44		I _{OL} = 6 mA
		4.5	_	—	0.55		I _{OL} = 12 mA
Input current	l _{in}	0 to 5.5	_	—	±1	μΑ	$V_{IN} = 5.5 \text{ V or GND}$
Quiescent supply current	Icc	5.5	_	_	10	μA	$V_{IN} = V_{CC} \text{ or } GND,$ $I_O = 0$
Output leakage current	I _{OFF}	0	_	_	5	μΑ	V_{IN} or $V_O = 0$ to 5.5 V
Input capacitance	CIN	3.3	—	2.5	—	pF	$V_{IN} = V_{CC}$ or GND

Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

Switching Characteristics

• $V_{CC} = 1.8 \pm 0.15 \text{ V}$

Item	Symbol	-	Га = 25°С	;	Ta = –40) to 85°C	Unit	Test	FROM	то
nem	Symbol	Min	Тур	Max	Min	Max	Unit	Conditions	(Input)	(Output)
Propagation	t _{PLH}	—	12.7	23.1	1.0	25.5	20	C _L = 15 pF	A or B	v
delay time	t _{PHL}		18.7	33.4	1.0	37.0	ns	C _L = 50 pF	AUID	I

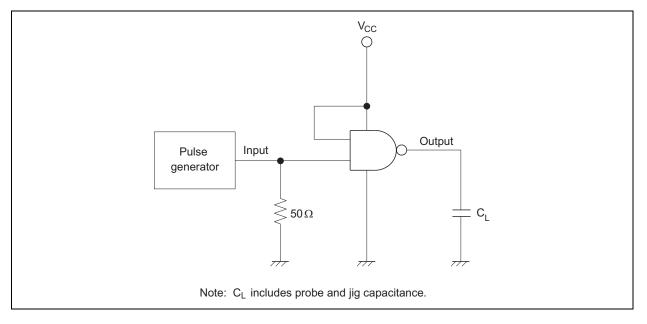
 $\bullet \quad V_{CC} = 2.5 \pm 0.2 \ V$

ltem	Symbol	٦	Га = 25°С	;	Ta = -40	to 85°C	Unit	Test	FROM	то
item	Symbol	Min	Тур	Max	Min	Max	Unit	Conditions	(Input)	(Output)
Propagation	t _{PLH}		7.1	12.9	1.0	15.0	20	C _L = 15 pF	A or B	V
delay time	t _{PHL}	_	9.6	16.6	1.0	20.0	ns	$C_L = 50 \text{ pF}$	AUB	I

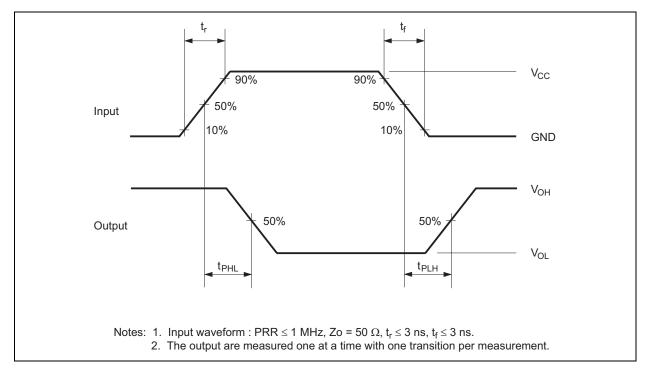
• $V_{CC} = 3.3 \pm 0.3 V$

Item	Symbol	-	Га = 25°С	;	Ta = -40	to 85°C	Unit	Test	FROM	то
nem	Symbol	Min	Тур	Max	Min	Max	Unit	Conditions	(Input)	(Output)
Propagation	t _{PLH}	—	5.0	7.9	1.0	9.5	20	C _L = 15 pF	A or B	V
delay time	t _{PHL}		6.9	11.4	1.0	13.0	ns	$C_L = 50 \text{ pF}$	AUD	ſ

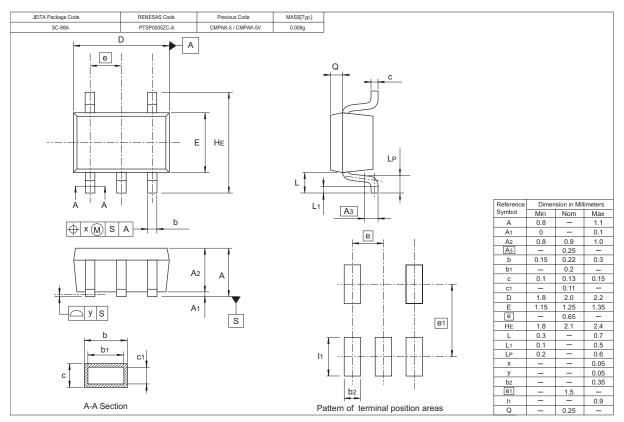
• VCC = 5.0 ± 0.5 V

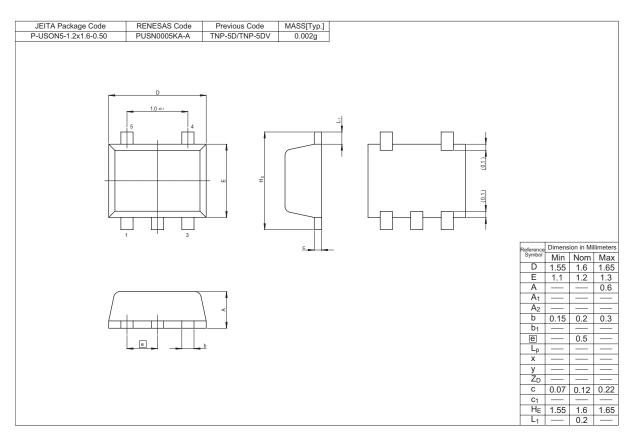

Item	Symbol	٦	Га = 25°С	;	Ta = -40) to 85°C	Unit	Test	FROM	то
item	Symbol	Min	Тур	Max	Min	Max	Unit	Conditions	(Input)	(Output)
Propagation	t _{PLH}		3.6	5.5	1.0	6.5	20	C _L = 15 pF	A or B	v
delay time	t _{PHL}	_	4.9	7.5	1.0	8.5	ns	C _L = 50 pF	AUD	I

Operating Characteristics


• $C_L = 50 \text{ pF}$

ltem	Symbol	V _{cc} (V)		Ta = 25°C		Unit	Test Conditions	
nem	Symbol	VCC(V)	Min	Тур	Max	Unit	Test conditions	
Power dissipation	C _{PD}	3.3	—	9.5	—	ρF	f = 10 MHz	
capacitance	CPD	5.0	—	11.0	—	рг		


Test Circuit



Waveforms

Package Dimensions

REJ03D0062-0800 Rev.8.00, Mar 21, 2008 Page 7 of 7 RENESAS

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- <section-header>

 Image: States

 Present States

 States

 Present State

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510