DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4543B MSI BCD to 7-segment latch/decoder/driver

Product specification
File under Integrated Circuits, IC04

DESCRIPTION

The HEF4543B is a BCD to 7 -segment latch/decoder/driver for liquid crystal and LED displays. It has four address inputs (D_{A} to D_{D}), an active HIGH latch disable input (LD), an active HIGH blanking input (BI), an active HIGH phase input (PH) and seven buffered segment outputs (O_{a} to O_{g}).

Fig. 1 Functional diagram.

PINNING

D_{A} to D_{D}	address (data) inputs
PH	phase input (active HIGH)
BI	blanking input (active HIGH)
LD	latch disable input (active HIGH)
O_{a} to O_{g}	segment outputs

The circuit provides the function of a 4-bit storage latch and an 8-4-2-1 BCD to 7 -segment decoder/driver. It can invert the logic levels of the output combination. The phase (PH), blanking (BI) and latch disable (LD) inputs are used to reverse the function table phase, blank the display and store a BCD code, respectively.

For liquid crystal displays a square-wave is applied to PH and the electrical common back-plane of the display. The outputs of the device are directly connected to the segments of the liquid crystal.

Fig. 2 Pinning diagram.
HEF4543BP(N): \quad 16-lead DIL; plastic (SOT38-1)
HEF4543BD(F): \quad 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4543BT(D): \quad 16-lead SO; plastic (SOT109-1)
(): Package Designator North America
(): Package Designator North America

Fig. 3 Segment designation.

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

FUNCTION TABLE

INPUTS							OUTPUTS							
LD	BI	PH ${ }^{(4)}$	D_{D}	D_{C}	D_{B}	$\mathrm{D}_{\text {A }}$	O_{a}	O_{b}	O_{c}	O_{d}	O_{e}	O_{f}	O_{g}	DISPLAY
X	H	L	X	X	X	X	L	L	L	L	L	L	L	blank
H	L	L	L	L	L	L	H	H	H	H	H	H	L	0
H	L	L	L	L	L	H	L	H	H	L	L	L	L	1
H	L	L	L	L	H	L	H	H	L	H	H	L	H	2
H	L	L	L	L	H	H	H	H	H	H	L	L	H	3
H	L	L	L	H	L	L	L	H	H	L	L	H	H	4
H	L	L	L	H	L	H	H	L	H	H	L	H	H	5
H	L	L	L	H	H	L	H	L	H	H	H	H	H	6
H	L	L	L	H	H	H	H	H	H	L	L	L	L	7
H	L	L	H	L	L	L	H	H	H	H	H	H	H	8
H	L	L	H	L	L	H	H	H	H	H	L	H	H	9
H	L	L	H	L	H	L	L	L	L	L	L	L	L	blank
H	L	L	H	L	H	H	L	L	L	L	L	L	L	blank
H	L	L	H	H	L	L	L	L	L	L	L	L	L	blank
H	L	L	H	H	L	H	L	L	L	L	L	L	L	blank
H	L	L	H	H	H	L	L	L	L	L	L	L	L	blank
H	L	L	H	H	H	H	L	L	L	L	L	L	L	blank
L	L	L	X	X	X	X			(5)					(5)
as above		H	as above				inverse of above							as above

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
2. $L=L O W$ state (the less positive voltage)
3. $X=$ state is immaterial
4. For liquid crystal displays, apply a square-wave to PH .

For common cathode LED displays, select PH = LOW.
For common anode LED displays, select PH = HIGH.
5. Depends upon the BCD-code previously applied when $\mathrm{LD}=\mathrm{HIGH}$.

Fig. 5 Display.

BCD to 7-segment latch/decoder/driver

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

BCD to 7-segment latch/decoder/driver

	$\mathbf{V}_{\mathbf{D D}}$ \mathbf{V}	TYPICAL FORMULA FOR $\mathbf{P}(\mu \mathrm{W})$	
Dynamic power	5	$2200 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$10400 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$33000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{O}}=$ output freq. (MHz)
		$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)	
			$\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

APPLICATION INFORMATION

Some examples of applications for the HEF4543B are:

- Driving LCD displays.
- Driving LED displays.
- Driving fluorescent displays.
- Driving incandescent displays.
- Driving gas discharge displays.

Fig. 6 Connection to common cathode LED display readout.

Fig. 7 Connection to common anode LED display readout.

Note to Figs 6 and 7: bipolar transistors may be added for gain where $V_{D D} \leq 10 \vee$ or $\mathrm{I}_{\mathrm{out}} \geq 10 \mathrm{~mA}$.

Fig. 8 Connection to liquid crystal (LCD) display readout.

Fig. 9 Connection to incandescent display readout.

Fig. 10 Connection to gas discharge display readout.

Fig. 11 Connection to fluorescent display readout.

