INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

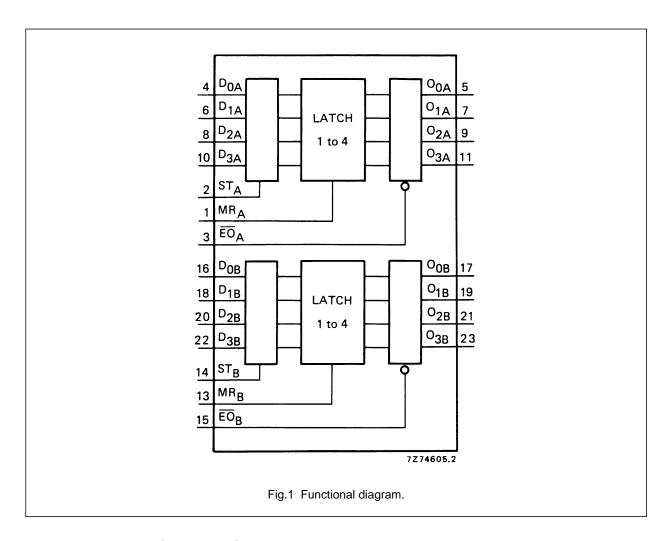
- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4508B MSI Dual 4-bit latch

Product specification
File under Integrated Circuits, IC04

January 1995

Dual 4-bit latch

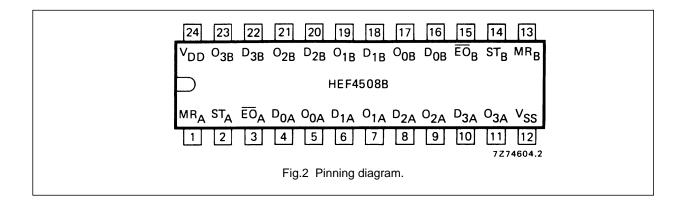

HEF4508B MSI

DESCRIPTION

The HEF4508B is a dual 4-bit latch, which consists of two identical independent 4-bit latches with separate strobe (ST), master reset (MR), output-enable input ($\overline{\text{EO}}$) and 3-state outputs (O).

With the ST input in the HIGH state, the data on the \overline{D} inputs appear at the corresponding outputs provided \overline{EO} is LOW. Changing the ST input to the LOW state locks the

data into the latch. A HIGH on the reset line forces the outputs to a LOW level regardless of the state of the ST input. The 3-state outputs are controlled by the output-enable input. A HIGH on \overline{EO} causes the outputs to assume a high impedance OFF-state regardless of other input conditions. This allows the outputs to interface directly with bus orientated systems. When \overline{EO} is LOW the contents of the latches are available at the outputs.



FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

Philips Semiconductors Product specification

Dual 4-bit latch HEF4508B MSI

HEF4508BP(N): 24-lead DIL; plastic

(SOT101-1)

HEF4508BD(F): 24-lead DIL; ceramic (cerdip)

(SOT94)

HEF4508BT(D): 24-lead SO; plastic

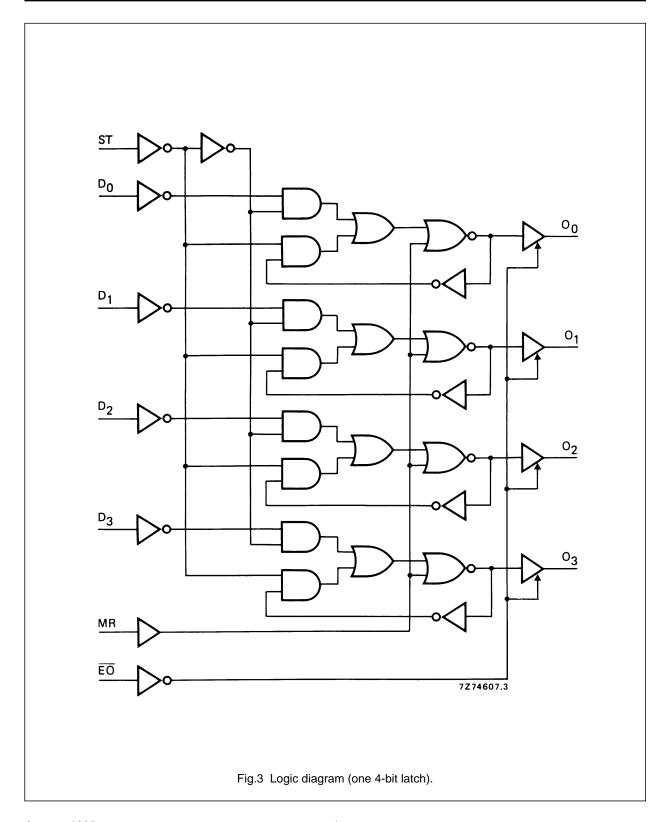
(SOT137-1)

(): Package Designator North America

PINNING

 $\begin{array}{lll} D_{0A} \text{ to } D_{3A}, \, D_{0B} \text{ to } D_{3B} & \text{data inputs} \\ ST_A \, , \, ST_B & \text{strobe inputs} \\ \hline MR_A, \, MR_B & \text{master reset inputs} \\ \hline \overline{EO}_A, \, \overline{EO}_B & \text{output enable inputs} \\ O_{0A} \text{ to } O_{3A}, \, O_{0B} \text{ to } O_{3B} & \text{3-state outputs} \end{array}$

FUNCTION TABLE


	INPUTS					
MR	ST	ΕO	D _n	On		
L	Н	L	Н	Н		
L	Н	L	L	L		
L	L	L	Х	latched		
Н	X	L	Х	L		
X	Х	Н	Х	Z		

Notes

- 1. H = HIGH state (the more positive voltage)
 - L = LOW state (the less positive voltage)
 - X = state is immaterial
 - Z = high impedance OFF state

Dual 4-bit latch

HEF4508B MSI

Dual 4-bit latch

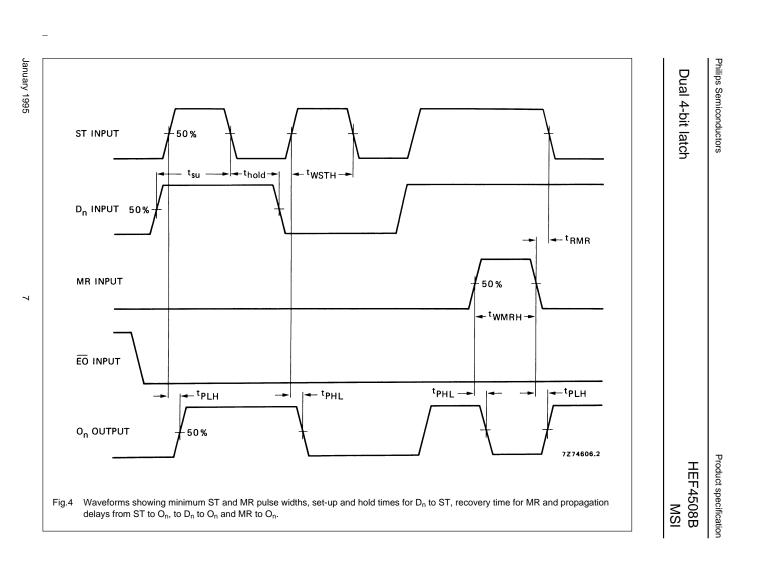
HEF4508B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns; see also waveforms Fig.4.

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$ST \rightarrow O_n$	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
$D_n \rightarrow O_n$	5			95	190	ns	68 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
	5			95	190	ns	68 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$MR \rightarrow O_n$	5			100	200	ns	73 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
3-state propagation							
delays							
Output enable times							
$\overline{EO} o O_n$	5			45	90	ns	
HIGH	10	t _{PZH}		20	40	ns	
	15			18	36	ns	
	5			45	90	ns	
LOW	10	t _{PZL}		20	40	ns	
	15			18	36	ns	
Output disable times							
$\overline{EO} o O_n$	5			35	70	ns	
HIGH	10	t _{PHZ}		20	40	ns	
	15			18	36	ns	
	5			45	90	ns	
LOW	10	t _{PLZ}		20	40	ns	
	15		1	18	36	ns	

Dual 4-bit latch HEF4508B MSI


AC CHARACTERISTICS

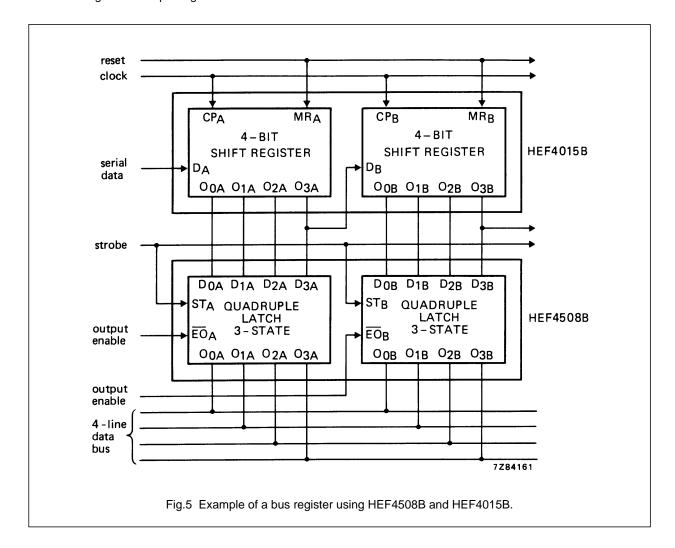
 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.	
Minimum ST	5		50	25	ns	
pulse width; HIGH	10	t _{WSTH}	30	15	ns	
	15		20	10	ns	
Minimum MR pulse	5		40	20	ns	
width; HIGH	10	t _{WMRH}	24	12	ns	
	15		20	10	ns	
Recovery time	5		20	0	ns	
for MR	10	t _{RMR}	20	0	ns	see also waveforms Fig.4
	15		15	0	ns	
Set-up times	5		35	10	ns	
$D_n \rightarrow ST$	10	t _{su}	25	5	ns	
	15		20	0	ns	
Hold times	5		20	0	ns	
$D_n \rightarrow ST$	10	t _{hold}	20	0	ns	
	15		15	0	ns	

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	2 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	9 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	25 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L)$ = sum of outputs
			V _{DD} = supply voltage (V)

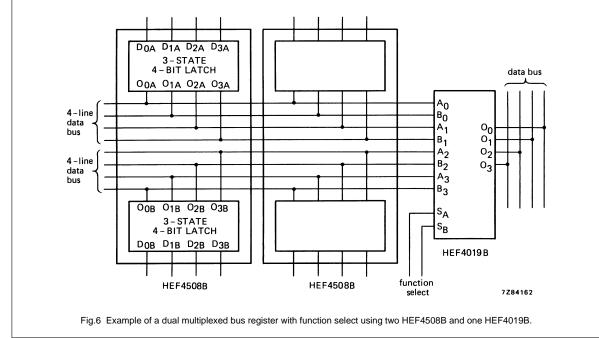
January 1995 6

Philips Semiconductors Product specification


Dual 4-bit latch

HEF4508B MSI

APPLICATION INFORMATION


Some examples of application for the HEF4508B are:

- Buffer storage
- · Holding registers
- · Data storage and multiplexing

January 1995

Product specification

FUNCTION SELECT

SA	S _B	FUNCTION
L	L	inhibit (all L)
Н	L	select A bus
L	Н	select B bus
Н	Н	A ₁ + B ₁