HEF4094B

8-stage shift-and-store register

Rev. 08 — 2 April 2010

Product data sheet

1. General description

The HEF4094B is an 8-stage serial shift register. It has a storage latch associated with each stage for strobing data from the serial input to parallel buffered 3-state outputs QP0 to QP7. The parallel outputs may be connected directly to common bus lines. Data is shifted on positive-going clock transitions. The data in each shift register stage is transferred to the storage register when the strobe (STR) input is HIGH. Data in the storage register appears at the outputs whenever the output enable (OE) signal is HIGH.

Two serial outputs (QS1 and QS2) are available for cascading a number of HEF4094B devices. Serial data is available at QS1 on positive-going clock edges to allow high-speed operation in cascaded systems with a fast clock rise time. The same serial data is available at QS2 on the next negative going clock edge. This is used for cascading HEF4094B devices when the clock has a slow rise time.

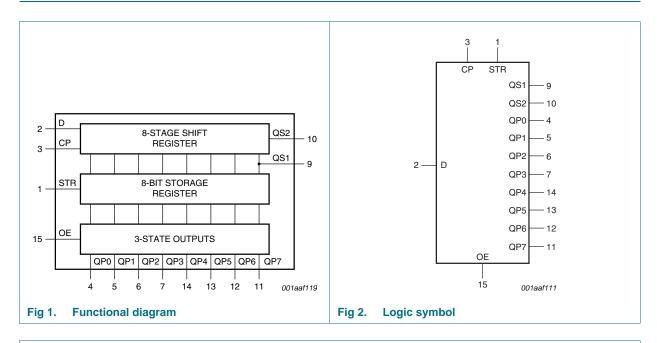
It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to V_{DD} , V_{SS} , or another input. It is also suitable for use over the industrial (–40 °C to +85 °C) and automotive (–40 °C to +125 °C) temperature ranges.

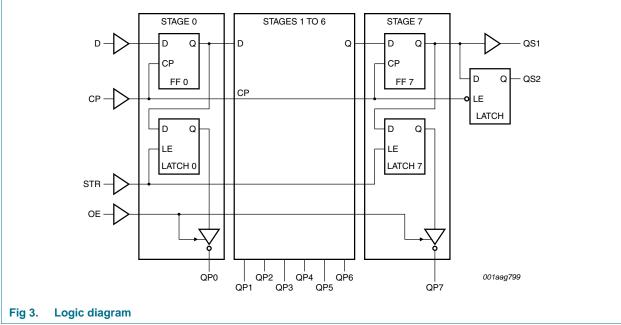
2. Features and benefits

- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Operates across the automotive temperature range –40 °C to +125 °C
- Complies with JEDEC standard JESD 13-B

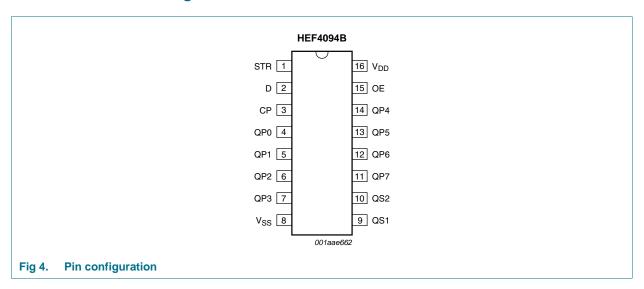
3. Ordering information

Table 1. Ordering information


All types operate from $-40~^{\circ}\text{C}$ to $+125~^{\circ}\text{C}$.


Type number	Package								
	Name	Description	Version						
HEF4094BP	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4						
HEF4094BT	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1						
HEF4094BTS	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1						

8-stage shift-and-store register


4. Functional diagram

5. Pinning information

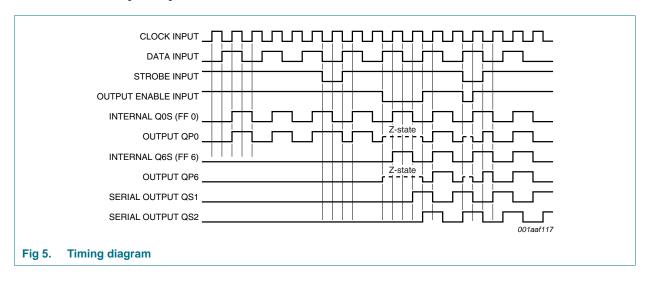
5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
STR	1	strobe input
D	2	data input
СР	3	clock input
QP0 to QP7	4, 5, 6, 7, 14, 13, 12, 11	parallel output
V _{SS}	8	ground supply voltage
QS1	9	serial output
QS2	10	serial output
OE	15	output enable input
V_{DD}	16	supply voltage

6. Functional description


Table 3. Function table[1]

Inputs	Inputs				utputs	Serial ou	Serial outputs	
СР	OE	STR	D	QP0	QPn	QS1	QS2	
\uparrow	L	X	X	Z	Z	Q6S	NC	
\downarrow	L	X	Χ	Z	Z	NC	Q7S	
\uparrow	Н	L	Χ	NC	NC	Q6S	NC	
\uparrow	Н	Н	L	L	QPn –1	Q6S	NC	
\uparrow	Н	Н	Н	Н	QPn –1	Q6S	NC	
\downarrow	Н	Н	Н	NC	NC	NC	Q7S	

^[1] At the positive clock edge, the information in the 7th register stage is transferred to the 8th register stage and the QSn outputs.

Q6S = the data in register stage 6 before the LOW to HIGH clock transition;

Q7S = the data in register stage 7 before the HIGH to LOW clock transition.

H = HIGH voltage level; L = LOW voltage level; X = don't care;

 $[\]uparrow$ = positive-going transition; \downarrow = negative-going transition;

Z = HIGH-impedance OFF-state; NC = no change;

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{SS} = 0 \text{ V}$ (ground).

					-
Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+18	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{DD} + 0.5 \text{ V}$	-	±10	mA
VI	input voltage		-0.5	$V_{DD} + 0.5$	V
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{DD} + 0.5 \text{ V}$	-	±10	mA
I _{I/O}	input/output current		-	±10	mA
I _{DD}	supply current		-	50	mA
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	ambient temperature		-40	+125	°C
P _{tot}	total power dissipation	DIP16	<u>[1]</u> -	750	mW
		SO16	<u>[2]</u> _	500	mW
Р	power dissipation	per output	-	100	mW

^[1] For DIP16 packages: above T_{amb} = 70 °C, P_{tot} derates linearly with 12 mW/K.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage		3	-	15	V
VI	input voltage		0	-	V_{DD}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{DD} = 5 V$	-	-	3.75	μs/V
		V _{DD} = 10 V	-	-	0.5	μs/V
		V _{DD} = 15 V	-	-	0.08	μs/V

8-stage shift-and-store register

^[2] For SO16 packages: above $T_{amb} = 70 \, ^{\circ}\text{C}$, P_{tot} derates linearly with 8 mW/K.

8-stage shift-and-store register

9. Static characteristics

Table 6. Static characteristics

 $V_{SS} = 0$ V; $V_{I} = V_{SS}$ or V_{DD} ; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	$T_{amb} =$	-40 °C	T _{amb} =	+25 °C	T _{amb} =	+85 °C	T _{amb} = +125 °C		Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level	$ I_{O} < 1 \mu A$	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
	input voltage		10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
V_{IL}	LOW-level	$ I_{O} < 1 \mu A$	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
	input voltage		10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
V_{OH}	HIGH-level	$ I_O < 1 \mu A$	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
	output voltage		10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
		15 V	14.95	-	14.95	-	14.95	-	14.95	-	V	
V _{OL} LOW-level	$ I_{O} < 1 \mu A$	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V	
	output voltage		10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
I _{OH} HIGH-level		$V_0 = 2.5 \text{ V}$	5 V	-1.7	-	-1.4	-	-1.1	-	-1.1	-	mΑ
	output current	V _O = 4.6 V	5 V	-0.64	-	-0.5	-	-0.36	-	-0.36	-	mΑ
		$V_0 = 9.5 \ V$	10 V	-1.6	-	-1.3	-	-0.9	-	-0.9	-	mΑ
		V _O = 13.5 V	15 V	-4.2	-	-3.4	-	-2.4	-	-2.4	-	mΑ
I_{OL}	LOW-level	$V_O = 0.4 V$	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mΑ
	output current	$V_0 = 0.5 \ V$	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mΑ
		$V_0 = 1.5 \text{ V}$	15 V	4.2	-	3.4	-	2.4	-	2.4	-	mΑ
I _{OZ}	OFF-state output current	QPn output is HIGH; V _O = 15 V	15 V	-	0.4	-	0.4	-	12	-	12	μА
lı	input leakage current		15 V	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μΑ
I_{DD}	supply current	all valid input	5 V	-	5	-	5	-	150	-	150	μΑ
		combinations; I _O = 0 A	10 V	-	10	-	10	-	300	-	300	μΑ
		10 – 0 A	15 V	-	20	-	20	-	600	-	600	μΑ
Cı	input capacitance			-	-	-	7.5	-	-	-	-	pF

8-stage shift-and-store register

10. Dynamic characteristics

Table 7. Dynamic characteristics

 $V_{SS} = 0$ V; $T_{amb} = 25$ °C; for test circuit see <u>Figure 10</u>; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula	Min	Тур	Max	Unit
t_{PHL}	HIGH to LOW	CP to QS1;	5 V	108 ns + (0.55 ns/pF) C _L	-	135	270	ns
	propagation delay	see <u>Figure 6</u>	10 V	54 ns + (0.23 ns/pF) C _L	-	65	130	ns
			15 V	42 ns + (0.16 ns/pF) C _L	-	50	100	ns
		CP to QS2;	5 V	78 ns + (0.55 ns/pF) C _L	-	105	210	ns
		see <u>Figure 6</u>	10 V	39 ns + (0.23 ns/pF) C _L	-	50	100	ns
			15 V	32 ns + (0.16 ns/pF) C _L	-	40	80	ns
		CP to QPn;	5 V	138 ns + (0.55 ns/pF) C _L	-	165	330	ns
		see Figure 6	10 V	64 ns + (0.23 ns/pF) C _L	-	75	150	ns
			15 V	47 ns + (0.16 ns/pF) C _L	-	55	110	ns
		STR to QPn;	5 V	83 ns + (0.55 ns/pF) C _L	-	110	220	ns
		see Figure 7	10 V	39 ns + (0.23 ns/pF) C _L	-	50	100	ns
			15 V	27 ns + (0.16 ns/pF) C _L	-	35	70	ns
t _{PLH}	LOW to HIGH	•	5 V	[1] 78 ns + (0.55 ns/pF) C _L	-	105	210	ns
	propagation delay,	see <u>Figure 6</u>	10 V	39 ns + (0.23 ns/pF) C _L	-	50	100	ns
			15 V	32 ns + (0.16 ns/pF) C _L	-	40	80	ns
		CP to QS2;	5 V	78 ns + (0.55 ns/pF) C _L	-	105	210	ns
		see <u>Figure 6</u>	10 V	39 ns + (0.23 ns/pF) C _L	-	50	100	ns
			15 V	32 ns + (0.16 ns/pF) C _L	-	40	80	ns
		CP to QPn;	5 V	123 ns + (0.55 ns/pF) C _L	-	150	300	ns
		see <u>Figure 6</u>	10 V	59 ns + (0.23 ns/pF) C _L	-	70	140	ns
			15 V	47 ns + $(0.16 \text{ ns/pF}) \text{ C}_{L}$	-	55	110	ns
		STR to QPn;	5 V	73 ns + (0.55 ns/pF) C _L	-	100	200	ns
		see <u>Figure 7</u>	10 V	34 ns + (0.23 ns/pF) C _L	-	45	90	ns
			15 V	27 ns + (0.16 ns/pF) C_L	-	35	70	ns
t _t	transition time		5 V	10 ns + (1.00 ns/pF) C _L	-	60	120	ns
			10 V	9 ns + (0.42 ns/pF) C_L	-	30	60	ns
			15 V	6 ns + (0.28 ns/pF) C _L	-	20	40	ns
t_{PZH}	OFF-state to HIGH	OE to QPn;	5 V		-	40	80	ns
	propagation delay	see <u>Figure 8</u>	10 V		-	25	50	ns
			15 V		-	20	40	ns
t _{PZL}	OFF-state to LOW	OE to QPn;	5 V		-	40	80	ns
	propagation delay	see Figure 8	10 V		-	25	50	ns
			15 V		-	20	40	ns
t_{PHZ}	HIGH to OFF-state	OE to QPn;	5 V		-	75	150	ns
	propagation delay	see Figure 8	10 V		-	40	80	ns
			15 V		-	30	60	ns

HEF4094B_

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

8-stage shift-and-store register

 Table 7.
 Dynamic characteristics ...continued

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ °C}$; for test circuit see <u>Figure 10</u>; unless otherwise specified.

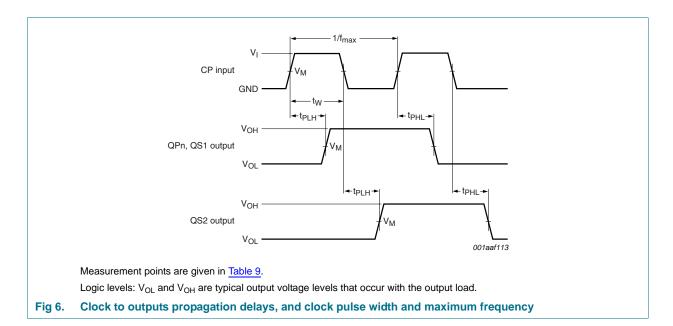
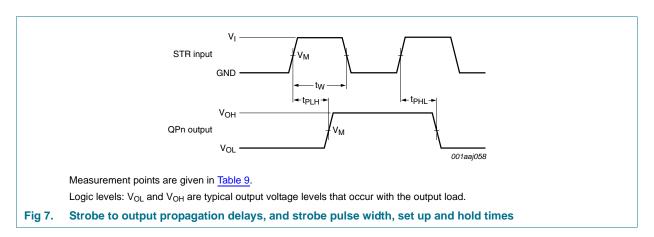
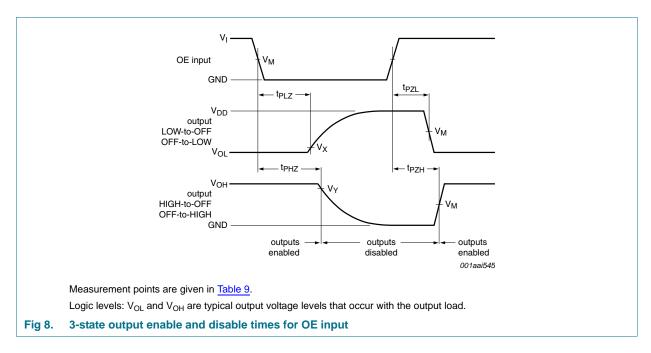
Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula	Min	Тур	Max	Unit
t_{PLZ}	LOW to OFF-state	OE to QPn; see <u>Figure 8</u>	5 V		-	80	160	ns
	propagation delay		10 V		-	40	80	ns
			15 V		-	30	60	ns
t _{su}	set-up time	D to CP;	5 V		60	30	-	ns
		see Figure 9	10 V		20	10	-	ns
			15 V		15	5	-	ns
t _h	hold time	D to CP;	5 V		+5	-15	-	ns
	see Figure 9	10 V		20	5	-	ns	
			15 V		20	5	-	ns
t_{W}	pulse width	minimum LOW clock pulse;	5 V		60	30	-	ns
			10 V		30	15	-	ns
		see Figure 6	15 V		24	12	-	ns
		minimum HIGH	5 V		40	20	-	ns
		strobe pulse;	10 V		30	15	-	ns
		see Figure 7	15 V		24	12	-	ns
f _{max}	maximum frequency	see <u>Figure 6</u>	5 V		5	10	-	MHz
			10 V		11	22	-	MHz
			15 V		14	28	-	MHz

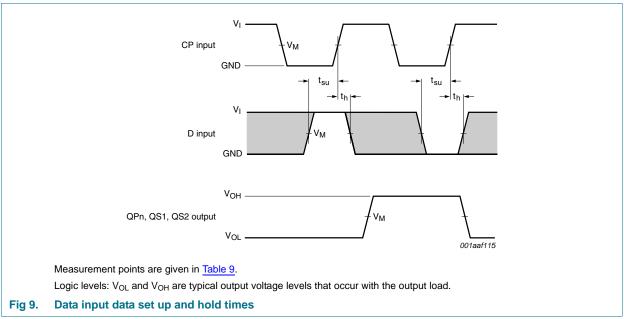
^[1] The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (C_L in pF).

Table 8. Dynamic power dissipation $V_{SS} = 0 \ V; \ t_r = t_f \le 20 \ ns; \ T_{amb} = 25 \ ^{\circ}C.$

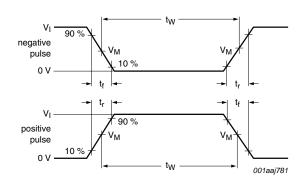
Symbol	Parameter	V_{DD}	Typical formula for P _D (μW)	where:
P_D	dynamic power	5 V	$P_D = 2100 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}{}^2$	f_i = input frequency in MHz,
dissipation		10 V	$P_D = 9700 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$	f _o = output frequency in MHz,
		15 V	$P_D = 26000 \times f_i + \Sigma (f_0 \times C_L) \times V_{DD}^2$	C_L = output load capacitance in pF,
				V_{DD} = supply voltage in V,
				$\Sigma(f_0 \times C_L)$ = sum of the outputs.

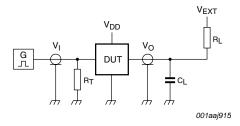
11. Waveforms


Table 9. Measurement points

Supply voltage	Input	Output					
V_{DD}	V_{M}	V _M	V _X	V _Y			
5 V to 15 V	0.5V _{DD}	0.5V _{DD}	0.1V _{DD}	0.9V _{DD}			





8-stage shift-and-store register

a. Input waveform

b. Test circuit

Test data is given in Table 10.

Definitions for test circuit:

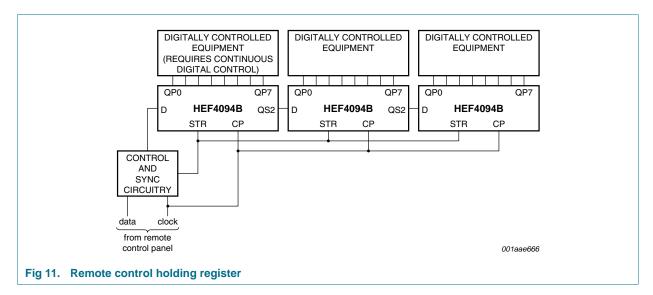
DUT = Device Under Test.

 C_L = load capacitance including jig and probe capacitance.

 R_L = load resistance.

 R_T = termination resistance should be equal to the output impedance Z_o of the pulse generator.

Fig 10. Test circuit

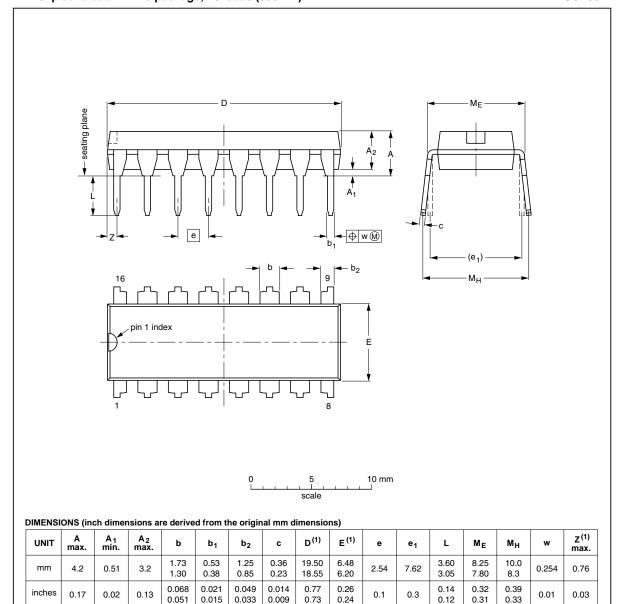

Table 10. Test data

Supply voltage	y voltage Input				Load		
V_{DD}	VI	t _r , t _f	t _{PHL} , t _{PLH}	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	CL	R_L
5 V to 15 V	V _{SS} or V _{DD}	≤ 20 ns	open	V _{SS}	V_{DD}	50 pF	1 kΩ

12. Application information

Some examples of applications for the HEF4094B are:

- Serial-to-parallel data conversion
- · Remote control holding register



Product data sheet

13. Package outline

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

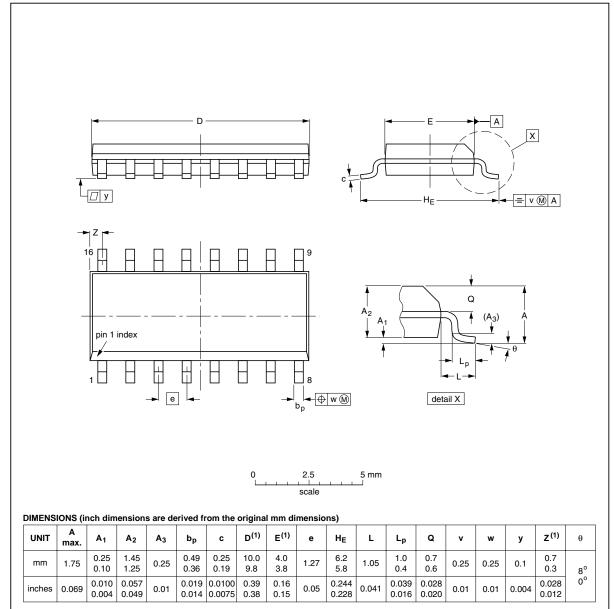
Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ICCUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT38-4						95-01-14 03-02-13	

Fig 12. Package outline SOT38-4 (DIP16)

HEF4094B_8 All information provided in this document is subject to legal disclaimers.


© NXP B.V. 2010. All rights reserved.

Product data sheet

Rev. 08 — 2 April 2010

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	EC JEDEC JEITA			PROJECTION	1330E DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Fig 13. Package outline SOT109-1 (SO16)

HEF4094B_8 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

Product data sheet

Rev. 08 — 2 April 2010

SOT338-1

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

detail X

0 2.5 5 mm scale

DIMENSIONS (mm are the original dimensions)

						-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ICCUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT338-1		MO-150				99-12-27 03-02-19	

Fig 14. Package outline SOT338-1 (SSOP16)

HEF4094B_8 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

Product data sheet

Rev. 08 — 2 April 2010

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
HEF4094B_8	20100402	Product data sheet	-	HEF4094B_7
Modifications:	Section 4 "Fi	unctional diagram" Logic diagra	am corrected.	
HEF4094B_7	20091216	Product data sheet	-	HEF4094B_6
Modifications:		Naveforms" Figure 10 "Test cir Naveforms" Table 10 "Test data ed.	•	t _{PLZ} and t _{PZL}
HEF4094B_6	20091103	Product data sheet	-	HEF4094B_5
HEF4094B_5	20090728	Product data sheet	-	HEF4094B_4
HEF4094B_4	20081030	Product data sheet	-	HEF4094B_CNV_3
HEF4094B_CNV_3	19950101	Product specification	-	HEF4094B_CNV_2
HEF4094B_CNV_2	19950101	Product specification	-	-

8-stage shift-and-store register

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

4094B_8 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2010. All rights reserved.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors

HEF4094B

8-stage shift-and-store register

17. Contents

1	General description
2	Features and benefits
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description
6	Functional description 4
7	Limiting values 5
8	Recommended operating conditions 5
9	Static characteristics 6
10	Dynamic characteristics
11	Waveforms
12	Application information
13	Package outline
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks17
16	Contact information
17	Contents 10

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 2 April 2010 Document identifier: HEF4094B_8