HEF4053B

Triple single-pole double-throw analog switch Rev. 10 — 17 November 2011

Product data sheet

General description

The HEF4053B is a triple single-pole double-throw (SPDT) analog switch, suitable for use as an analog or digital multiplexer/demultiplexer. Each switch has a digital select input (Sn), two independent inputs/outputs (nY0 and nY1) and a common input/output (nZ). All three switches share an enable input (E). A HIGH on E causes all switches into the high-impedance OFF-state, independent of Sn.

V_{DD} and V_{SS} are the supply voltage connections for the digital control inputs (Sn and E). The V_{DD} to V_{SS} range is 3 V to 15 V. The analog inputs/outputs (nY0, nY1 and nZ) can swing between V_{DD} as a positive limit and V_{EE} as a negative limit. $V_{DD} - V_{EE}$ may not exceed 15 V. Unused inputs must be connected to V_{DD}, V_{SS}, or another input. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground). VEE and VSS are the supply voltage connections for the switches.

Features and benefits 2.

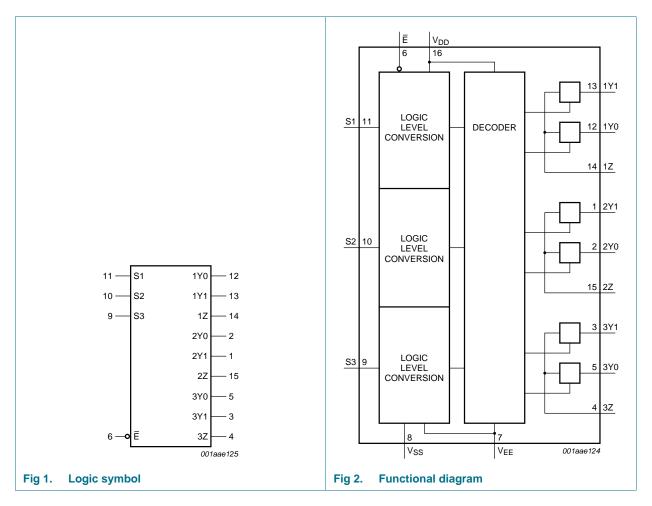
- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Specified from -40 °C to +125 °C
- Complies with JEDEC standard JESD 13-B

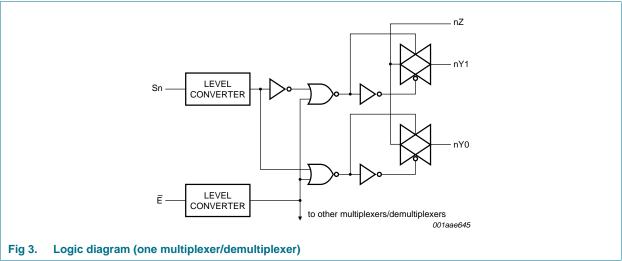
Applications

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

Ordering information

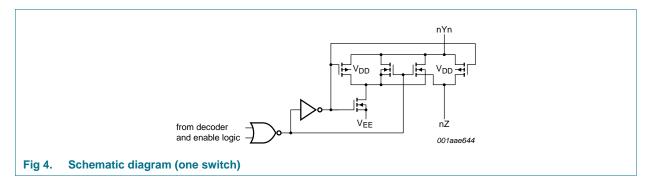
Table 1. **Ordering information**


All types operate from -40 °C to +125 °C.

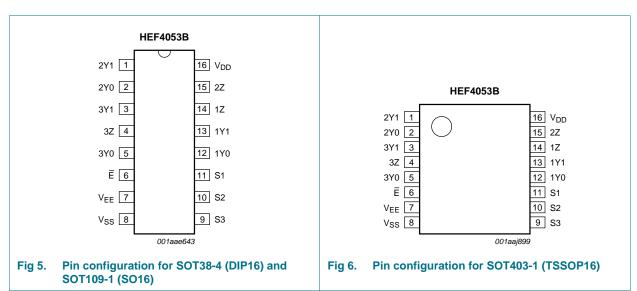

Type number	Package	ackage					
	Name	Description	Version				
HEF4053BP	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4				
HEF4053BT	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1				
HEF4053BTT	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				

Triple single-pole double-throw analog switch

5. Functional diagram



HEF4053B


All information provided in this document is subject to legal disclaimers.

Triple single-pole double-throw analog switch

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Ē	6	enable input (active LOW)
V _{EE}	7	supply voltage
V _{SS}	8	ground supply voltage
S1, S2, S3	11, 10, 9	select input
1Y0, 2Y0, 3Y0	12, 2, 5	independent input or output
1Y1, 2Y1, 3Y1	13, 1, 3	independent input or output
1Z, 2Z, 3Z	14, 15, 4	independent output or input
V_{DD}	16	supply voltage

HEF4053B

All information provided in this document is subject to legal disclaimers

Triple single-pole double-throw analog switch

7. Functional description

Table 3. Function table [1]

Inputs	Channel on	
Ē	Sn	
L	L	nY0 to nZ
L	Н	nY1 to nZ
Н	X	switches OFF

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{SS} = 0 \text{ V}$ (ground).

		9 , , , , ,		,	,
Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+18	V
V _{EE}	supply voltage	referenced to V _{DD}	<u>11</u> –18	+0.5	V
I _{IK}	input clamping current	pins Sn and \overline{E} ; V _I < -0.5 V or V _I > V _{DD} + 0.5 V	-	±10	mA
VI	input voltage		-0.5	$V_{DD} + 0.5$	V
I _{I/O}	input/output current		-	±10	mA
I _{DD}	supply current		-	50	mA
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	ambient temperature		-40	+125	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	<u>[2]</u>		
		DIP16 package	-	750	mW
		SO16 package	-	500	mW
		TSSOP16 package	-	500	mW
Р	power dissipation	per output	-	100	mW

^[1] To avoid drawing V_{DD} current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no V_{DD} current will flow out of terminals Y, and in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed V_{DD} or V_{EE}.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage	see Figure 7	3	-	15	V
VI	input voltage		0	-	V_{DD}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C


#EF4053B All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

^[2] For DIP16 package: P_{tot} derates linearly with 12 mW/K above 70 °C.
For SO16 package: P_{tot} derates linearly with 8 mW/K above 70 °C.
For TSSOP16 package: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

Triple single-pole double-throw analog switch

 Table 5.
 Recommended operating conditions ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\Delta t/\Delta V$	•	$V_{DD} = 5 V$	-	-	3.75	μs/V
	rate	V _{DD} = 10 V	-	-	0.5	μs/V
		V _{DD} = 15 V	-	-	0.08	μs/V

10. Static characteristics

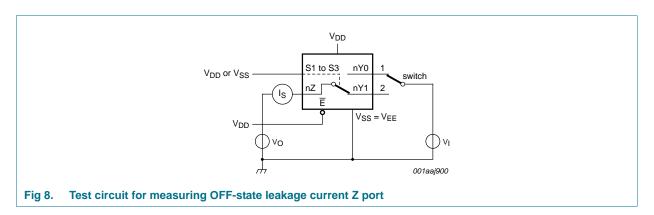
Table 6. Static characteristics

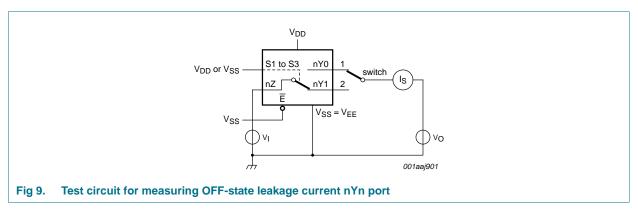
 $V_{SS} = V_{EE} = 0$ V; $V_I = V_{SS}$ or V_{DD} unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	T _{amb} =	–40 °C	T _{amb} =	25 °C	T _{amb} =	85 °C	T _{amb} =	125 °C	Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level	$ I_{O} < 1 \mu A$	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
	input voltage		10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
V _{IL}	LOW-level	I _O < 1 μA	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
	input voltage	ltage	10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
Iį	input leakage current		15 V	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{S(OFF)}	OFF-state leakage current	Z port; all channels OFF; see Figure 8	15 V	-	-	-	1000	-	-	-	-	nA
		Y port; per channel; see <u>Figure 9</u>	15 V	-	-	-	200	-	-	-	-	nA

HEF4053B

All information provided in this document is subject to legal disclaimers.


Triple single-pole double-throw analog switch


 Table 6.
 Static characteristics ...continued

 $V_{SS} = V_{EE} = 0$ V; $V_{I} = V_{SS}$ or V_{DD} unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	T _{amb} =	–40 °C	T _{amb} =	25 °C	T _{amb} =	85 °C	T _{amb} =	125 °C	Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
I_{DD}	supply current	$I_O = 0 A$	5 V	-	5	-	5	-	150	-	150	μΑ
			10 V	-	10	-	10	-	300	-	300	μΑ
			15 V	-	20	-	20	-	600	-	600	μΑ
C _I	input capacitance	Sn, \overline{E} inputs	-	-	-	-	7.5	-	-	-	-	pF

10.1 Test circuits

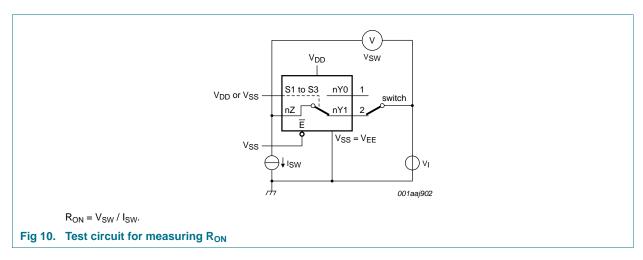
10.2 ON resistance

Table 7. ON resistance

 $T_{amb} = 25$ °C; $I_{SW} = 200~\mu A$; $V_{SS} = V_{EE} = 0~V$.

Symbol	Parameter	Conditions	$V_{DD} - V_{EE}$	Тур	Max	Unit
R _{ON(peak)}	ON resistance (peak)	$V_I = 0 V \text{ to } V_{DD} - V_{EE};$	5 V	350	2500	Ω
		see <u>Figure 10</u> and <u>Figure 11</u>	10 V	80	245	Ω
			15 V	60	175	Ω

HEF4053B


All information provided in this document is subject to legal disclaimers.

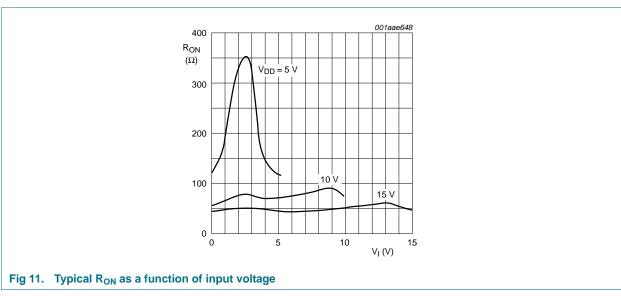

Triple single-pole double-throw analog switch

Table 7. ON resistance ...continued $T_{amb} = 25 \, ^{\circ}\text{C}$; $I_{SW} = 200 \, \mu\text{A}$; $V_{SS} = V_{EE} = 0 \, \text{V}$.

Symbol	Parameter	Conditions	$V_{DD} - V_{EE}$	Тур	Max	Unit
R _{ON(rail)}	ON resistance (rail)	V _I = 0 V; see <u>Figure 10</u> and <u>Figure 11</u>	5 V	115	340	Ω
			10 V	50	160	Ω
			15 V	40	115	Ω
		$V_{I} = V_{DD} - V_{EE};$		120	365	Ω
		see Figure 10 and Figure 11	10 V	65	200	Ω
			15 V	50	155	Ω
ΔR_{ON}	ON resistance mismatch	$V_I = 0 V \text{ to } V_{DD} - V_{EE}; \text{ see } \frac{\text{Figure 10}}{}$	5 V	25	-	Ω
	between channels		10 V	10	-	Ω
			15 V	5	-	Ω

10.2.1 ON resistance waveform and test circuit

HEF4053B All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

Product data sheet

Triple single-pole double-throw analog switch

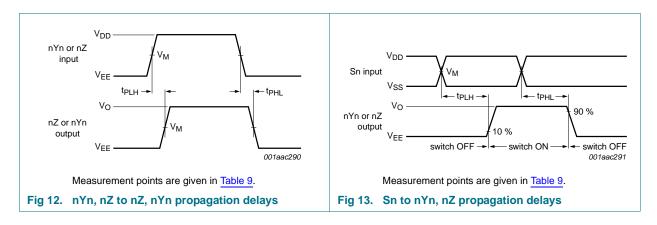

11. Dynamic characteristics

Table 8. Dynamic characteristics

 $T_{amb} = 25 \, ^{\circ}\text{C}$; $V_{SS} = V_{EE} = 0 \, \text{V}$; for test circuit see Figure 15.

The propagation delay Figure 13 Figure 14 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figu	Symbol	Parameter	Conditions	V_{DD}	Тур	Max	Unit
Sn to nYn, nZ; see Figure 13 5 V 200 400 ns 10 V 85 170 ns 15 V 65 130 ns 15 V 65 130 ns 15 V 65 130 ns 15 V 5 10 ns 15 V 65 130 ns 15 V 110 220 ns 15 V	t_{PHL}	HIGH to LOW propagation delay	nYn, nZ to nZ, nYn; see Figure 12	5 V	10	20	ns
Sn to nYn, nZ; see Figure 13 5 ∨ 200 400 ns 10 ∨ 85 170 ns 15 ∨ 65 130 ns 15 ∨ 5 10 ns 15 ∨ 5 10 ns 15 ∨ 65 130 ns 17 ∨ 15 ∨ 5 10 ns 15 ∨ 5 10 ns 15 ∨ 65 130 ns 15 ∨ 5 10 ns 15 ∨ 65 130 ns 15 ∨ 5 10 ns 15 ∨ 65 130 ns 15 ∨ 110 220 ns 15 ∨ 110 215 ns 10 ∨ 105 205 ns 10 ∨ 1				10 V	5	10	ns
t _{PLH} LOW to HIGH propagation delay t _{PLH} LOW to OFF-state to HIGH propagation delay t _{PLH} LOW to OFF-state to HIGH propagation delay t _{PLH} LOW to OFF-state to HIGH propagation delay t _{PLH} LOW to OFF-state to HIGH propagation delay t _{PLH} LOW to OFF-state to HIGH propagation delay t _{PLH} LOW to OFF-state propagation delay t _{PLH} LOW to OFF-state to HIGH propagation delay t _{PLH} LOW to OFF-state to LOW propagation delay t _{PLH} E to nYn, nZ; see Figure 14 t _{PLH} S ∨ 200 400 ns t _{PLH} T ≥ V				15 V	5	10	ns
t_PLH LOW to HIGH propagation delay t_PLH LOW to OFF-state to LOW to OFF-state to LOW propagation delay t_PLH LOW to OFF-state to LOW to OFF-state to LOW propagation delay t_PLH LOW to OFF-state to LOW to O			Sn to nYn, nZ; see Figure 13	5 V	200	400	ns
tpLH LOW to HIGH propagation delay nYn, nZ to nZ, nYn; see Figure 12 5 V 15 30 ns 10 V 5 10 ns 15 V 5 10 ns 15 V 5 10 ns 16 V 100 200 ns 16 V 100 200 ns 15 V 65 130 ns 16 V 115 230 ns 15 V 110 220 ns 15 V 110 220 ns 15 V 110 220 ns 16 V 95 190 ns 15 V 260 525 ns 16 V 95 190 ns 15 V 200 400 ns 15 V 200 400 <td< td=""><td></td><td></td><td>10 V</td><td>85</td><td>170</td><td>ns</td></td<>				10 V	85	170	ns
10 V 5 10 ns 15 V 275 555 ns 10 V 100 200 ns 15 V 65 130 ns 15 V 65 130 ns 15 V 65 130 ns 15 V 110 220 ns 15 V 110 250 ns 15 V 65 130 ns 15 V 100 245 ns 15 V 110 215 ns 15 V 110 215 ns 15 V 110 215 ns 15 V 100 205 ns 15 V 105 205 ns 105 V 105 205 105 V				15 V	65	130	ns
Sn to nYn, nZ; see Figure 13 5 V 275 555 ns	t _{PLH}	LOW to HIGH propagation delay	nYn, nZ to nZ, nYn; see Figure 12	5 V	15	30	ns
				10 V	5	10	ns
$t_{\text{PHZ}} = \begin{cases} \text{HIGH to OFF-state} \\ \text{propagation delay} \end{cases} = \begin{cases} E \text{ to nYn, nZ; see Figure 14} \\ E \text{ to nYn, nZ; see Figure 14} \\ E \text{ to nYn, nZ; see Figure 14} \end{cases} = \begin{cases} 5 \text{ V} & 200 & 400 & \text{ns} \\ 10 \text{ V} & 115 & 230 & \text{ns} \\ 15 \text{ V} & 110 & 220 & \text{ns} \end{cases}$ $t_{\text{PZH}} = \begin{cases} \text{OFF-state to HIGH} \\ \text{propagation delay} \end{cases} = \begin{cases} E \text{ to nYn, nZ; see Figure 14} \\ E \text{ to nYn, nZ; see Figure 14} \end{cases} = \begin{cases} 5 \text{ V} & 260 & 525 & \text{ns} \\ 10 \text{ V} & 95 & 190 & \text{ns} \\ 15 \text{ V} & 65 & 130 & \text{ns} \end{cases}$ $t_{\text{PLZ}} = \begin{cases} \text{LOW to OFF-state} \\ \text{propagation delay} \end{cases} = \begin{cases} E \text{ to nYn, nZ; see Figure 14} \\ E \text{ to nYn, nZ; see Figure 14} \end{cases} = \begin{cases} 5 \text{ V} & 200 & 400 & \text{ns} \\ 10 \text{ V} & 120 & 245 & \text{ns} \\ 15 \text{ V} & 110 & 215 & \text{ns} \end{cases}$ $t_{\text{PZL}} = \begin{cases} \text{OFF-state to LOW} \\ \text{propagation delay} \end{cases} = \begin{cases} E \text{ to nYn, nZ; see Figure 14} \end{cases} = \begin{cases} 5 \text{ V} & 280 & 565 & \text{ns} \\ 10 \text{ V} & 105 & 205 & \text{ns} \end{cases}$				15 V	5	10	ns
$t_{PHZ} = \frac{\text{HIGH to OFF-state}}{\text{propagation delay}} = \frac{\overline{E} \text{ to nYn, nZ; see } \underline{\text{Figure 14}}}{E \text{ to nYn, nZ; see } \underline{\text{Figure 14}}} = \frac{5 \text{ V}}{10 \text{ V}} = \frac{200}{115} = \frac{400}{100} = \frac{100}{100} = $			Sn to nYn, nZ; see Figure 13	5 V	275	555	ns
$ \frac{1}{10} = \frac{1}{10}$				10 V	100	200	ns
propagation delay 10 V 115 230 ns 15 V 110 220 ns 15 V 260 525 ns 10 V 95 190 ns 15 V 65 130 ns 15 V 65 130 ns 15 V 200 400 ns 15 V 120 245 ns 15 V 110 215 ns 15 V 110 215 ns 15 V 280 565 ns 15 V 105 205 ns				15 V	65	130	ns
$t_{PZH} \begin{array}{c} \text{OFF-state to HIGH} \\ \text{propagation delay} \end{array} \stackrel{\overline{E}}{=} \text{ to nYn, nZ; see } \stackrel{Figure 14}{=} \\ \begin{array}{c} \text{Figure 14} \\ \text{propagation delay} \end{array} \stackrel{\overline{E}}{=} \text{ to nYn, nZ; see } \stackrel{Figure 14}{=} \\ \begin{array}{c} \text{Figure 14} \\ \text{10 V} \\ \text{95} \\ \text{190} \\ \text{ns} \\ \\ \text{15 V} \end{array} \stackrel{\text{65}}{=} \begin{array}{c} \text{130} \\ \text{ns} \\ \\ \text{15 V} \\ \text{65} \\ \text{130} \\ \text{ns} \\ \\ \text{10 V} \\ \text{120} \\ \text{245} \\ \text{ns} \\ \\ \text{15 V} \\ \text{110} \\ \text{215} \\ \text{ns} \\ \\ \text{15 V} \\ \text{110} \\ \text{215} \\ \text{ns} \\ \\ \text{16 V} \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{ns} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{10 V} \\ \\ \text{105} \\ \text{205} \\ \text{10 V} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{10 V} \\ \\ \text{10 V} \\ \text{105} \\ \text{205} \\ \text{10 V} \\ \\ $	t _{PHZ}		E to nYn, nZ; see Figure 14	5 V	200	400	ns
$\begin{array}{c} t_{PZH} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		propagation delay		10 V	115	230	ns
tPLZ LOW to OFF-state propagation delay E to nYn, nZ; see Figure 14 propagation delay 5 V 200 400 ns tPZL OFF-state to LOW propagation delay E to nYn, nZ; see Figure 14 propagation delay 5 V 200 400 ns 15 V 110 215 ns 15 V 280 565 ns 10 V 105 205 ns				15 V	110	220	ns
$t_{PLZ} \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	t _{PZH}		E to nYn, nZ; see Figure 14	5 V	260	525	ns
$\begin{array}{c} \text{t}_{\text{PLZ}} & \text{LOW to OFF-state} \\ \text{propagation delay} \end{array} \qquad \begin{array}{c} \overline{\text{E}} \text{ to nYn, nZ; see} \ \underline{\text{Figure 14}} \\ 10 \ \text{V} \\ 120 \ 245 \ \text{ns} \\ \hline 15 \ \text{V} \\ 110 \ 215 \ \text{ns} \\ \hline \end{array}$		propagation delay		10 V	95	190	ns
propagation delay				15 V	65	130	ns
t _{PZL} OFF-state to LOW E to nYn, nZ; see Figure 14 propagation delay	t _{PLZ}		E to nYn, nZ; see Figure 14	5 V	200	400	ns
t _{PZL} OFF-state to LOW E to nYn, nZ; see Figure 14 5 V 280 565 ns 10 V 105 205 ns		propagation delay		10 V	120	245	ns
propagation delay 10 V 105 205 ns				15 V	110	215	ns
10 V 103 203 118	t _{PZL}		E to nYn, nZ; see Figure 14	5 V	280	565	ns
15 V 70 140 ns		propagation delay		10 V	105	205	ns
				15 V	70	140	ns

11.1 Waveforms and test circuit

HEF4053B

All information provided in this document is subject to legal disclaimers

Triple single-pole double-throw analog switch

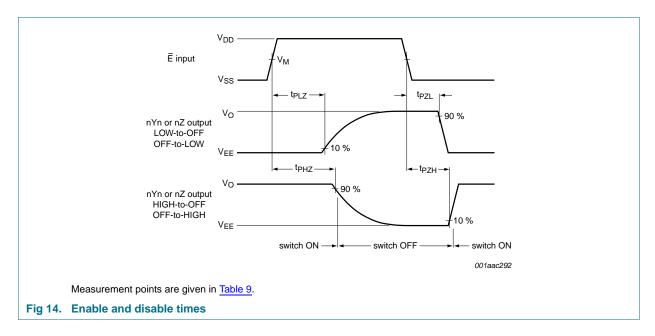


Table 9. Measurement points

Supply voltage	Input	Output
V_{DD}	V _M	V _M
5 V to 15 V	0.5V _{DD}	0.5V _{DD}

9 of 20

Triple single-pole double-throw analog switch

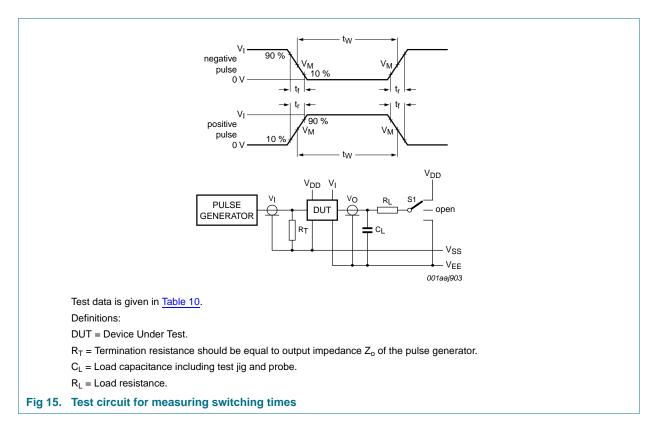


Table 10. Test data

Input	Load		S1 position							
nYn, nZ	Sn and E	t _r , t _f	V _M	CL	R _L	t _{PHL} [1]	t _{PLH}	t _{PZH} , t _{PHZ}	t_{PZL}, t_{PLZ}	other
V_{DD} or V_{EE}	V_{DD} or V_{SS}	\leq 20 ns	$0.5V_{DD}$	50 pF	10 k Ω	V_{DD} or V_{EE}	V_{EE}	V_{EE}	V_{DD}	V_{EE}

[1] For nYn to nZ or nZ to nYn propagation delays use V_{EE} . For Sn to nYn or nZ propagation delays use V_{DD} .

Downloaded from Elcodis.com electronic components distributor

Triple single-pole double-throw analog switch

11.2 Additional dynamic parameters

Table 11. Additional dynamic characteristics

 $V_{SS} = V_{EE} = 0 \text{ V; } T_{amb} = 25 \text{ °C.}$

Symbol	Parameter	Conditions	V_{DD}	Тур	Max	Unit
THD	total harmonic distortion	see Figure 16; $R_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$;	5 V	<u>11</u> 0.25	-	%
		channel ON; $V_I = 0.5V_{DD}$ (p-p); $f_i = 1$ kHz	10 V	<u>[1]</u> 0.04	-	%
		Ii = I KIIZ	15 V	[1] 0.04	-	%
f _(-3dB)	-3 dB frequency response	see Figure 17; $R_L = 1 \text{ k}\Omega$; $C_L = 5 \text{ pF}$;	5 V	<u>11</u> 13	-	MHz
		channel ON; $V_I = 0.5V_{DD}$ (p-p)	10 V	<u>[1]</u> 40	-	MHz
			15 V	<u>[1]</u> 70	-	MHz
α_{iso}	isolation (OFF-state)	see Figure 18; f_i = 1 MHz; R_L = 1 $k\Omega$; C_L = 5 pF; channel OFF; V_I = 0.5 V_{DD} (p-p)	10 V	<u>[1]</u> –50	-	dB
V _{ct}	crosstalk voltage	digital inputs to switch; see Figure 19; $\underline{R}_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$; \overline{E} or $Sn = V_{DD}$ (square-wave)	10 V	50	-	mV
Xtalk	crosstalk	between switches; see Figure 20; $f_i = 1$ MHz; $R_L = 1$ k Ω ; $V_I = 0.5V_{DD}$ (p-p)	10 V	[1] -50	-	dB

^[1] f_i is biased at 0.5 V_{DD} ; $V_I = 0.5 V_{DD}$ (p-p).

Table 12. Dynamic power dissipation P_D

 P_D can be calculated from the formulas shown; $V_{EE} = V_{SS} = 0$ V; $t_r = t_f \le 20$ ns; $T_{amb} = 25$ °C.

Symbol	Parameter	V_{DD}	Typical formula for P _D (μW)	where:
P_D	P _D dynamic power dissipation		$P_D = 2500 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$	f _i = input frequency in MHz;
			$P_D = 11500 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$	f _o = output frequency in MHz;
		15 V	$P_D = 29000 \times f_i + \Sigma (f_0 \times C_L) \times V_{DD}^2$	C_L = output load capacitance in pF;
				V _{DD} = supply voltage in V;
				$\Sigma(C_L \times f_o)$ = sum of the outputs.

11.2.1 Test circuits

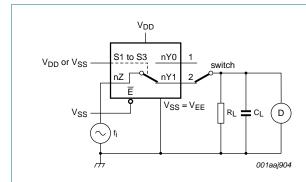


Fig 16. Test circuit for measuring total harmonic distortion

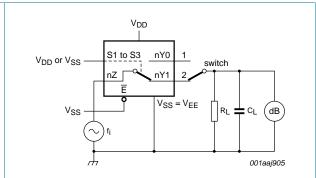
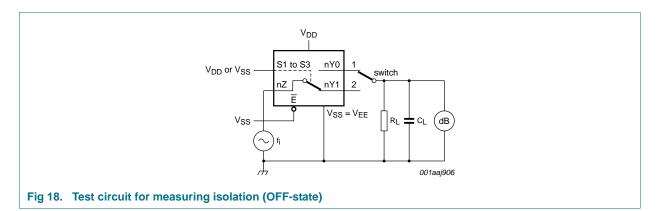



Fig 17. Test circuit for measuring frequency response

HEF4053B

All information provided in this document is subject to legal disclaimers.

Triple single-pole double-throw analog switch

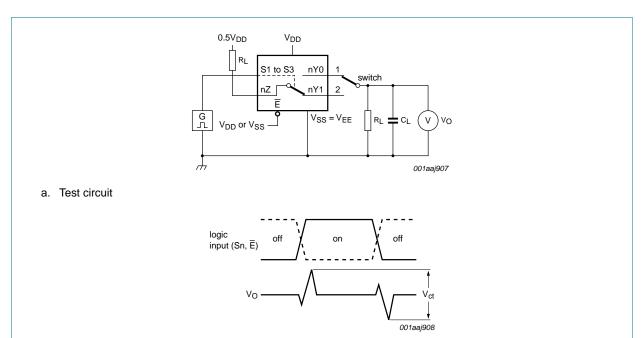
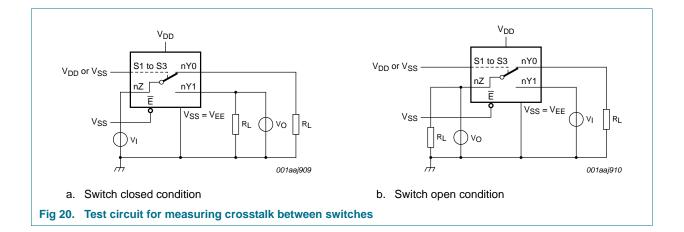
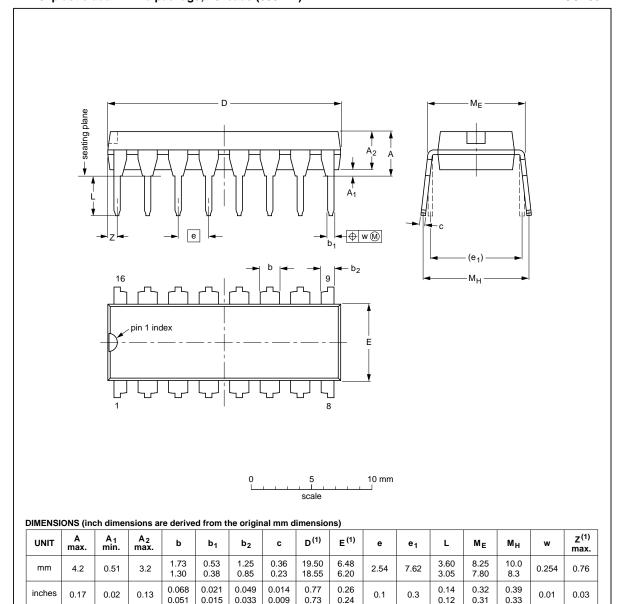



Fig 19. Test circuit for measuring crosstalk voltage between digital inputs and switch

b. Input and output pulse definitions

Downloaded from **Elcodis.com** electronic components distributor

Triple single-pole double-throw analog switch



13 of 20

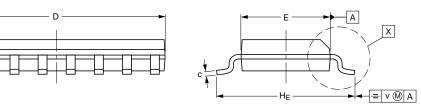
12. Package outline

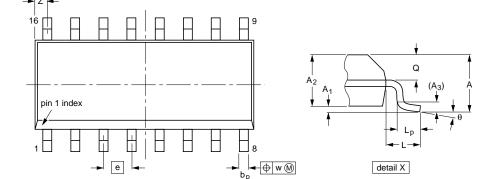
DIP16: plastic dual in-line package; 16 leads (300 mil)

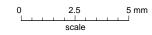
SOT38-4

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT38-4					95-01-14 03-02-13	


Fig 21. Package outline SOT38-4 (DIP16)


F4053B All information provided in this document is subject to legal disclaimers.

SOT109-1

SO16: plastic small outline package; 16 leads; body width 3.9 mm

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

D						•	J			,								
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075		0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

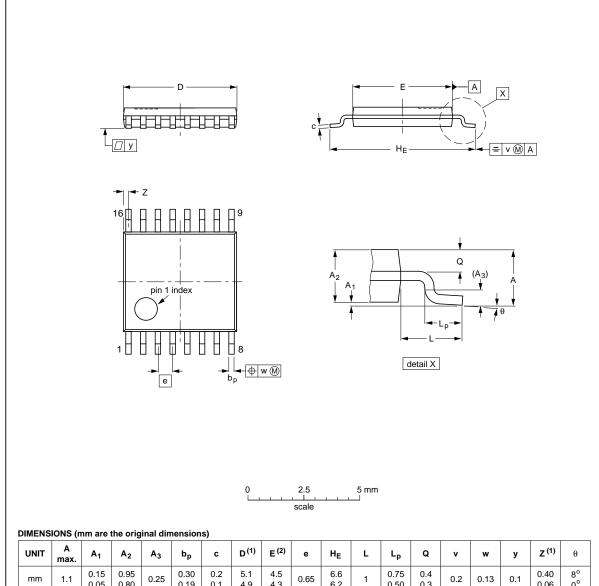

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Fig 22. Package outline SOT109-1 (SO16)

HEF4053B All information provided in this document is subject to legal disclaimers.

SOT403-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ	
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°	

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

E		REFER	EUROPEAN	ISSUE DATE		
N	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
-1		MO-153			$\bigoplus \bigoplus$	-99-12-27 03-02-18
1	N -1	N IEC	N IEC JEDEC	N IEC JEDEC JEITA	N IEC JEDEC JEITA	N IEC JEDEC JEITA PROJECTION

Fig 23. Package outline SOT403-1 (TSSOP16)

HEF4053B All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Product data sheet

Rev. 10 — 17 November 2011

Triple single-pole double-throw analog switch

13. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
HEF4053B v.10	20111117	Product data sheet	-	HEF4053B v.9
Modifications:	 Legal pages 	s updated.		
	 Changes in 	"General description", "Feature	es and benefits" and	"Applications".
HEF4053B v.9	20100325	Product data sheet	-	HEF4053B v.8
HEF4053B v.8	20100224	Product data sheet	-	HEF4053B v.7
HEF4053B v.7	20091127	Product data sheet	-	HEF4053B v.6
HEF4053B v.6	20090924	Product data sheet	-	HEF4053B v.5
HEF4053B v.5	20090825	Product data sheet	-	HEF4053B v.4
HEF4053B v.4	20090713	Product data sheet	-	HEF4053B_CNV v.3
HEF4053B_CNV v.3	19950101	Product specification	-	HEF4053B_CNV v.2
HEF4053B_CNV v.2	19950101	Product specification	-	-

Triple single-pole double-throw analog switch

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

HEF4053B

All information provided in this document is subject to legal disclaimers.

Triple single-pole double-throw analog switch

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Product data sheet

Triple single-pole double-throw analog switch

16. Contents

1	General description
2	Features and benefits
3	Applications
4	Ordering information 1
5	Functional diagram
6	Pinning information 3
6.1	Pinning
6.2	Pin description
7	Functional description
8	Limiting values4
9	Recommended operating conditions 4
10	Static characteristics 5
10.1	Test circuits
10.2	ON resistance6
10.2.1	ON resistance waveform and test circuit 7
11	Dynamic characteristics 8
11.1	Waveforms and test circuit 8
11.2	Additional dynamic parameters 11
11.2.1	Test circuits
12	Package outline
13	Revision history
14	Legal information
14.1	Data sheet status
14.2	Definitions
14.3	Disclaimers
14.4	Trademarks19
15	Contact information 19
16	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2011.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 17 November 2011 Document identifier: HEF4053B