INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4035B MSI

4-bit universal shift register

Product specification
File under Integrated Circuits, IC04

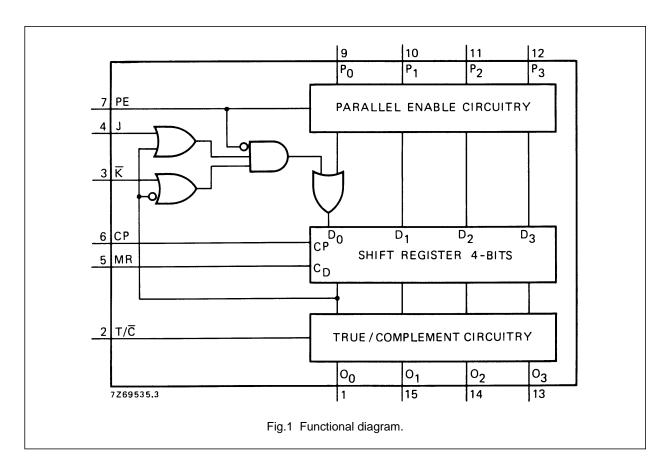
January 1995

4-bit universal shift register

HEF4035B MSI

DESCRIPTION

The HEF4035B is a fully synchronous edge-triggered 4-bit shift register with a clock input (CP), four synchronous parallel data inputs (P₀ to P₃), two synchronous serial data inputs (J, \overline{K}), a synchronous parallel enable input (PE), buffered parallel outputs from all 4-bit positions (O₀ to O₃), a true/complement input (T/ \overline{C}) and an overriding asynchronous master reset input (MR). Each register is of a D-type master-slave flip-flop.

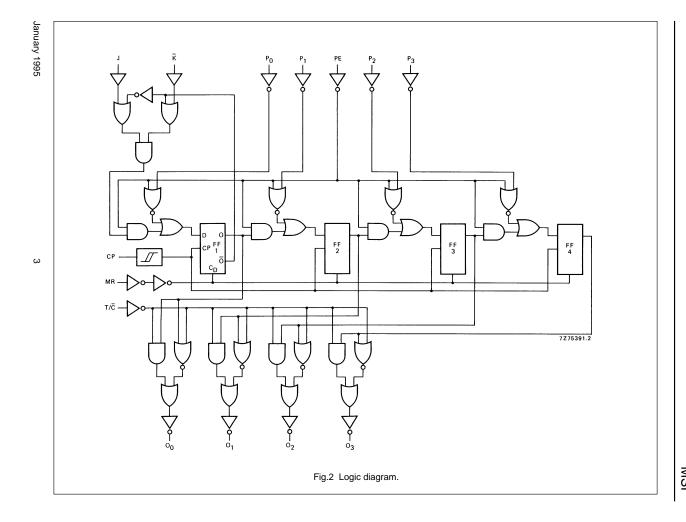

Operation is synchronous (except for MR) and is edge-triggered on the LOW to HIGH transition of the CP input. When PE is HIGH, data is loaded into the register from P_0 to P_3 on the LOW to HIGH transition of CP.

When PE is LOW, data is shifted into the first register position from J and \overline{K} and all the data in the register is shifted one position to the right on the LOW to HIGH transition of CP. D-type entry is obtained by interconnecting J and \overline{K} . When J = HIGH and \overline{K} = LOW the first stage is in the toggle mode. When J = LOW and \overline{K} = HIGH the first stage is in the hold mode.

The outputs $(O_0 \text{ to } O_3)$ are either inverting or non-inverting, depending on T/\overline{C} state. With T/\overline{C} HIGH, O_0 to O_3 are non-inverting (active HIGH) and when T/\overline{C} is LOW, O_0 to O_3 are inverting (active LOW).

A HIGH on MR resets all four bit positions (O_0 to O_3 = LOW if T/\overline{C} = HIGH, O_0 to O_3 = HIGH if T/\overline{C} = LOW) independent of all other input conditions.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.



FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

January 1995

Product specification

4-bit universal shift register

HEF4035B MSI

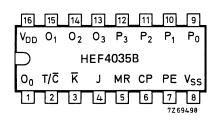


Fig.3 Pinning diagram.

HEF4035BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4035BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4035BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

PINNING

PE parallel enable input P₀ to P₃ parallel data inputs

 $\frac{J}{K}$ first stage J-input (active HIGH) first stage K-input (active LOW)

CP clock input (LOW to HIGH edge-triggered)

 T/\overline{C} true/complement input MR master reset input O_0 to O_3 buffered parallel outputs

FUNCTION TABLES

Serial operation first stage

	INPU	JTS		OUTPUT	MODE OF		
СР	J	K	MR	O _{0 + 1}	OPERATION		
	Н	Н	L	Н	D flip-flop		
	L	L	L	L	D flip-flop		
	Н	L	L	\overline{O}_0	toggle		
	L	Н	L	O ₀	no change		
X	Х	Х	Н	L	reset		

Note

1. $T/\overline{C} = HIGH$; PE = LOW

Parallel operation

СР		INP	UTS		OUTPUTS				
CF	P ₀	P ₁	P ₂	P ₃	O ₀	O ₁	O ₂	O ₃	
	Н	Н	Н	Н	Н	Н	Н	Н	
	L	L	L	L	L	L	┙	L	

Notes

1. $T/\overline{C} = HIGH$; PE = HIGH; MR = LOW

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

Philips Semiconductors Product specification

4-bit universal shift register

HEF4035B MSI

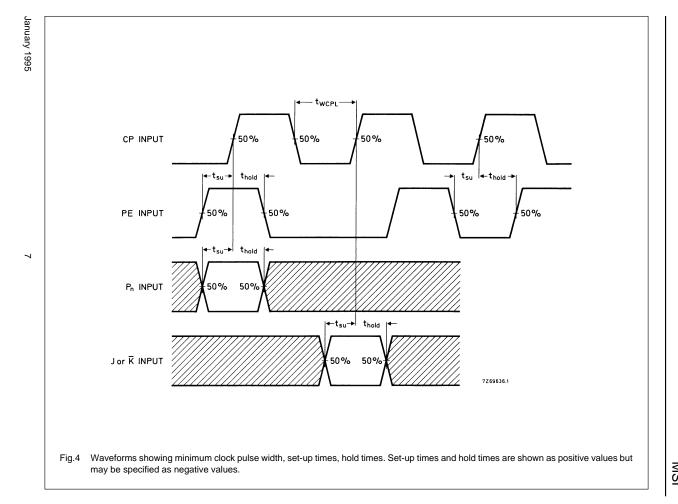
AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times $\leq 20~ns$

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA		
Propagation delays									
$CP \rightarrow O_n$	5			170	340	ns	143 ns	+	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		70	140	ns	59 ns	+	(0,23 ns/pF) C _L
	15			50	100	ns	42 ns	+	(0,16 ns/pF) C _L
	5			150	300	ns	123 ns	+	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		65	130	ns	54 ns	+	(0,23 ns/pF) C _L
	15			50	100	ns	42 ns	+	(0,16 ns/pF) C _L
$MR \to O_n$	5			115	230	ns	88 ns	+	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns	+	(0,23 ns/pF) C _L
	15			40	80	ns	32 ns	+	(0,16 ns/pF) C _L
	5			115	230	ns	88 ns	+	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns	+	(0,23 ns/pF) C _L
	15			40	80	ns	32 ns	+	(0,16 ns/pF) C _L
$T/\overline{C} o O_n$	5			105	210	ns	78 ns	+	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns	+	(0,23 ns/pF) C _L
	15			35	70	ns	27 ns	+	(0,16 ns/pF) C _L
	5			85	170	ns	58 ns	+	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		45	90	ns	34 ns	+	(0,23 ns/pF) C _L
	15			35	70	ns	27 ns	+	(0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns	+	(1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns	+	(0,42 ns/pF) C _L
	15			20	40	ns	6 ns	+	(0,28 ns/pF) C _L
	5			60	120	ns	10 ns	+	(1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns	+	(0,42 ns/pF) C _L
	15			20	40	ns	6 ns	+	(0,28 ns/pF) C _L

January 1995 5

Philips Semiconductors Product specification


4-bit universal shift register

HEF4035B MSI

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Minimum clock	5		80	40	ns	
pulse width; LOW	10	t _{WCPL}	40	20	ns	
	15		30	15	ns	
Minimum MR	5		50	25	ns	
pulse width; HIGH	10	t _{WMRH}	30	15	ns	
	15		20	10	ns	
Recovery time	5		50	20	ns	
for MR	10	t _{RMR}	40	15	ns	
	15		25	10	ns	
Set-up times	5		40	5	ns	
$P_n \to CP$	10	t _{su}	25	0	ns	
	15		15	0	ns	
	5		50	25	ns	
$PE \to CP$	10	t _{su}	35	15	ns	see also waveforms Figs 4 and 5
	15		30	10	ns	and 5
	5		55	40	ns	
$J,\overline{K}\to\!CP$	10	t _{su}	35	15	ns	
	15		25	10	ns	
Hold times	5		25	10	ns	
$P_n \to CP$	10	t _{hold}	20	10	ns	
	15		20	10	ns	
	5		15	-5	ns	
$PE \to CP$	10	t _{hold}	10	-5	ns	
	15		5	-5	ns	
	5		10	-5	ns	
$J,\overline{K}\toCP$	10	t _{hold}	10	0	ns	
	15		10	0	ns	
Maximum clock	5		5	10	MHz	
pulse frequency	10	f _{max}	12	25	MHz	
	15		15	30	MHz	

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	6 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	20 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load cap. (pF)
			$\sum (f_oC_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Product specification

Philips Semiconductors Product specification

4-bit universal shift register

HEF4035B MSI

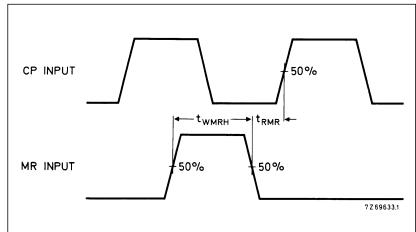
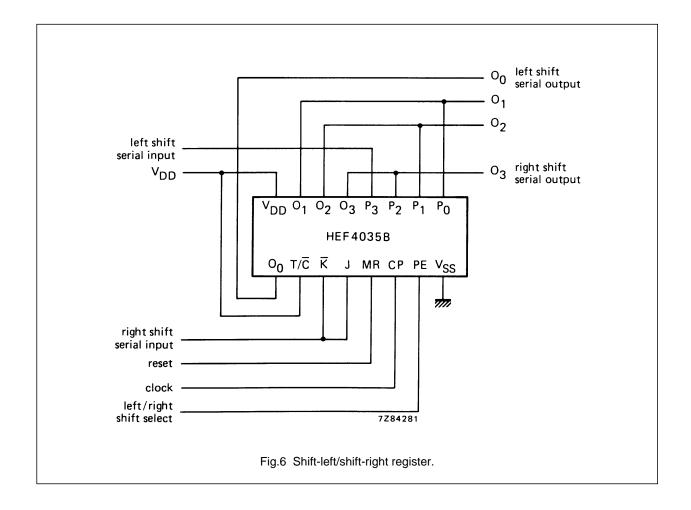



Fig.5 Waveforms showing minimum MR pulse width and MR recovery time.

APPLICATION INFORMATION

Some examples of applications for the HEF4035B are:

- Counters, registers, arithmetic-unit registers, shift-left/shift-right registers.
- Serial-to-parallel/parallel-to-serial conversions.
- Sequence generation.
- · Control circuits.
- · Code conversion.

