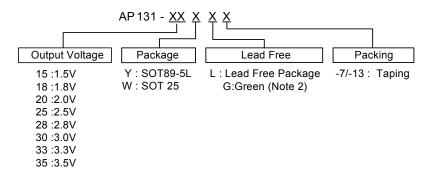


Features


- Input Voltage Range is up 2.7 to 5.5V
- Dropout Voltage 400mV at 300mA Output Current
- Guaranteed 300mA Output Current
- Internal Ron = 1.5Ω PMOS draws no Base Current
- Low Quiescent Current 50µA
- Output Voltage: 1.5V/1.8V/2.0V/2.5V/2.8V/3.0V/3.3V/ 3.5V; Accuracy 2%
- Active Low Shutdown Function (EN pin)
- Fast Transient Response
- Good Load Regulation
- Current Limit and Thermal Shutdown Protection
- Short Circuit Current Fold-Back
- Lead-Free and Green Package: SOT89-5L is available in Lead-Free only. SOT25 is available in both Lead-Free and Green (Note 1).

General Description

The AP131 is a 300mA, fixed output voltage, low dropout linear regulator. The Device included pass element, error amplifier, band-gap, current limit and thermal shutdown circuitry. The device is ON when the EN pin is set to logic high level.

The characteristics of low dropout voltage and less quiescent current make it good for some critical current applications, for example, some battery powered devices. The typical quiescent current is approximately 50µA from zero to maximum load. Due to the internal flexible design, it results in extensively fixed output voltage versions and makes it convenient to use for applications. Built-in current-limit and thermal- shutdown functions prevent any fault condition from IC damage. An external capacitor can be connected to the BP pin and reduce the output noise.

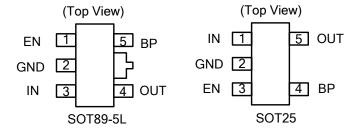
Ordering Information

RoHS revision 13.2.2003. Glass and High Temperature Solder Exemptions Applied, see EU Directive Annex Notes 5 and 7. Note:

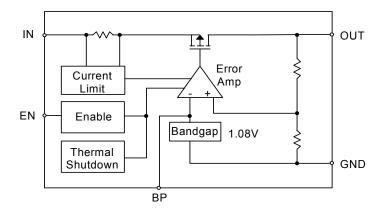
Green is only available for SOT 25.

				7" Tape and Reel		13" Tape and Reel	
	Device	Package Code	Packaging (Note 3)	Quantity	Part Number Suffix	Quantity	Part Number Suffix
Pb	AP131-XXY	Υ	SOT89-5L	NA	NA	2500/Tape & Reel	-13
Pb,	AP131-XXW	W	SOT25	3000/Tape & Reel	-7	NA	NA

Note: 3. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf


Applications

Pin Description


- Battery Powered Device
- Wireless Communication
- CD-ROM, DVD, and LAN Card
- PC Peripheral

Name	Description	
IN	Input Voltage	
GND	Ground	
EN	Enable Pin	
BP	Band-gap	
OUT	Output Voltage	

Pin Assignment

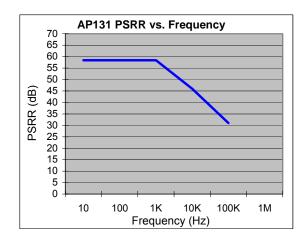
Block Diagram

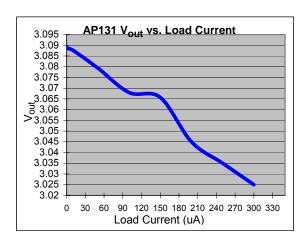
Absolute Maximum Ratings

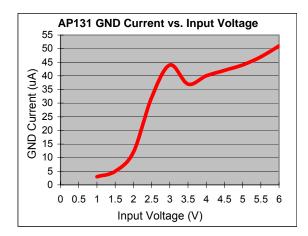
Symbol	Parameter	Rating	Unit	
V _{cc}	Input Voltage	+6	V	
T _{OP}	Operating Junction Temperature Range	-40 to +125	°C	
T _{ST}	Storage Temperature Range	-65 to +150	°C	
	Power Dissipation, P _D @ T _A = 25°C			
P_{D}	SOT89-5L	500	mW	
	SOT25	250	mW	
	Package Thermal Resistance			
Θ_{JA}	SOT89-5L	+100	°C/W	
	SOT25	+250	°C/W	

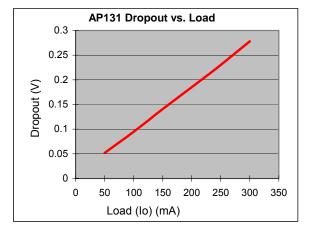
Electrical Characteristics

 $T_A = 25^{\circ}$ C. $C_{IN} = 1 \mu$ F. $C_{OUT} = 10 \mu$ F. unless otherwise specified.

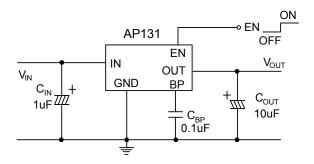

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DROP}	Dropout Voltage (Note 4)	I _L = 300mA	-	400	500	mV
I _{LIMIT}	Current Limit (Note 5)	$V_{IN} = 5V$, $V_{OUT} = 0V$	350	450	-	mA
I _{short}	Short Circuit Current	V _{OUT} < 1.05V	-	150	300	mA
ΔV_{LINE}	Line Regulation	I_{OUT} =1mA, V_{IN} =(V_{OUT} +1V) to 5.5V	-	0.1	0.3	%/V
ΔV_{LOAD}	Load Regulation (Note 6)	I _L = 1~300mA, V _{IN} = 5V	-	30	35	mV
	Output Voltage Accuracy	$I_L = 1 \text{mA}, V_{IN} = 5 \text{V}$	-2	-	+2	%
ΔV_{OUT}	Output Voltage Temperature Coefficient (Note7)		-	50	150	PPM/ °C
PSRR	Ripple Rejection	F = 100Hz, $C_{IN} = 1\mu F$, $C_{O} = 10uF$, $I_{L} = 100mA$	-	60	-	dB
I _{SB}	Standby Current	$I_L = 0$ mA, $V_{IN} = 5$ V, EN = 0V	-	-	5	μΑ
ΙQ	Quiescent Current	$I_L = 0$ mA, $V_{IN} = 5$ V, EN = 5V	-	50	100	μΑ
I _{EN}	Enable Pin Current		-	-	< 0.1	μΑ
V _{ENON}	Enable Pin Voltage	Output ON	1.5	-	V _{IN}	V
V_{ENOFF}		Output OFF	0	-	0.8	V
T _{DELAY}	Enable Delay Time	$C_{BP} = 0.1 \mu F, C_{OUT} = 1 \mu F,$ $I_{OUT} = 30 \text{mA}$	-	8	-	μS

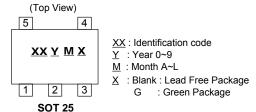

Note: 4. Dropout voltage is defined as the input to output differential voltage. Dropout is measured at constant junction temperature by using pulsed ON time, and the criterion is V_{OUT} inside target value ±2%. This test is skipped at the condition of V_{IN}<3V.
5. Current limit is measured at constant junction temperature by using pulsed testing with a low ON time.
6. Regulation is measured at constant junction temperature by using pulsed testing with a low ON time.

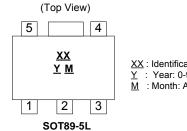

^{7.} Guaranteed by design.



Typical Characteristics

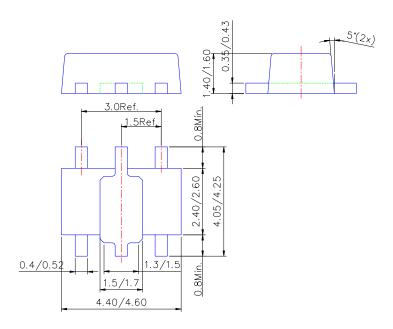




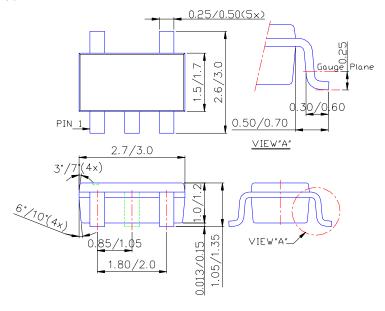


Typical Application Circuit

Marking Information


XX : Identification code Y: Year: 0-9 M: Month: A~L

Part Nu	Identification			
SOT25	SOT89-5	Code		
AP131-15W	AP131-15Y	DA		
AP131-18W	AP131-18Y	DD		
AP131-20W	AP131-20Y	DF		
AP131-25W	AP131-25Y	DK		
AP131-28W	AP131-28Y	DN		
AP131-30W	AP131-30Y	DP		
AP131-33W	AP131-33Y	DS		
AP131-35W	AP131-35Y	DU		



Package Information (unit: mm)

(1) Package Type: SOT89-5L

(2) Package Type: SOT25

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.