Photocouplers

T-41-83

PC4N29V/PC4N30V PC4N32V/PC4N33V

High Transfer Efficiency, General Purpose Type Photocoupler

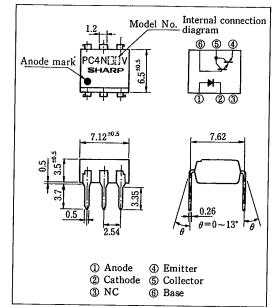
* Lead forming type (I type) is also available. (PC4N29VI/PC4N30VI/PC4N32VI/PC4N33VI) (Page 482)

Features

1. High current transfer ratio PC4N29V, PC4N30V

> (CTR: MIN. 100% at $I_F = 10 \text{mA}$, $V_{CE} =$ 10V)

PC4N32V, PC4N33V


(CTR: MIN. 500% at $I_F=10mA$, $V_{CE}=$ 10V)

- Response time t_{on} : MAX. $5\mu s$ at I_F = 200mA, $V_{cc} = 10\text{V}$, $I_c = 50\text{mA}$
- UL recognized, file No. E64380 TÜV approved, PC4N29V/32V: No. R40184, PC4N30V/33V: No. R40185

Applications

- 1. I/O interfaces for computers
- System appliances, measuring instruments
- Signal transmission between circuits of different potentials and impedances

Outline Dimensions

Absolute Maximum Ratings

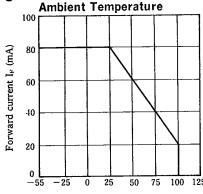
 $(Ta=25^{\circ}C)$

Parameter		Symbol	Rating	Unit		
Input	Forward current		I_{F}	80	mA	
	*1Peak forward current		I _{FM}	3	A	
	Reverse voltage	V_R	6	V		
	Power dissipation	P	150	mW		
Output .	Collector-emitter	voltage	V_{ceo}	30	v	
	Emitter-collector	V _{ECO}	5	V		
	Collector-base vo	V _{cвo}	30	V		
	Collector current		I_c	100	mA	
	Collector power dissipation		P_c	150	mW	
Total power dissipation			P _{tot}	250	mW	
*2 Isolation PC4N29V,32V		Viso	2,500	Vrms		
voltage PC4N30V,33V			1,500			
Operating temperature			Topr	-55~+100) °C	
Storage temperature			$T_{\sf stg}$	$-55 \sim +150$	°C	
*3Soldering temperature			Tsol	260	·C	

- *1 Pulse width≤1µs, Duty ratio=0.001
- RH= $40\sim60\%$, AC for 1 minute

*3 For 10 seconds

SHARP


Electro-optical Characteristics

T_4	11 _	.83

 $(Ta=25^{\circ}C)$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
	Forward voltage		V _F	$I_F = 10 \text{mA}$	1	1.2	1.5	V
Input	Reverse current		I_R	$V_R = 4V$	-		10	μA
	Terminal capacitance		C_t	V=0, $f=1kHz$		50		pF
Output	Collector dark current		I _{CEO}	$V_{CE} = 10V, I_{F} = 0$	_	_	10-7	Α
	Collector-emitter breakdown voltage		BVcEO	$I_c = 0.1 \text{mA}, I_F = 0$	30	_	_	V_
	Emitter-collector breakdown voltage		BV _{ECO}	$I_E = 10 \mu A, I_F = 0$	5	_		V
	Collector-base breakdown voltage		ВУсво	$I_c = 0.1 \text{mA}, I_F = 0$	30	_	_	V
Transfer charac- teristics	Current transfer ratio	PC4N29V,30V	i Chr	$I_F=10mA$, $V_{CE}=10V$	100		-	%
		PC4N32V,33V		Pulse test: input pulse width= 300µs, duty ratio≤0.02	500	_		
	Collector-emitter saturation voltage		V _{CE(sat)}	$I_F = 8mA$, $I_C = 2mA$		_	1.0	V
	Isolation resistance		R _{iso}	DC500V, RH=40~60%	5×10 ¹⁰	1011	_	Ω
	Floating capacitance		Cr	V=0, $f=1MHz$	_	1.0		pF_
	Response time (Turn-on time)		ton	$I_F = 200 \text{mA}$	-	_	5	μs
	Response time PC4N29V,30	PC4N29V,30V	-l t	$(t_w \simeq 1.0 \text{ms})$		_	40	μs
	(Turn-off time)	PC4N32V,33V		$V_{cc}=10V$, $I_c=50mA$			100	μs

Fig. 1 Forward Current vs.

Ambient temperature Ta (°C)

Forward Current vs. Fig. 3 Forward Voltage

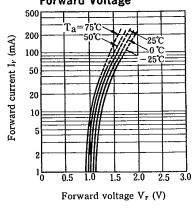
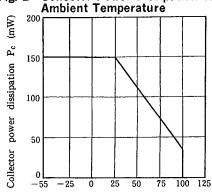
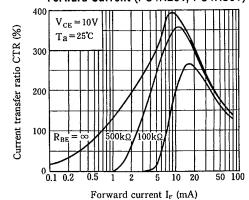
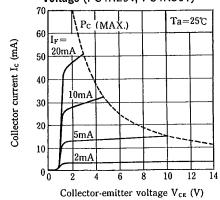




Fig. 2 Collector Power Dissipation vs.

Ambient temperature Ta (°C)

Current Transfer Ratio vs. Forward Current (PC4N29V, PC4N30V) Fig. 4

SHARP


Photocouplers

T-41-83 Fig. 5

Current Transfer Ratio vs. Forward Current (PC4N32V, PC4N33V) Current transfer ratio CTR (%) 1200 1000 800 600 400 500k Q 50

Forward current I_F (mA)

Collector Current vs. Collector-emitter Voltage (PC4N29V, PC4N30V) Fig. 6

Collector Current vs. Collector-emitter Fig. 7 Voltage (PC4N32V, PC4N33V)

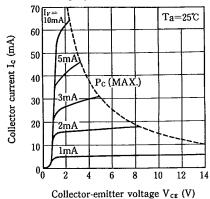
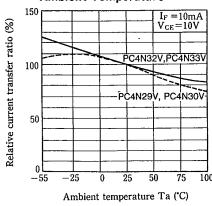



Fig. 8 Relative Current Transfer Ratio vs. Ambient Temperature

Collector-emitter Saturation Voltage vs. Fig. 9 **Ambient Temperature**

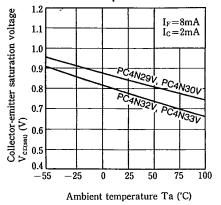
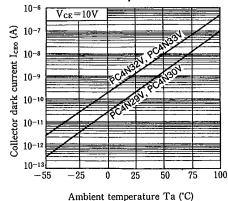
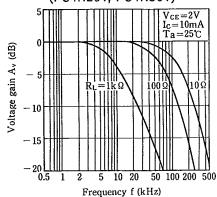



Fig. 10 Collector Dark Current vs. **Ambient Temperature**



SHARP-

T-41-83

Photocouplers

Fig. 11 Frequency Response (PC4N29V, PC4N30V)

Frequency Response Fig. 12 (PC4N32V, PC4N33V)

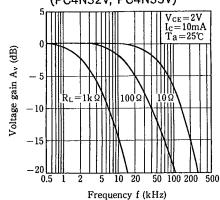
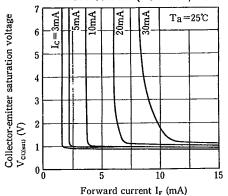
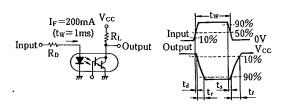
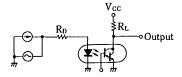




Fig. 13 Collector-emitter Saturation Voltage vs. Forward Current (PC4N29V, PC4N30V)




Collector-emitter Saturation Voltage vs. Forward Current (PC4N32V, PC4N33V) Fig. 14

Test Circuit for Response Time

Test Circuit for Frequency Response

