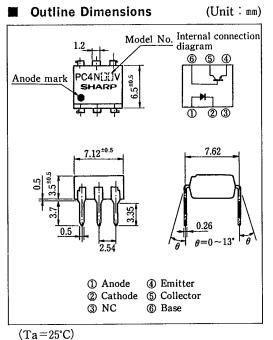
LSE D 📓 8180798 0002832 l PC4N25V/PC4N26V/PC4N27V/PC4N28V

PC4N25V/PC4N26V PC4N27V/PC4N28V

T-41-83 General Purpose Type Photocoupler


* Lead forming type (I type) is also available. (PC4N25VI/PC4N26VI/PC4N27VI/PC4N28VI) (Page 482)

Features

- 1. Response time t_r : TYP. $3\mu s$ at $V_{ce}=10V$, $I_c=2mA$, $R_L=$ 100Ω
- 2. UL recognized, file No. E64380 TÜV approoved (PC4N25V: No. R40182, PC4N26V/27V: No. R40183)

Applications

- 1. I/O interfaces for computers
- System appliances, measuring instruments 2.
- Signal transmission between circuits of 3. different potentials and impedances

	Parameter	Symbol	Rating	Unit		
Input	Forward cur	rent	IF	I _F 80		
	*1Peak forward	d current	IFM	3	Α	
	Reverse volt	age	V _R	6	v	
	Power dissip	ation	Р	150	mW	
Output	Collector-em	itter voltage	Vceo	30	V	
	Emitter-colle	ector voltage	VECO	7	v	
	Collector-bas	se voltage	V _{CBO}	70	V	
	Collector cu	rrent	Ic	100	mA	
	Collector pow	ver dissipation	Pc	150	mW	
Total power dissipation			P _{tot} 250		mW	
PC4N25V				2500		
		PC4N26V,27V	Viso	1,500	Vrms	
		PC4N28V		500		
Operating temperature			$T_{opr} = -55 \sim +100$		°C	
Storage temperature			T _{stg}	$-55 \sim +150$	°C	
* ³ Soldering temperature			T _{so1} 260		°C	

*1 Pulse width≤1µs, Duty ratio=0.001 *3 For 10 seconds

*2 RH = $40 \sim 60\%$, AC for 1 minute

258

SHARP

1

Absolute Maximum Ratings

SHARP ELEK/ MELEC DIV

Photocouplers

LSE D 8180798 0002833 3 PC4N25V/PC4N26V/PC4N27V/PC4N28V

Electro-optical Characteristics			T-41-83				(Ta=25°C)	
Parameter			Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Forward voltage		VF	I _F =10mA	—	1.2	1.5	v
	Reverse current		I _R	$V_R = 4V$	-		10	μA
	Terminal capacitance		Ct	V=0, f=1kHz		50		pF
Output	Collector dark current	PC4N25V~27V	I _{ceo}	$V_{ce} = 10V$	1	-	5×10-*	A
		PC4N28V		$I_F = 0$		-	10-7	
	Collector-emitter breakdown voltage		BV _{CEO}	$I_{c} = 0.1 \text{mA}, I_{F} = 0$	30		_	V
	Emitter-collector breakdown voltage		BVECO	$I_{\rm E} = 10 \mu {\rm A}, I_{\rm F} = 0$	7			v
	Collector-base breakdown voltage		BV _{CBO}	$I_{c} = 0.1 \text{mA}, I_{F} = 0$	70			V
Transfer charac- teristics	Current transfer ratio	PC4N25V,26V	I CIR	$I_F = 10 \text{mA}, V_{CE} = 10 \text{V}$	20			%
		PC4N27V,28V		Pulse test : input width=300µs, duty ratio≤0.02	10			
	Collector-emitter saturation voltage		V _{CE(sat)}	$I_F = 50 \text{mA}, I_C = 2 \text{mA}$		0.1	0.5	v
	Isolation resistance		R _{iso}	DC500V, RH = $40 \sim 60\%$	5×10 ¹⁰	1011		Ω
	Floating capacitance		C _f	V=0, f=1MHz	—	1.0	1	PF
	Response time (Rise)		tr	$V_{ce} = 10V, I_c = 2mA$	—	3	—	μs
	Response time (Fall)		t,	$R_L = 100\Omega, R_{BE} = \infty$	—	3		μs

ş

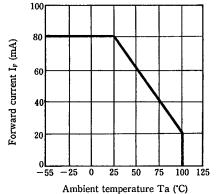
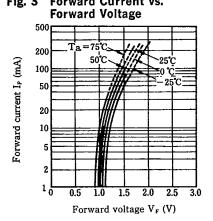
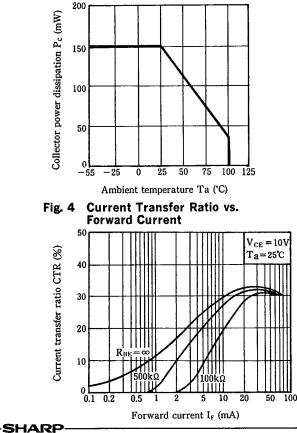
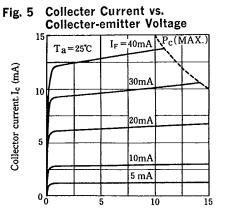
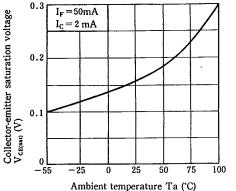




Fig. 3 Forward Current vs.

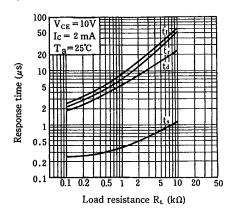
٥

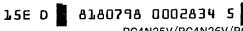

259

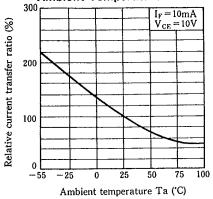
6


_ _ _ _ _

T-41-83




Collectomr-emitter voltage V_{cE} (V)



PC4N25V/PC4N26V/PC4N27V/PC4N28V

Fig. 6 Relative Current Transfer Ratio vs. Ambient Temperature

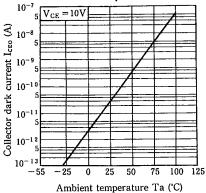
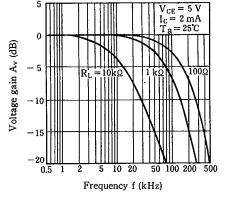
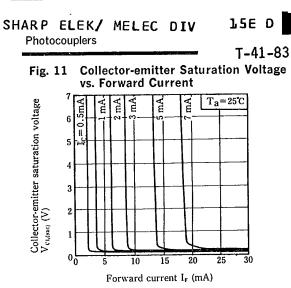
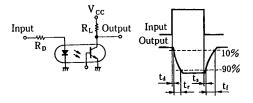
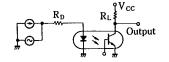




Fig. 10 Frequency Response


SHARP

5



8180798 0002835 7 PC4N25V/PC4N26V/PC4N27V/PC4N28V

Test Circuit for Response Time

Test Circuit for Frequency Response

_____**SHARP**_____261