

BIPOLAR ANALOG INTEGRATED CIRCUIT μ PC2775GR/GS

FREQUENCY DOWN CONVERTER FOR VHF-UHF BAND TV/VCR TUNER

DESCRIPTION

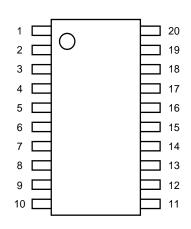
The μ PC2775GR/GS are Silicon monolithic ICs designed for TV/VCR tuner applications. These ICs consist of double balanced mixers (DBM), local oscillator, preamplifiers for prescaler operation, IF amplifier, regulator, UHF/VHF switching circuit, and so on. These one chip ICs cover a wide frequency band from VHF to UHF bands. These ICs are packaged in a 20 pins SSOP (shrink small outline package; μ PC2775GR) or 20 pins SOP (small outline package; μ PC2775GS) suitable for surface mounting. So, these ICs enable to produce economical and physically small or high-density VHF - UHF tuner and reduce the tuner development time.

FEATURES

- · VHF to UHF band operation.
- Low oscillation frequency drift against supply voltage and temperature fluctuation due to balanced type UHF oscillator.
- These ICs can be used in single ended or differential IF outputs.
- Supply voltage: 9 V
- · Packaged in 20 pins SSOP or 20 pins SOP suitable for surface mounting

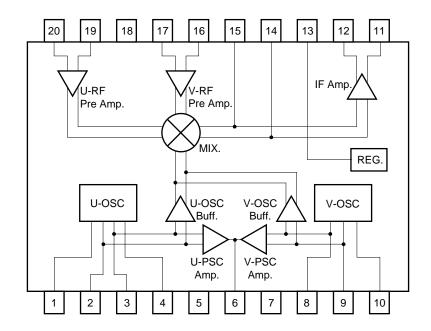
ORDERING INFORMATION

PART NUMBER	PACKAGE	PACKAGE STYLE
μPC2775GR-E1	20 pin plastic SSOP (225 mil)	Embossed tape 12 mm wide, 2.5 k/REEL Pin 1 indicates pull-out direction of tape
μPC2775GS-E1	20 pin plastic SOP (300 mil)	Embossed tape 24 mm wide, 2.5 k/REEL Pin 1 indicates pull-out direction of tape


Caution electro-static sensitive device

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.



PIN CONFIGURATION (Top View)

- 1. UOSC COLLECTOR (Tr.1)
- 2. UOSC BASE (Tr.2)
- 3. UOSC BASE (Tr.1)
- 4. UOSC COLLECTOR (Tr.2)
- 5. UB
- 6. OSC OUTPUT
- 7. GND
- 8. VHF OSC BASE (Tr.1)
- 9. VHF OSC BASE (Tr.2)
- 10. VHF OSC COLLECTOR (Tr.1)
- 11. IF OUTPUT
- 12. IF OUTPUT
- 13. VCC
- 14. MIXER OUTPUT1
- 15. MIXER OUTPUT2
- 16. VHF RF INPUT1
- 17. VHF RF INPUT2
- 18. GND
- 19. UHF RF INPUT1
- 20. UHF RF INPUT2

INTERNAL BLOCK DIAGRAM

PIN EXPLANATION

Pin No.	Symbol	Pin voltage TYP. above: V mode (V) below: U mode (U)	Function and Explanation	Equivalent circuit
1	UOSC collector (Tr. 1)	6.90 6.25	Collector pin of UHF oscillator. Assemble LC resonator with 2 pin through capacitor ~ 1 pF to oscillate with active feedback Loop.	3 1 4 2 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2	UOSC base (Tr. 2)	6.00 3.90	Base pin of UHF oscillator with balance amplifier. Connected to LC resonator through feedback capacitor ≤ 300 pF.	
3	UOSC base (Tr. 1)	6.00	Base pin of UHF oscillator with balance amplifier. Connected to LC resonator through feedback capacitor = 300 pF.	in in
4	UOSC collector (Tr. 2)	6.90 6.25	Collector pin of UHF oscillator with balance amplifier. Assemble LC resonator with 3 pin through capacitor \simeq 1 pF to oscillate with active feedback Loop. Double balanced oscillator with transistor 1 and transistor 2.	
5	UB	9.0	Switching pin for VHF or UHF operation. UHF operation = 9.0 V VHF operation = GND	
6	OSC output	5.40	UHF and VHF oscillator output pin. In case of F/S tuner application, connected PLL synthesizer IC's input pin.	REG.
		0.10		,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7	GND	0.0	VHF and UHF oscillators' GND pin.	
8	VOSC base (Tr. 1)	3.50 5.90	Base pin of VHF oscillator with balance amplifier. Grounded through capacitor ≃ 10 pF.	8 f0 9 REG.
9	VOSC base (Tr. 2)	3.50 	Base pin of VHF oscillator with balance amplifier. Assemble LC resonator with 10 pin to oscillate with active feedback Loop.	
10	VOSC collector (Tr. 1)	6.20 6.90	Base pin of VHF oscillator with balance amplifier. Connected to LC resonator through feedback capacitor ≈ 3 pF.	nh nh

Pin No.	Symbol	Pin voltage TYP. above: V mode (V) below: U mode (U)	Function and Explanation	Equivalent circuit
11 12	IF output	5.80	IF output pins of VHF-UHF band functions. Higher output power can be obtained by connecting registor (ex. 470 Ω) to the ground.	13
		5.65		11) 12
13	Vcc	9.0	Power supply for VHF-UHF band functions.	
14	MIX output 1	7.05 6.95	VHF and UHF MIX output pin. These pins should be equipped with	(3) (4) (15)
15	MIX output 2	7.05 6.95	tank circuit to adjust frequency.	From
16	VRF input (bypass)	2.75	VRF signal input pin from antenna.	VHF OSC
17	VRF input	2.75	Bypass pin for VHF MIX input. Grounded through capacitor.	
18	GND	0	GND pin of MIX, IF amplifier and regulator.	(3)
19	URF input (bypass)	2.65	Bypass pin for UHF MIX input. Grounded through capacitor.	From
20	URF input	2.65	URF signal input pin from antenna.	

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

μ PC2775GR

PARAMETER	SYMBOL	RATING	UNIT	TEST CONDITION
Supply voltage 1	Vcc	11.0	V	
Supply voltage 2	UB	11.0	V	
Power dissipation	PD	500	mW	T _A = 75 °CNote 1
Operating temperature range	TA	-40 to +75	°C	
Storage temperature range	T _{stg}	-60 to +150	°C	

μ PC2775GS

PARAMETER	SYMBOL	RATING	UNIT	TEST CONDITION
Supply voltage 1	Vcc	11.0	V	
Supply voltage 2	UB	11.0	V	
Power dissipation	PD	700	mW	T _A = 80 °CNote 1
Operating temperature range	TA	-40 to +80	°C	
Storage temperature range	T _{stg}	-60 to +150	°C	

Note 1 Mounted on $50 \times 50 \times 1.6$ mm double copper epoxy glass board.

RECOMMENDED OPERATING RANGE

$\mu \text{PC2775GR}$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage 1	Vcc	8.0	9.0	10.0	V
Supply voltage 2	UB	8.0	9.0	10.0	V
Operating temperature range	TA	-20	+25	+75	°C

μ PC2775GS

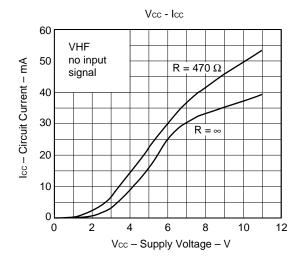
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage 1	Vcc	8.0	9.0	10.0	V
Supply voltage 2	UB	8.0	9.0	10.0	V
Operating temperature range	TA	-20	+25	+80	°C

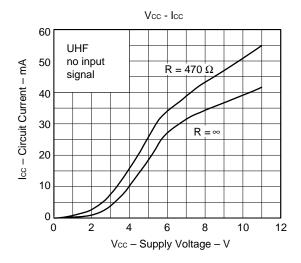
ELECTRICAL CHARACTERISTICS (TA = 25 °C, Vcc = 9 V, Note 2)

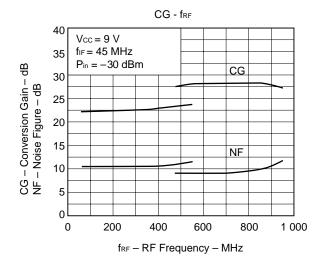
μ PC2775GR/GS

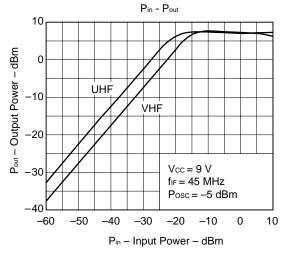
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Circuit Current 1	(VHF)	Icc1	27.0	35.0	44.0	mA	no input signal Note 3
Circuit Current 2	(UHF)	Icc2	28.0	36.0	45.0	mA	no input signal Note 3
Conversion Gain 1	$(VHF_{(L)})$	CG1	18.5	22.0	25.5	dB	fr = 55 MHz, Pin = -30 dBm
Conversion Gain 2	(VHF _(M))	CG2	18.5	22.0	25.5	dB	frf = 200 MHz, Pin = -30 dBm
Conversion Gain 3	$(VHF_{(H)})$	CG3	18.5	22.0	25.5	dB	fr = 470 MHz, Pin = -30 dBm
Conversion Gain 4	$(UHF_{(L)})$	CG4	24.5	28.0	31.5	dB	fr = 470 MHz, Pin = -30 dBm
Conversion Gain 5	$(UHF_{(H)})$	CG5	24.5	28.0	31.5	dB	fr = 890 MHz, Pin = -30 dBm
Noise Figure 1	$(VHF_{(L)})$	NF1	-	10.0	13.0	dB	frf = 55 MHz
Noise Figure 2	$(VHF_{(M)})$	NF2	ı	10.0	13.0	dB	frf = 200 MHz
Noise Figure 3	(VHF _(H))	NF3	-	10.0	13.0	dB	frf = 470 MHz
Noise Figure 4	(UHF _(L))	NF4	-	9.0	12.0	dB	fr= 470 MHz
Noise Figure 5	(UHF _(H))	NF5	-	10.0	13.0	dB	fr= 890 MHz
Maximum Output Level 1	(VHF _(L))	Po(SAT)1	4.0	7.0	_	dBm	fre = 55 MHz, Pin = 0 dBm
Maximum Output Level 2	(VHF _(M))	Po(SAT)2	4.0	7.0	_	dBm	fre = 200 MHz, Pin = 0 dBm
Maximum Output Level 3	(VHF _(H))	Po(SAT)3	4.0	7.0	-	dBm	fre = 470 MHz, Pin = 0 dBm
Maximum Output Level 4	(UHF _(L))	Po(SAT)4	3.5	6.5	_	dBm	fre = 470 MHz, Pin = 0 dBm
Maximum Output Level 5	(UHF _(H))	Po(SAT)5	3.5	6.5	_	dBm	fr= 890 MHz, Pin = 0 dBm

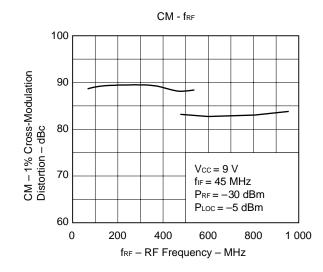
Notes 2 By measurement circuit

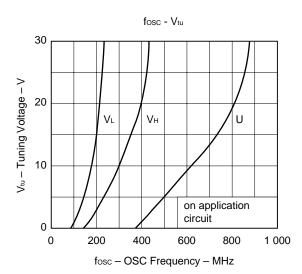

3 no resistance of IF output In case of R = 470 Ω ; VHF: 45.2 mA (TYP.), UHF: 46.7 mA (TYP.)

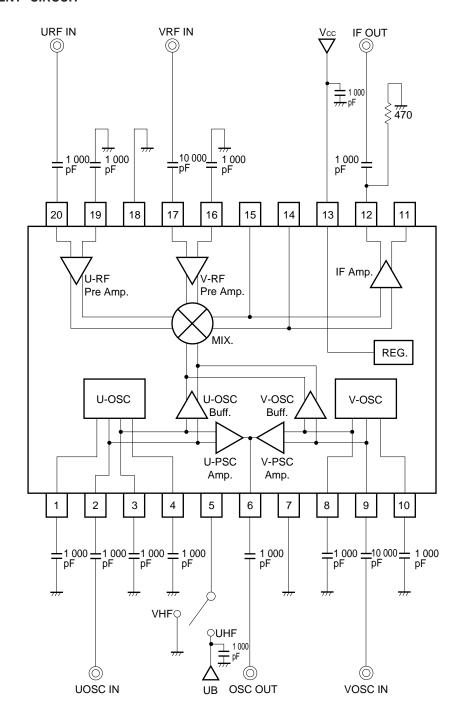

STANDARD CHARACTERISTICS (TA = 25 °C, Vcc = 9 V)

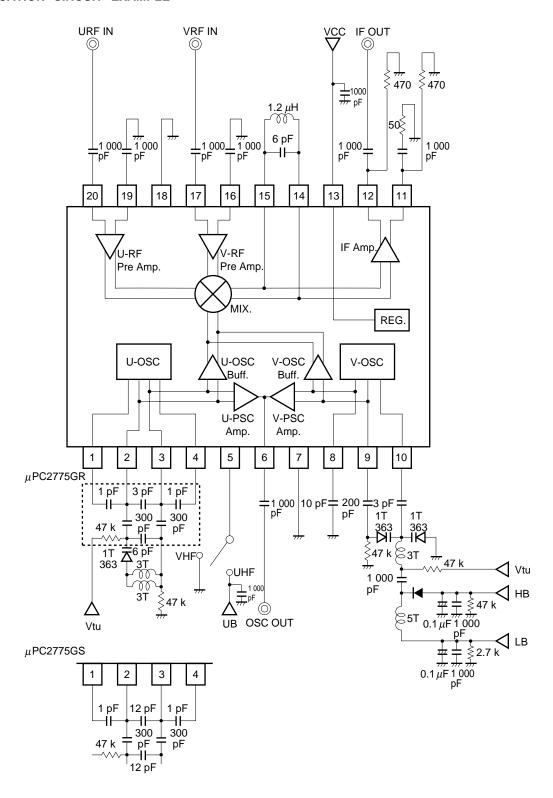

μ PC2775GR/GS


PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
1 % Cross-Modulation Distortion 1	(VHF _(L))	CM1	-	88.0	-	dΒμ	f _{RF} = 55 MHz, P _{in} = -30 dBm
1 % Cross-Modulation Distortion 2	(VHF _(M))	CM2	_	88.0	_	dΒμ	fr= 200 MHz, Pin = -30 dBm
1 % Cross-Modulation Distortion 3	(VHF _(H))	СМЗ	_	88.0	_	dΒμ	fr= 470 MHz, Pin = -30 dBm
1 % Cross-Modulation Distortion 4	(UHF(L))	CM4	-	83.0	-	dΒμ	$f_{RF} = 470 \text{ MHz}, P_{in} = -30 \text{ dBm}$
1 % Cross-Modulation Distortion 5	(UHF(H))	CM5	-	83.0	-	dΒμ	fr= 890 MHz, Pin = -30 dBm

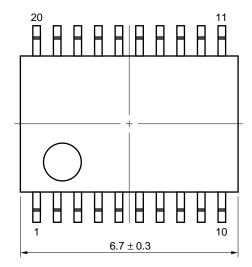

TYPICAL CHARACTERISTICS (TA = 25 °C) - on Measurement Circuit -

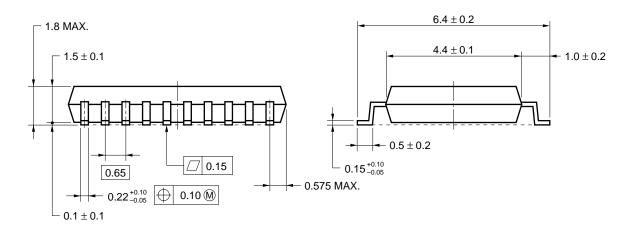




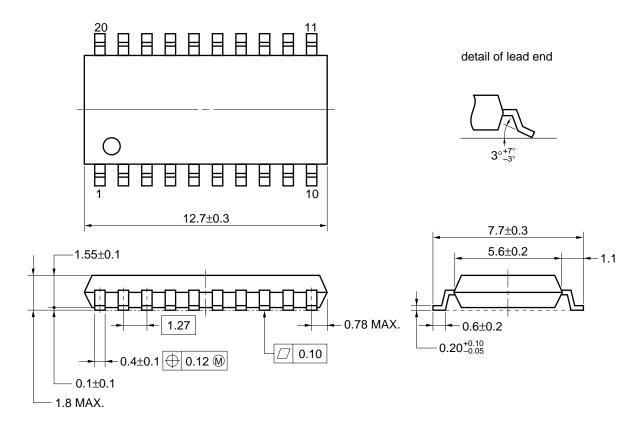


MEASUREMENT CIRCUIT


APPLICATION CIRCUIT EXAMPLE


PACKAGE DIMENSIONS

★ 20 PIN PLASTIC SSOP (225 mil) (UNIT: mm)


detail of lead end

NOTE Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

★ 20 PIN PLASTIC SOP (300 mil) (UNIT: mm)

NOTE Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.

Please consult with our sales offices in case other soldering process is used or in case soldering is done under different conditions.

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

μ PC2775GR/GS

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: 235 °C or below, Reflow time: 30 seconds or below (210 °C or higher), Number of reflow process: 2, Exposure limit ^{Note} : None	IR35-00-2
VPS	Peak package's surface temperature: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher), Number of reflow process: 2, Exposure limit Note: None	VP15-00-2
Partial heating method	Terminal temperature: 300 °C or below, Flow time: 3 seconds or below, Exposure limit ^{Note} : None	

Note Exposure limit before soldering after dry-pack package is opened.

Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply more than single process at once, except for "Partial heating method".

[MEMO]

[MEMO]

[MEMO]

NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8