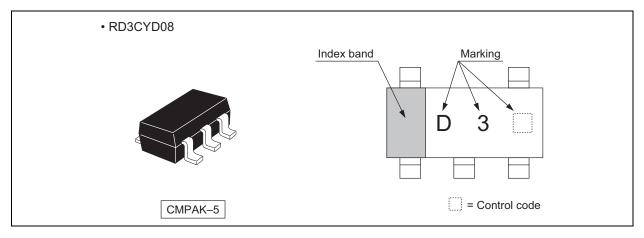
RD3CYD08

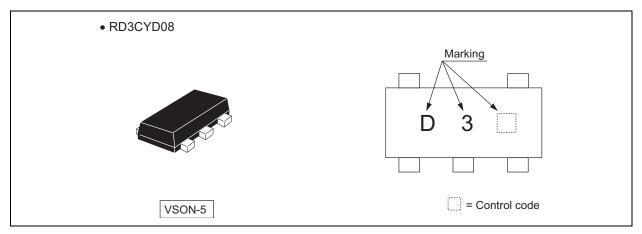
IGBT Driver

REJ03D0179-0600 Rev.6.00 Apr 22, 2008

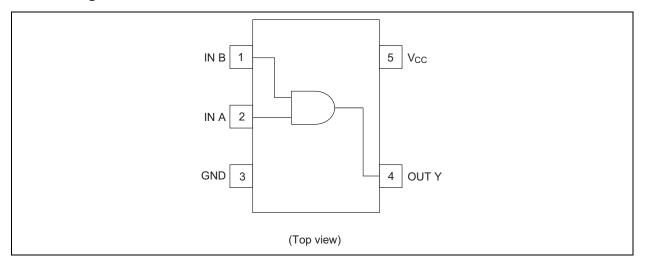
Description


The RD3CYD08 has two-input AND gate in a 5 pin package. This product is suited as IGBT Driver IC for the strobe.

Features


- Supplied on emboss taping for high-speed automatic mounting.
- Supply voltage range : 2.0 to 3.6 V
- Operating temperature range : -40 to +85°C
- High drive current
 - I_{OH} short = -130 mA (typ) (@V_{CC} = 3.3 V)
- Low sink current
 - $I_{OL}\ short = 45\ mA\ (typ)\ (@V_{CC} = 3.3\ V)$
- Ordering Information

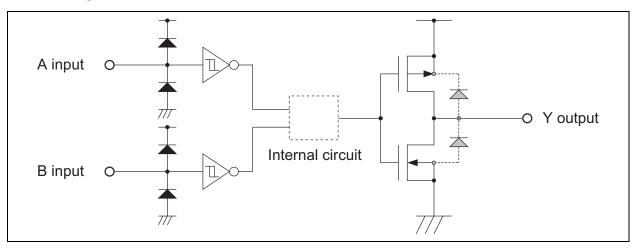
Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
RD3CYD08CME	CMPAK-5 pin	PTSP0005ZC–A (CMPAK-5V)	СМ	E (3,000 pcs/reel)
RD3CYD08VSE	VSON-5pin	PUSN0005KA–A (TNP-5DV)	VS	E (3,000 pcs/reel)


Outline and Article Indication

Outline and Article Indication

Pin Arrangement

Logic Diagram


Function Table

Inp	Inputs		
A	В	Output Y	
L	L	L	
Н	L	L	
L	Н	L	
Н	Н	Н	

H : High level

L : Low level

Block Diagram

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	V _{CC}	-0.5 to 4.6	V	
Input voltage range *1	VI	-0.5 to V _{CC} + 0.5	V	
Output voltage range *1,2	Vo	-0.5 to V _{CC} + 0.5	V	
Input clamp current	I _{IK}	±50	mA	$V_I < 0 \text{ or } V_I > V_{CC}$
Output clamp current	I _{ОК}	±50	mA	$V_0 < 0$ or $V_0 > V_{CC}$
Continuous output current	lo	-200	mA	$V_0 = 0$
Continuous output current		100		$V_{O} = V_{CC}$
Continuous current through V_{CC} or GND	I _{CC} or I _{GND}	±200	mA	
Maximum power dissipation at Ta = 25° C (in still air) * ³	PT	200	mW	
Storage temperature	Tstg	-65 to 150	°C	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

 The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. When Over shoot / Under shoot pulse width is under 10 ns, input and output voltage permit to -1.5 V or V_{CC}+1.5V.

2. This value is limited to 4.6 V maximum.

3. The maximum package power dissipation was calculated using a junction temperature of 150°C.

Recommended Operating Conditions

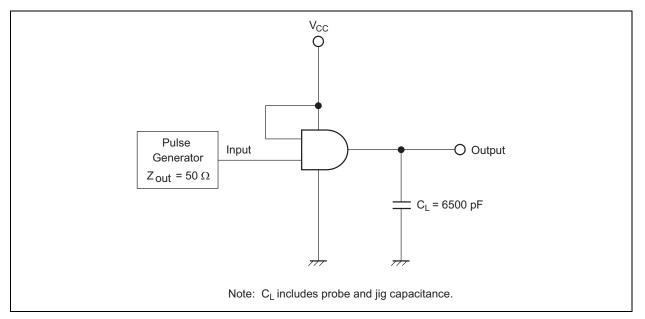
Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V _{CC}	2.0	3.6	V	
Input voltage range	VI	0	V _{cc}	V	
Output voltage range	Vo	0	V _{cc}	V	
Operating free-air temperature	Та	-40	85	°C	

Note: Unused or floating inputs must be held high or low.

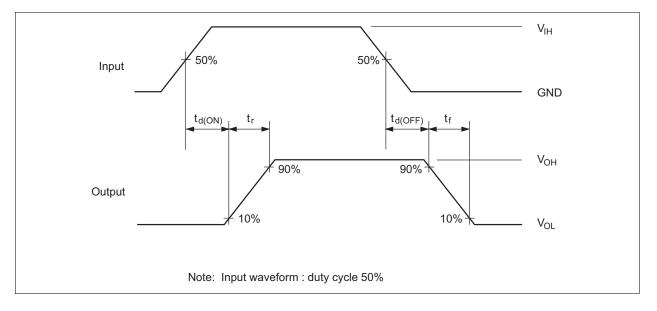
Electrical Characteristic

Ta = -40 to $85^{\circ}C$

Item	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	Test condition
	V	2.5	1.7	—	_		
	V _{IH}	3.0 to 3.6	2.0	—	_		
Input voltage	Ma	2.5	—	—	0.7	v	
input voltage	VIL	3.0 to 3.6	—	—	0.8	v	
	Ma	2.5	—	0.35	-		
	V _H	3.3	_	0.40			
	I _{OH} short	2.5	-55	-75	-95	mA	$V_{\Omega} = 0 V$
Output current		3.3	-100	-130	-160		vo - 0 v
Output current	I _{OL} short	2.5	20	30	40		$V_{O} = V_{CC}$
		3.3	30	45	60		$v_0 = v_{CC}$
Input current	I _{IN}	3.6	—	—	±5	μΑ	$V_{IN} = 3.6 \text{ V or GND}$
Quiescent	I _{CC}	3.6		_	10	μA	$V_{IN} = V_{CC}$ or GND,
supply current	100	5.0			10	μΑ	I _O = 0
Input capacitance	C _{IN}	3.3	_	2.5	—	pF	$V_{IN} = V_{CC}$ or GND

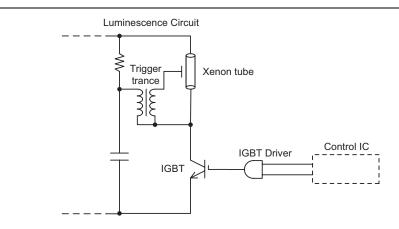

Switching Characteristics

								$V_{\rm CC} = 2.5 \ {\rm V}$
Item	Symbol	Ta :	= -40 to 8	5°C	Unit	Test	FROM	то
item	Symbol	Min	Тур	Max	Unit	Conditions	(Input)	(Output)
Propagation delay time	t _{d(ON)}			65				
Fropagation delay time	t _{d(OFF)}			200	20	C _L = 6500 pF	A or B	v
Output rise time	tr			700	ns	CL – 0300 pr	AUD	
Output fall time	t _f	_	_	2000				


 $V_{CC}=3.3\pm0.3~V$

ltem	Symbol	Ta = -40 to 85°C			Unit	Test	FROM	то
	Symbol	Min	Тур	Max	Unit	Conditions	(Input)	(Output)
Propagation delay time	t _{d(ON)}			50				
Propagation delay time	t _{d(OFF)}			160	ns	C _L = 6500 pF	A or B	v
Output rise time	tr			500		115 $C_{\rm L} = 05$	CL = 0300 pr	AUD
Output fall time	t _f	—	—	1500				

Test Circuit



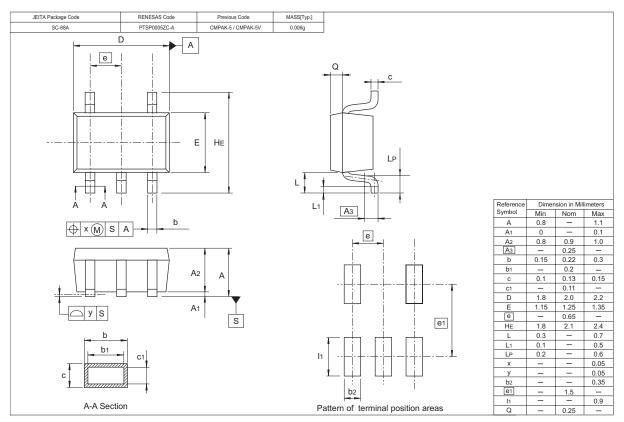
Waveforms

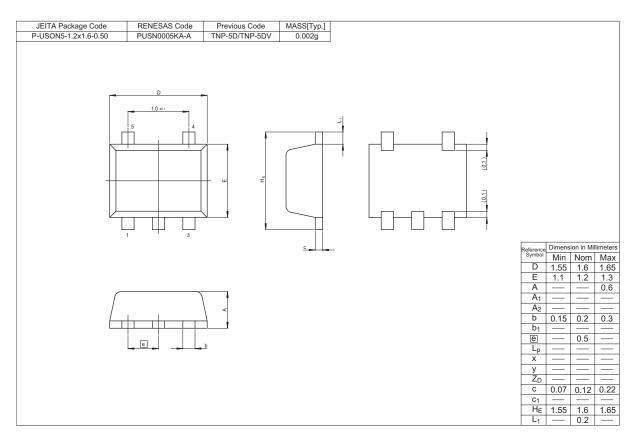
RENESAS

Application Note (Strobe circuit)

Combination example

SYSTEM	IGBT	IGBT Driver	Control IC
3.3 V	RJP4002ANS RJP4002ASA	RD3CYD08 RD3CYDT08	3.3 V signal
5.0 V	RJP4003ANS RJP4003ASA	RD5CYD08 RD5CYDT08	5.0 V signal 3.3 V signal


IGBT Driver Lineup


TYPE No.	Specification	Package
RD3CYD08	$ V_{CC} = 2.0 \text{ to } 3.6 \text{V CMOS lever input} \\ I_{OH}(\text{short}) = -130 \text{mA(typ)} @ V_{CC} = 3.3 \text{V} \\ I_{OL}(\text{short}) = 45 \text{mA(typ)} @ V_{CC} = 3.3 \text{V} $	CMPAK-5 VSON-5
RD3CYDT08	$ V_{CC} = 2.0 \text{ to } 3.6 \text{V CMOS lever input} \\ I_{OH}(\text{short}) = -130 \text{mA}(\text{typ}) @ V_{CC} = 3.3 \text{V} \\ I_{OL}(\text{short}) = 45 \text{mA}(\text{typ}) @ V_{CC} = 3.3 \text{V} $	CMPAK-5
RD5CYD08	$ V_{CC} = 4.0 \text{ to } 6.0 \text{V CMOS lever input} \\ I_{OH}(\text{short}) = -130 \text{mA}(\text{typ}) @ V_{CC} = 5.0 \text{V} \\ I_{OL}(\text{short}) = 40 \text{mA}(\text{typ}) @ V_{CC} = 5.0 \text{V} $	CMPAK-5
RD5CYDT08	$ \begin{array}{l} V_{CC} = 4.0 \text{ to } 6.0 V \ TTL \ lever \ input \\ I_{OH}(short) = -130 mA(typ) @ V_{CC} = 5.0 V \\ I_{OL}(short) = & 40 mA(typ) @ V_{CC} = 5.0 V \end{array} $	Givir AR-5

IGBT Lineup

TYPE No.	Specification	Package
RJP4002ANS	V_{CES} = 400V(max), I _{CP} = 150A(max), 2.5V drive	VSON-8
RJP4002ASA	V_{CES} = 400V(max), I _{CP} = 150A(max), 2.5V drive	TSSOP-8
RJP4003ANS	V_{CES} = 400V(max), I _{CP} = 150A(max), 4V drive	VSON-8
RJP4003ASA	V_{CES} = 400V(max), I _{CP} = 150A(max), 4V drive	TSSOP-8

Package Dimensions

REJ03D0179-0600 Rev.6.00 Apr 22, 2008 Page 7 of 7 RENESAS

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- <section-header>

 Image: States

 Present States

 States

 Present State

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510