feATURES

- Fixed-Frequency or Voltage-Controlled Operation
- Fixed: Single Resistor Programs Frequency with <2.2\% Max Error
- VCO: Two Resistors Set VCO Center Frequency and Tuning Range
- Frequency Range: 488 Hz to 2 MHz
- 2.25 V to 5.5 V Single Supply Operation
- $72 \mu \mathrm{~A}$ Supply Current at 100 kHz
- 500 us Start-Up Time
- VCO Bandwidth $>300 \mathrm{kHz}$ at 1 MHz
- CMOS Logic Output Sources/Sinks 20mA
- 50% Duty Cycle Square Wave Output
- Output Enable (Selectable Low or Hi-Z When Disabled)
- $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operating Temperature Range
- Available in Low Profile (1 mm) SOT-23 (ThinSOTTM) and $2 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN Package

APPLICATIONS

- Low Cost Precision Programmable Oscillator
- Voltage-Controlled Oscillator
- High Vibration, High Acceleration Environments
- Replacement for Fixed Crystal and Ceramic Oscillators
- Portable and Battery-Powered Equipment

Controlled Silicon Oscillator

DESCRIPTIOn

The LTC ${ }^{\circledR} 6990$ is a precision silicon oscillator with a programmable frequency range of 488 Hz to 2 MHz . It can be used as a fixed-frequency or voltage-controlled oscillator (VCO). The LTC6990 is part of the TimerBlox ${ }^{\text {TM }}$ family of versatile silicon timing devices.
A single resistor, $\mathrm{R}_{\text {SET }}$, programs the LTC6990's internal master oscillator frequency. The output frequency is determined by this master oscillator and an internal frequency divider, $\mathrm{N}_{\text {DIV, }}$ programmable to eight settings from 1 to 128.

$$
\mathrm{f}_{\text {OUT }}=\frac{1 \mathrm{MHz}}{\mathrm{~N}_{\text {DIV }}} \cdot \frac{50 \mathrm{k} \Omega}{\mathrm{R}_{\text {SET }}}, N_{\text {DIV }}=1,2,4 \ldots 128
$$

Optionally, a second resistor atthe SET input provides linear voltage control of the output frequency and can be used for frequency modulation. A narrow or wide VCO tuning range can be configured by the appropriate selection of the two resistors.
The LTC6990 includes an enable function that is synchronized with the master oscillator to ensure clean, glitch-free output pulses. The disabled output can be configured to be high impedance or forced low.

The LTC6990 is available in the 6-lead SOT-23 (ThinSOT) package or a 6 -lead $2 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN.

TYPICAL APPLICATION

Voltage Controlled Oscillator with 16:1 Frequency Range

VCO Transfer Function

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (V^{+}) to GND \qquad
Maximum Voltage on Any Pin $($ GND $-0.3 \mathrm{~V}) \leq \mathrm{V}_{\text {PIN }} \leq\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
Operating Temperature Range (Note 2)
LTC6990C \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ LTC69901 \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6990H... $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Specified Temperature Range (Note 3) LTC6990C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6990I ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6990H $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

PIn CONFIGURATION

DCB PACKAGE
6 -LEAD ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$) PLASTIC DFN PCB CONNECTION OPTIONAL

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LTC6990CDCB\#PBF	LTC6990CDCB\#TRPBF	LDWX	6 -Lead $(2 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6990IDCB\#PBF	LTC6990IDCB\#TRPBF	LDWX	6 -Lead $(2 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6990HDCB\#PBF	LTC6990HDCB\#TRPBF	LDWX	6 -Lead $(2 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LTC6990CS6\#PBF	LTC6990CS6\#TRPBF	LTDWW	6-Lead Plastic TS0T-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC6990IS6\#PBF	LTC6990IS6\#TRPBF	LTDWW	6-Lead Plastic TS0T-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC6990HS6\#PBF	LTC6990HS6\#TRPBF	LTDWW	6-Lead Plastic TS0T-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Test conditions are $\mathrm{V}^{+}=2.25 \mathrm{~V}$ to $5.5 \mathrm{~V}, 0 \mathrm{E}=\mathrm{V}^{+}$, DIVCODE $=0$ to 15 ($\mathrm{N}_{\text {DIV }}=1$ to 128), $\mathrm{R}_{\text {SET }}=50 \mathrm{k}$ to $800 \mathrm{k}, \mathrm{R}_{\mathrm{LOAD}}=5 \mathrm{k}, \mathrm{C}_{\mathrm{LOAD}}=5 \mathrm{pF}$ unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fout | Output Frequency | Recommended Range: $\mathrm{R}_{\text {SET }}=50 \mathrm{k}$ to 800k Extended Range: $\mathrm{R}_{\text {SET }}=25 \mathrm{k}$ to 800 k | | $\begin{aligned} & 0.488 \\ & 0.488 \end{aligned}$ | | $\begin{aligned} & 1000 \\ & 2000 \end{aligned}$ | kHz kHz |
| $\Delta f_{\text {OUT }}$ | Frequency Accuracy (Note 4) | Recommended Range $\mathrm{R}_{\text {SET }}=50 \mathrm{k}$ to 800 k | \bullet | | ± 0.8 | $\begin{aligned} & \pm 1.5 \\ & \pm 2.2 \end{aligned}$ | \% |
| | | Extended Range $\mathrm{R}_{\text {SET }}=25 \mathrm{k}$ to 800 k | \bullet | | | $\begin{aligned} & \pm 2.4 \\ & \pm 3.2 \end{aligned}$ | \% |
| $\Delta \mathrm{f}_{\text {OUT }} / \Delta \mathrm{T}$ | Frequency Drift Over Temperature | | - | | ± 0.005 | | \%/ ${ }^{\circ} \mathrm{C}$ |
| $\Delta \mathrm{f}_{\text {OUT }} / \Delta \mathrm{V}^{+}$ | Frequency Drift Over Supply | $\begin{aligned} & \mathrm{V}^{+}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \end{aligned}$ | \bullet | | $\begin{aligned} & 0.23 \\ & 0.06 \end{aligned}$ | $\begin{aligned} & 0.55 \\ & 0.16 \end{aligned}$ | \%/V |
| | Period Jitter (Note 10) | $\mathrm{N}_{\text {DIV }}=1$ | | | 0.38 | | \%p-p |
| | | $\mathrm{N}_{\text {DIV }}=2$ | | | $\begin{aligned} & 0.22 \\ & 0.027 \end{aligned}$ | | \%p-p \%RMS |
| | | $N_{\text {DIV }}=128$ | | | $\begin{aligned} & 0.022 \\ & 0.004 \end{aligned}$ | | \%p-p \%RMS |
| | Duty Cycle | | \bullet | $\begin{aligned} & 47 \\ & 48 \end{aligned}$ | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & 53 \\ & 52 \end{aligned}$ | \% |
| BW | Frequency Modulation Bandwidth | | | | $0.4 \cdot{ }^{\text {out }}$ | | kHz |
| $\mathrm{t}_{\text {S }}$ | Frequency Change Settling Time (Note 9) | $\mathrm{t}_{\text {MASTER }}=\mathrm{t}_{\text {OUT }} / \mathrm{N}_{\text {DIV }}$ | | | $6 \bullet$ MASTER | | $\mu \mathrm{S}$ |

Analog Inputs

$\mathrm{V}_{\text {SET }}$	Voltage at SET Pin		\bullet	0.97	1.00	1.03
$\Delta \mathrm{~V}_{\text {SET }} / \Delta \mathrm{T}$	$\mathrm{V}_{\text {SET }}$ Drift Over Temperature		\bullet	V		
$\Delta \mathrm{V}_{\text {SET }} / \Delta \mathrm{V}^{+}$	$\mathrm{V}_{\text {SET }}$ Drift Over Supply			± 75		$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {SET }} / \Delta \mathrm{I}_{\text {SET }}$	$\mathrm{V}_{\text {SET }}$ Droop with ISET	-150	$\mu \mathrm{~V} / \mathrm{V}$			
$\mathrm{R}_{\text {SET }}$	Frequency-Setting Resistor	Recommended Range Extended Range		-7	Ω	
$\mathrm{~V}_{\text {DIV }}$	DIV Pin Voltage		\bullet	50	800	$\mathrm{k} \Omega$
$\Delta \mathrm{V}_{\text {DIV }} / \mathrm{V}^{+}$	DIV Pin Valid Code Range (Note 5)	Deviation from Ideal $\mathrm{V}_{\text {DIV }} / \mathrm{V}^{+}=($DIVCODE +0.5$) / 16$	\bullet	\bullet	0	800
	DIV Pin Input Current		\bullet	$\mathrm{k} \Omega$		

Power Supply

V^{+}	Operating Supply Voltage Range			\bullet	2.25	5.5	V
	Power-On Reset Voltage	$\mathrm{R}_{\text {SET }}=25 \mathrm{k}$ to 800k		\bullet		1.95	V
IS	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{N}_{\text {DIV }}=1, \mathrm{R}_{\text {SET }}=50 \mathrm{k}$	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 235 \\ & 145 \end{aligned}$	$\begin{aligned} & 283 \\ & 183 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
		$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{N}_{\text {DIV }}=1 \mathrm{R}_{\text {SET }}=800 \mathrm{k}$	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 71 \\ & 59 \end{aligned}$	$\begin{gathered} 105 \\ 92 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
		$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{N}_{\text {DIV }}=128, \mathrm{R}_{\text {SET }}=50 \mathrm{k}$	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 137 \\ & 106 \end{aligned}$	$\begin{aligned} & 180 \\ & 145 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
		$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{N}_{\text {DIV }}=128, \mathrm{R}_{\text {SET }}=800 \mathrm{k}$	$\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 66 \\ & 56 \end{aligned}$	$\begin{gathered} 100 \\ 90 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply ver the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Test conditions are $\mathrm{V}^{+}=2.25 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{OE}=\mathrm{V}^{+}$, DIVCODE $=0$ to 15 ($N_{\text {DIV }}=1$ to 128), $\mathrm{R}_{\text {SET }}=25 \mathrm{k}$ to $800 \mathrm{k}, \mathrm{R}_{\text {LOAD }}=\infty, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$ unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Digital I/0 | | | | | | | | |
| | OE Pin Input Capacitance | | | | | 2.5 | | pF |
| | OE Pin Input Current | OE = OV to V | | \bullet | | | ± 10 | nA |
| $\mathrm{V}_{\text {IH }}$ | High Level OE Pin Input Voltage | (Note 6) | | \bullet | $0.7 \cdot{ }^{+}$ | | | V |
| VIL | Low Level OE Pin Input Voltage | (Note 6) | | \bullet | | | $0.3 \cdot \mathrm{~V}^{+}$ | V |
| | OUT Pin Hi-Z Leakage | OE $=0 \mathrm{~V}$, DIVCODE $\geq 8, \mathrm{OUT}=0 \mathrm{~V}$ to V^{+} | | | | | ± 10 | $\mu \mathrm{A}$ |
| IOUT(MAX) | Maximum Output Current | | | | | ± 20 | | mA |
| $\overline{\mathrm{V}_{\mathrm{OH}}}$ | High Level Output Voltage (Note 7) | $\mathrm{V}^{+}=5.5 \mathrm{~V}$ | $\begin{aligned} & I_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & I_{\mathrm{OH}}=-16 \mathrm{~mA} \end{aligned}$ | \bullet | $\begin{aligned} & 5.45 \\ & 4.84 \end{aligned}$ | $\begin{aligned} & 5.48 \\ & 5.15 \end{aligned}$ | | V |
| | | $\mathrm{V}^{+}=3.3 \mathrm{~V}$ | $\begin{aligned} & I_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}=-10 \mathrm{~mA} \end{aligned}$ | \bullet | $\begin{aligned} & 3.24 \\ & 2.75 \end{aligned}$ | $\begin{aligned} & 3.27 \\ & 2.99 \end{aligned}$ | | V |
| | | $\mathrm{V}^{+}=2.25 \mathrm{~V}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$ | \bullet | $\begin{aligned} & 2.17 \\ & 1.58 \end{aligned}$ | $\begin{aligned} & 2.21 \\ & 1.88 \end{aligned}$ | | V |
| $\overline{\mathrm{V}} \mathrm{L}$ | Low Level Output Voltage (Note 7) | $\mathrm{V}^{+}=5.5 \mathrm{~V}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$ | \bullet | | $\begin{aligned} & 0.02 \\ & 0.26 \end{aligned}$ | $\begin{aligned} & 0.04 \\ & 0.54 \end{aligned}$ | V |
| | | $\mathrm{V}^{+}=3.3 \mathrm{~V}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \end{aligned}$ | \bullet | | $\begin{aligned} & 0.03 \\ & 0.22 \end{aligned}$ | $\begin{aligned} & 0.05 \\ & 0.46 \end{aligned}$ | V |
| | | $\mathrm{V}^{+}=2.25 \mathrm{~V}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$ | \bullet | | $\begin{aligned} & 0.03 \\ & 0.26 \end{aligned}$ | $\begin{aligned} & 0.07 \\ & 0.54 \end{aligned}$ | V |
| tPD | Output Disable Propagation Delay | $\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3.3 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$ | | | | 17 26 44 | | ns ns ns |
| $t_{\text {ENABLE }}$ | Output Enable Time | $\mathrm{N}_{\text {DIV }} \leq 2$, t_{OU} $\mathrm{N}_{\text {DIV }} \geq 4$, t_{MA} | | | | $\begin{gathered} \text { tpp }^{\text {to } \mathrm{t}_{\text {OUT }}} \\ \text { tpp } \text { to } 2 \bullet \mathrm{t}_{\text {MASTER }} \end{gathered}$ | | $\mu \mathrm{S}$ $\mu \mathrm{S}$ |
| tr_{r} | Output Rise Time (Note 8) | $\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3.3 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$ | | | | $\begin{aligned} & 1.1 \\ & 1.7 \\ & 2.7 \end{aligned}$ | | ns ns ns |
| t_{f} | Output Fall Time (Note 8) | $\begin{aligned} & \mathrm{V}^{+}=5.5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3.3 \mathrm{~V} \\ & \mathrm{~V}^{+}=2.25 \mathrm{~V} \end{aligned}$ | | | | $\begin{aligned} & 1.0 \\ & 1.6 \\ & 2.4 \\ & \hline \end{aligned}$ | | ns ns ns |

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC6990C is guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 3: The LTC6990C is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LTC6990C is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but it is not tested or QA sampled at these temperatures. The LTC6990l is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LTC6990H is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: Frequency accuracy is defined as the deviation from the fout equation, assuming $\mathrm{R}_{\text {SET }}$ is used to program the frequency.

Note 5: See Operation section, Table 1 and Figure 2 for a full explanation of how the DIV pin voltage selects the value of DIVCODE.
Note 6: The OE pin has hysteresis to accommodate slow rising or falling signals. The threshold voltages are proportional to V^{+}. Typical values can be estimated at any supply voltage using $\mathrm{V}_{\mathrm{OE}(\mathrm{RISING})} \approx 0.55 \bullet \mathrm{~V}^{+}+185 \mathrm{mV}$ and $V_{O E(F A L L I N G)} \approx 0.48 \bullet \mathrm{~V}^{+}-155 \mathrm{mV}$.
Note 7: To conform to the Logic IC Standard, current out of a pin is arbitrarily given a negative value.
Note 8: Output rise and fall times are measured between the 10% and the 90% power supply levels with 5 pF output load. These specifications are based on characterization.
Note 9: Settling time is the amount of time required for the output to settle within $\pm 1 \%$ of the final frequency after a $0.5 x$ or $2 x$ change in $I_{\text {SET }}$.
Note 10: Jitter is the ratio of the deviation of the period to the mean of the period. This specification is based on characterization and is not 100% tested.

TYPICAL PGRFORMAOCE CHARACT \in RISTICS ${ }^{+}=3.3 v$, unless otherwise noted.

Frequency Error
vs Supply Voltage

Frequency Error vs Temperature

6990 G04

Supply Current vs Supply Voltage

Supply Current vs Temperature

TYPICAL PGRFORMAOCE CHARACTERISTICS $\mathrm{v}^{+}=3 V$, unless otherwise noted.

OE Threshold Voltage vs Supply Voltage

Supply Current vs Frequency, 2.5V

Peak-to-Peak Jitter vs Frequency

Output Resistance
vs Supply Voltage

Frequency Modulation

Output Disable Propagation Delay
(tpp) vs Supply Voltage

Typical Output Waveform

Frequency Modulation

[^0]
PIn FUNCTIONS
 (DCB/S6)

V+(Pin 1/Pin 5): Supply Voltage (2.25V to 5.5 V). This supply must be kept free from noise and ripple. It should be bypassed directly to the GND pin with a $0.1 \mu \mathrm{~F}$ capacitor.

DIV (Pin 2/Pin 4): Programmable Divider and Hi-Z Mode Input. A V^{+}referenced A/D converter monitors the DIV pin voltage ($V_{\text {DIV }}$) to determine a 4-bit result (DIVCODE). $\mathrm{V}_{\text {DIV }}$ may be generated by a resistor divider between V^{+} and GND. Use 1% resistors to ensure an accurate result. The DIV pin and resistors should be shielded from the OUT pin or any other traces that have fast edges. Limit the capacitance on the DIV pin to less than 100pF so that VIIV settles quickly. The MSB of DIVCODE (Hi-Z) determines the behavior of the output when OE is driven Iow. If $\mathrm{Hi}-\mathrm{Z}=0$ the output is pulled low when disabled. If $\mathrm{Hi}-\mathrm{Z}$ $=1$ the output is placed in a high impedance condition when disabled.

SET (Pin 3/Pin 3): Frequency-Setting Input. The voltage on the SET pin ($\mathrm{V}_{\text {SET }}$) is regulated to 1 V above GND. The amount of current sourced from the SET pin ($\mathrm{I}_{\mathrm{SET}}$) programs the master oscillator frequency. The I $\mathrm{I}_{\text {STT }}$ current range is $1.25 \mu \mathrm{~A}$ to $40 \mu \mathrm{~A}$. The output oscillation will stop if $I_{\text {SET }}$ drops below approximately 500 nA . A resistor connected between SET and GND is the most accurate way to set the frequency. For best performance, use a precision metal or thin film resistor of 0.5\% or better tolerance and $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better temperature coefficient. For lower accuracy applications an inexpensive 1\% thick film resistor may be used.

Limit the capacitance on the SET pin to less than 10pF to minimize jitter and ensure stability. Capacitance less than 100 pF maintains the stability of the feedback circuit regulating the $\mathrm{V}_{\text {SET }}$ voltage.

OE (Pin 4/Pin 1): Output Enable. Drive high to enable the output driver (Pin 6). Driving OE low disables the output asynchronously, so that the output is immediately forced low ($\mathrm{Hi}-\mathrm{Z}=0$) or floated $(\mathrm{Hi}-\mathrm{Z}=1)$. When enabled, the output may temporarily remain low to synchronize with the internal oscillator in order to eliminate pulse slivers.

GND (Pin 5/Pin2): Ground. Tie to alow inductance ground plane for best performance.
OUT (Pin 6/Pin 6): Oscillator Output. The OUT pin swings from GND to V^{+}with an output resistance of approximately 30Ω. When driving an LED or other low-impedance load a series output resistor should be used to limit source/sink current to 20 mA .

BLOCK DIAGRAM (S6 Package Pin Numbers Shown)

OPERATION

The LTC6990 is built around a master oscillator with a 1 MHz maximum frequency. The oscillator is controlled by the SET pin current ($\mathrm{I}_{\mathrm{SET}}$) and voltage ($\mathrm{V}_{\mathrm{SET}}$), with a $1 \mathrm{MHz} \cdot 50 \mathrm{k}$ conversion factor that is accurate to $\pm 0.8 \%$ under typical conditions.

$$
f_{\text {MASTER }}=\frac{1}{t_{\text {MASTER }}}=1 \mathrm{MHZ} \cdot 50 \mathrm{k} \cdot \frac{\mathrm{I}_{\text {SET }}}{V_{\text {SET }}}
$$

A feedback loop maintains $\mathrm{V}_{\text {SET }}$ at $1 \mathrm{~V} \pm 30 \mathrm{mV}$, leaving $\mathrm{I}_{\text {SET }}$ as the primary means of controlling the output frequency. The simplest way to generate $\mathrm{I}_{\text {SET }}$ is to connect a resistor ($\mathrm{R}_{\mathrm{SET}}$) between SET and GND, such that $\mathrm{I}_{\mathrm{SET}}=\mathrm{V}_{\mathrm{SET}} / \mathrm{R}_{\mathrm{SET}}$. The master oscillator equation reduces to:

$$
\mathrm{f}_{\text {MASTER }}=\frac{1}{\mathrm{t}_{\text {MASTER }}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{\mathrm{R}_{\text {SET }}}
$$

From this equation it is clear that $\mathrm{V}_{\text {SET }}$ drift will not affect the output frequency when using a single program resistor ($\mathrm{R}_{\text {SET }}$). Error sources are limited to $\mathrm{R}_{\text {SET }}$ tolerance and the inherent frequency accuracy $\Delta f_{\text {OUT }}$ of the LTC6990.
$R_{\text {SET }}$ values between 50 k and 800 k (equivalent to $\mathrm{I}_{\text {SET }}$ between $1.25 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A}$) produce the best results, although $\mathrm{R}_{\text {SET }}$ may be reduced to $25 \mathrm{k}\left(\mathrm{I}_{\text {SET }}=40 \mu \mathrm{~A}\right)$ with reduced accuracy.

The LTC6990 includes a programmable frequency divider which can further divide the frequency by $1,2,4,8,16$, 32,64 or 128 before driving the OUT pin. The divider ratio $\mathrm{N}_{\text {DIV }}$ is set by a resistor divider attached to the DIV pin.

$$
f_{\text {OUT }}=\frac{1}{t_{\text {OUT }}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{\mathrm{~N}_{\text {DIV }}} \cdot \frac{\mathrm{I}_{\text {SET }}}{\mathrm{V}_{\text {SET }}}
$$

With $\mathrm{R}_{\text {SET }}$ in place of $\mathrm{V}_{\text {SET }} / I_{\text {SET }}$ the equation reduces to:

$$
\mathrm{f}_{\text {OUT }}=\frac{1}{\mathrm{t}_{\text {OUT }}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{\mathrm{~N}_{\text {DIV }} \bullet \mathrm{R}_{\text {SET }}}
$$

DIVCODE

The DIV pin connects to an internal, V^{+}referenced 4-bit A/D converter that monitors the DIV pin voltage ($\mathrm{V}_{\text {DIV }}$) to determine the DIVCODE value. DIVCODE programs two settings on the LTC6990:

1. DIVCODE determines the output frequency divider setting, N NIV.
2. DIVCODE determines the state of the output when disabled, via the $\mathrm{Hi}-\mathrm{Z}$ bit.
$V_{\text {DIV }}$ may be generated by a resistor divider between V^{+} and GND as shown in Figure 1.

Figure 1. Simple Technique for Setting DIVCODE

OPERATION

Table 1. DIVCODE Programming

DIVCODE	Hi-Z	$\mathbf{N}_{\text {DIV }}$	Recommended $f_{\text {OUT }}$	R1 (k)	R2 $\mathbf{k})$	$\mathbf{V}_{\text {DIV }} / \mathbf{V}^{+}$
0	0	1	62.5 kHz to 1 MHz	Open	Short	$\leq 0.03125 \pm 0.015$
1	0	2	31.25 kHz to 500 kHz	976	102	0.09375 ± 0.015
2	0	4	15.63 kHz to 250 kHz	976	182	0.15625 ± 0.015
3	0	8	7.813 kHz to 125 kHz	1000	280	0.21875 ± 0.015
4	0	16	3.906 kHz to 62.5 kHz	1000	392	0.28125 ± 0.015
5	0	32	1.953 kHz to 31.25 kHz	1000	523	0.34375 ± 0.015
6	0	64	976.6 Hz to 15.63 kHz	1000	681	0.40625 ± 0.015
7	0	128	488.3 Hz to 7.813 kHz	1000	887	0.46875 ± 0.015
8	1	128	488.3 Hz to 7.813 kHz	887	1000	0.53125 ± 0.015
9	1	64	976.6 Hz to 15.63 kHz	681	1000	0.59375 ± 0.015
10	1	32	1.953 kHz to 31.25 kHz	523	1000	0.65625 ± 0.015
11	1	16	3.906 kHz to 62.5 kHz	392	1000	0.71875 ± 0.015
12	1	8	7.813 kHz to 125 kHz	280	1000	0.78125 ± 0.015
13	1	4	15.63 kHz to 250 kHz	182	976	0.84375 ± 0.015
14	1	2	31.25 kHz to 500 kHz	102	976	0.90625 ± 0.015
15	1	1	62.5 kHz to 1 MHz	Short	0 pen	$\geq 0.96875 \pm 0.015$

Table 1 offers recommended 1\% resistor values that accurately produce the correct voltage division as well as the corresponding $\mathrm{N}_{\text {DIV }}$ and Hi -Z values for the recommended resistor pairs. Other values may be used as long as:

1. The $\mathrm{V}_{\mathrm{DIV}} / \mathrm{V}^{+}$ratio is accurate to $\pm 1.5 \%$ (including resistor tolerances and temperature effects)
2. The driving impedance (R1||R2) does not exceed 500 k .

If the voltage is generated by other means (i.e. the output of a DAC) it must track the V^{+}supply voltage. The last
column in Table 1 shows the ideal ratio of $V_{\text {DIV }}$ to the supply voltage, which can also be calculated as:

$$
\frac{V_{\text {DIV }}}{\mathrm{V}^{+}}=\frac{\text { DIVCODE }+0.5}{16} \pm 1.5 \%
$$

For example, if the supply is 3.3 V and the desired DIVCODE is $4, \mathrm{~V}_{\text {DIV }}=0.281 \cdot 3.3 \mathrm{~V}=928 \mathrm{mV} \pm 50 \mathrm{mV}$.

Figure 2 illustrates the information in Table 1, showing that $N_{\text {DIV }}$ is symmetric around the DIVCODE midpoint.

Figure 2. Frequency Range and Hi-Z Bit vs DIVCODE

OPERATION

On start-up, the DIV pin A/D converter must determine the correct DIVCODE before the output is enabled. If $V_{\text {DIV }}$ is not stable, it will increase the start-up time as the converter waits for a stable result. Therefore, capacitance on the DIV pin should be minimized so it will settle quickly. Less than 100pF will not affect performance.

Output Enable

The OE pin controls the state of the LTC6990's output as seen on the OUT pin. Pulling the OE pin high enables the oscillator output. Pulling it low disables the output. When the output is disabled, it is either held low or placed in a high impedance state as dictated by the $\mathrm{Hi}-\mathrm{Z}$ bit value (determined by the DIVCODE as described earlier). Table 2 summarizes the output control states.

Table 2. Output States

OE Pin	Hi-Z	OUT
1	X	Enabled, Output is Active
0	1	Disabled, Output is Hi-Z
0	0	Disabled, Output is Held Low

Figure 3 illustrates the timing for the OE function when $\mathrm{Hi}-\mathrm{Z}=0$. When OE is low, the output is disabled and OUT is held low. Bringing OE high enables the output after a delay, tenable, which synchronizes the enable to eliminate sliver pulses and guarantee the correct width for the first pulse. If $\mathrm{N}_{\text {DIV }}=1$ or 2 this delay will be no longer than the output period, $\mathrm{t}_{\text {OUT }}$. If $\mathrm{N}_{\text {DIV }}>2$ the delay is limited to twice the internal master oscillator period (or2 $\bullet_{\text {MASTER }}$). Forcing OE low will bring OUT Iow after a propagation delay, tpD. If the output is high when OE falls, the output pulse will be truncated.
As shown in Figure 4, setting Hi-Z = 1 places the output in a high-impedance state when $\mathrm{OE}=0$. This feature allows for "wired-OR" connections of multiple devices. Driving OE high enables the output. The output will usually be forced low during this time, although it is possible for OUT to transition directly from high-impedance to a high output, depending on the timing of the OE transition relative to the internal oscillator. Once high, the first output pulse will have the correct width (unless truncated by bringing OE Iow again).

Figure 3. OE Timing Diagram ($\mathrm{Hi}-\mathrm{Z}=0$)

Figure 4. OE Timing Diagram ($\mathrm{Hi}-\mathrm{Z}=1$)

operation

Changing DIVCODE After Start-Up

Following start-up, the A/D converter will continue monitoring V DIV for changes. Changes to DIVCODE will be recognized slowly, as the LTC6990 places a priority on eliminating any "wandering" in the DIVCODE. The typical delay depends on the difference between the old and new DIVCODE settings and is proportional to the master oscillator period.

$$
\mathrm{t}_{\mathrm{DIVCODE}}=16 \cdot(\Delta \mathrm{DIVCODE}+6) \cdot \mathrm{t}_{\text {MASTER }}
$$

A change in DIVCODE will not be recognized until it is stable, and will not pass through intermediate codes. A digital filter is used to guarantee the DIVCODE has settled to a new value before making changes to the output. Then the output will make a clean (glitchless) transition to the new divider setting.

Figure 5. DIVCODE Change from 5 to 2

Start-Up Time

When power is first applied to the LTC6990 the power-on reset (POR) circuit will initiate the start-up time, tstart. The OUT pin is floated (high-impedance) during this time. The typical value for $\mathrm{t}_{\text {START }}$ ranges from 0.5 ms to 8 ms depending on the master oscillator frequency (independent of $\mathrm{N}_{\text {DIV }}$):

$$
\mathrm{t}_{\mathrm{START}(\mathrm{TYP})}=500 \bullet \mathrm{t}_{\mathrm{MASTER}}
$$

The start-up time may be longer if the supply or DIV pin voltages are not stable. For this reason, it is recommended to minimize the capacitance on the DIV pin so it will properly track V^{+}.

Figure 6. Typical Start-Up

APPLICATIONS InFORMATION

Figure 7. Start-Up Timing Diagram ($0 \mathrm{E}=1, \mathrm{~N}_{\mathrm{DIV}}=1$ or $2, \mathrm{Hi}-\mathrm{Z}=0$ or 1)

Figure 8. Start-Up Timing Diagram ($O E=1, \mathrm{~N}_{\mathrm{DIV}} \geq 4, \mathrm{Hi}-\mathrm{Z}=0$ or 1)

Figure 9. Start-Up Timing Diagram ($\mathbf{O E}=\mathbf{O}, \mathrm{N}_{\mathrm{DIV}}=$ Any, $\mathrm{Hi}-\mathrm{Z}=0$)

Figure 10. Start-Up Timing Diagram ($0 \mathrm{E}=0, \mathrm{~N}_{\mathrm{DIV}}=\mathrm{Any}, \mathrm{Hi}-\mathrm{Z}=1$)

APPLICATIONS INFORMATION

Start-Up Behavior

When first powered up, the output is high impedance. If the output is enabled $(0 \mathrm{E}=1)$ at the end of the start-up time, the output will go low for one $\mathrm{t}_{\text {MASTER }}$ Cycle (or half a $\mathrm{t}_{\text {OUT }}$ cycle if $\mathrm{N}_{\text {DIV }}<4$) before the first rising edge. If the output is disabled $(O E=0)$ at the end of the start-up time, the output will drop to a low output if the $\mathrm{Hi}-\mathrm{Z}$ bit $=0$, or simply remain floating if $\mathrm{Hi}-\mathrm{Z}=1$.

Basic Fixed Frequency Operation

The simplest and most accurate method to program the LTC6990 for fixed frequency operation is to use a single resistor, R RET, between the SET and GND pins. The design procedure is a simple two step process. First select the $N_{\text {DIV }}$ value and then calculate the value for the $R_{S E T}$ resistor.

Step 1: Selecting the $\mathrm{N}_{\text {DIV }}$ Frequency Divider Value

As explained earlier, the voltage on the DIV pin sets the DIVCODE which determines both the Hi-Z bit and the $N_{\text {DIV }}$ value. For a given output frequency, $\mathrm{N}_{\text {DIV }}$ should be selected to be within the following range.

$$
\begin{equation*}
\frac{62.5 \mathrm{kHz}}{\mathrm{f}_{\text {OUT }}} \leq \mathrm{N}_{\mathrm{DIV}} \leq \frac{1 \mathrm{MHz}}{\mathrm{f}_{\text {OUT }}} \tag{1a}
\end{equation*}
$$

To minimize supply current, choose the lowest $N_{\text {DIV }}$ value (generally recommended). For faster start-up or decreased jitter, choose a higher $\mathrm{N}_{\text {DIV }}$ setting. Alternatively, use Table 1 as a guide to select the best N NIV value for the given application. After choosing the value for $\mathrm{N}_{\text {DIV }}$, use Table 1 to select the proper resistor divider or $\mathrm{V}_{\text {DIV }} / \mathrm{V}^{+}$ratio to apply to the DIV pin.

Step 2: Calculate and Select RSET

The final step is to calculate the correct value for $\mathrm{R}_{\text {SET }}$ using the following equation.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{SET}}=\frac{1 \mathrm{MHz} \bullet 50 \mathrm{k}}{\mathrm{~N}_{\mathrm{DIV}} \bullet \mathrm{f}_{\mathrm{OUT}}} \tag{1b}
\end{equation*}
$$

Select the standard resistor value closest to the calculated value.

Example: Design a 20kHz Oscillator with Minimum Power Consumption

Step 1: Selecting the $\mathrm{N}_{\text {DIV }}$ Frequency Divider Value

First, choose an NDIV value that meets the requirements of Equation (1a).

$3.125 \leq \mathrm{N}_{\text {DIV }} \leq 50$

Potential settings for $N_{\text {DIV }}$ include 4, 8, 16, and 32. N NIV $=4$ is the best choice, as it minimizes supply current by using a large RSET $^{\text {resistor. Using Table 1, choose the R1 and R2 }}$ values to program DIVCODE to either 2 or 13, depending on the desired behavior when the output is disabled.

Step 2: Select RSET

Calculate the correct value for $\mathrm{R}_{\text {SET }}$ using Equation (1b).

$$
\mathrm{R}_{\mathrm{SET}}=\frac{1 \mathrm{MHz} \bullet 50 \mathrm{k}}{4 \bullet 20 \mathrm{kHz}}=625 \mathrm{k}
$$

Since 625 k is not available as a standard 1% resistor, substitute 619 k if a 0.97% frequency shift is acceptable. Otherwise, select a parallel or series pair of resistors such as 309 k and 316 k to attain a more precise resistance.

Frequency Modulated Operation (Voltage-Controlled Oscillator)

Operating the LTC6990 as a voltage-controlled oscillator in its simplest form is achieved with one additional resistor. As shown in Figure 11, voltage $V_{\text {CTRL }}$ sources/sinks a current through $\mathrm{R}_{V C O}$ to vary the $\mathrm{I}_{\text {SET }}$ current, which in turn modulates the output frequency as described in Equation (2).

$$
\begin{equation*}
\mathrm{f}_{\mathrm{OUT}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{\mathrm{~N}_{\mathrm{DIV}} \cdot \mathrm{R}_{\mathrm{VCO}}} \cdot\left(1+\frac{\mathrm{R}_{\mathrm{VCO}}}{\mathrm{R}_{\mathrm{SET}}}-\frac{\mathrm{V}_{\mathrm{CTRL}}}{\mathrm{~V}_{\mathrm{SET}}}\right) \tag{2}
\end{equation*}
$$

Figure 11. Voltage Controlled Oscillator

APPLICATIONS InFORMATION

Equation (2) can be re-written as shown below, where $\mathrm{f}_{(\mathrm{OV})}$ is the output frequency when $\mathrm{V}_{\mathrm{CTRL}}=0 \mathrm{~V}$, and $\mathrm{K}_{\mathrm{VCO}}$ is the frequency gain. Note that the gain is negative (the output frequency decreases as $V_{\text {CTRL }}$ increases).

$$
\begin{aligned}
\mathrm{f}_{\mathrm{OUT}} & =\mathrm{f}_{(\mathrm{OV})}-\mathrm{K}_{\mathrm{VCO}} \bullet \mathrm{~V}_{\mathrm{CTRL}} \\
\mathrm{f}_{(\mathrm{OV})} & =\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{\mathrm{~N}_{\mathrm{DIV}} \bullet\left(\mathrm{R}_{\mathrm{SET}} \| \mathrm{R}_{\mathrm{VCO}}\right)} \\
\mathrm{K}_{\mathrm{VCO}} & =\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{\mathrm{~N}_{\mathrm{DIV}} \bullet \mathrm{~V}_{\mathrm{SET}} \bullet \mathrm{R}_{\mathrm{VCO}}}
\end{aligned}
$$

The design procedure for a VCO is a simple four step process. First select the $N_{\text {DIV }}$ value. Then calculate the intermediate values $\mathrm{K}_{\mathrm{VCO}}$ and $\mathrm{f}_{(\mathrm{OV})}$. Next, calculate and select the Ryco resistor. Finally calculate and select the $\mathrm{R}_{\text {SET }}$ resistor.

Step 1: Select the NoIv Frequency Divider Value

For best accuracy, the master oscillator frequency should fall between 62.5 kHz and 1 MHz . Since $\mathrm{f}_{\text {MASTER }}=\mathrm{N}_{\text {DIV }} \bullet$ $f_{\text {OUT, }}$ choose a value for $N_{\text {DIV }}$ that meets the following conditions

$$
\begin{equation*}
\frac{62.5 \mathrm{kHz}}{\mathrm{f}_{\text {OUT(MIN })}} \leq \mathrm{N}_{\text {DIV }} \leq \frac{1 \mathrm{MHz}}{\mathrm{f}_{\text {OUT(MAX) }}} \tag{3a}
\end{equation*}
$$

The $16: 1$ frequency range of the master oscillator and the 2:1 divider step-size provides several overlapping frequency spans to guarantee that any 8:1 modulation range can be covered by a single Nolv setting. Ryco allows the gain to be tailored to the application, mapping the $V_{C T R L}$ voltage range to the modulation range.

Step 2: Calculate $\mathrm{K}_{\mathrm{VCo}}$ and $\mathrm{f}_{(\mathrm{OV})}$

$K_{\text {vco }}$ and $f_{(O V)}$ define the VCO's transfer function and simplify the calculation of the the R $\mathrm{R}_{V C O}$ and $\mathrm{R}_{\text {SET }}$ resistors. Calculate these parameters using the following equations.

$$
\begin{align*}
& \mathrm{K}_{\mathrm{VCO}}=\frac{f_{\text {OUT(MAX) }}-f_{\text {OUT(MIN })}}{V_{\text {CTRL(MAX) }}-V_{\text {CTRL(MIN })}} \tag{3b}\\
& f_{(\text {OV })}=f_{\text {OUT(MAX })}+\mathrm{K}_{\text {VCO }} \cdot \mathrm{V}_{\text {CTRL(MIN })} \tag{3c}
\end{align*}
$$

$K_{V C O}$ and $f_{(O V)}$ are not device settings or resistor values themselves. However, beyond their utility for the resistor calculations, these parameters provide a useful and intuitive way to look at the VCO application. The $\mathrm{f}_{(0 \mathrm{~V})}$ parameter is the output frequency when $\mathrm{V}_{\text {CTRL }}$ is at OV. Viewed another way, it is the fixed output frequency when the Rvco and $R_{\text {SET }}$ resistors are in parallel. Kvco is actually the frequency gain of the circuit.

With $K_{v C O}$ and $f_{(0 V)}$ determined, the $R_{V C O}$ and $R_{S E T}$ values can now be calculated.

Step 3: Calculate and Select Ryco

The next step is to calculate the correct value for Rvco using the following equation.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{VCO}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{\mathrm{~N}_{\mathrm{DIV}} \cdot \mathrm{~V}_{\text {SET }} \cdot \mathrm{K}_{\mathrm{VCO}}} \tag{3d}
\end{equation*}
$$

Select the standard resistor value closest to the calculated value.

Step 4: Calculate and Select RET

The final step is to calculate the correct value for $\mathrm{R}_{\text {SET }}$ using the following equation:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{SET}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{\mathrm{~N}_{\mathrm{DIV}} \bullet\left(\mathrm{f}_{(\mathrm{OV})}-\mathrm{V}_{\mathrm{SET}} \bullet \mathrm{~K}_{\mathrm{VCO}}\right)} \tag{3e}
\end{equation*}
$$

Select the standard resistor value closest to the calculated value.

Some applications require combinations of $\mathrm{f}_{\text {OUT(MIN) }}$, $\mathrm{f}_{\text {OUt(MAX) }}, \mathrm{V}_{\text {CTRL(MII) }}$ and $\mathrm{V}_{\text {CTRL(MAX) }}$ that are not achievable. These applications result in unrealistic or unrealizable (e.g. negative value) resistors. These applications will require preconditioning of the $V_{\text {CTRL }}$ signal via range scaling and/or level shifting to place the $\mathrm{V}_{\text {CTRL }}$ into a range that yields realistic resistor values.

Frequency Error in VCO Applications Due to $\mathrm{V}_{\text {SET }}$ Error

As stated earlier, $\mathrm{f}_{(\mathrm{OV})}$ represents the frequency for $\mathrm{V}_{\mathrm{CTRL}}$ $=0 \mathrm{~V}$, which is the same value as would be generated by a single resistor between SET and GND with a value of $R_{\text {SET }} \| R_{\text {VCO }}$. Therefore, $\mathrm{f}_{(\mathrm{OV})}$ is not affected by error or drift in $\mathrm{V}_{\text {SET }}$ (i.e. $\Delta \mathrm{V}_{\text {SET }}$ adds no frequency error when $V_{C T R L}=0 V$).

APPLICATIONS INFORMATION

The accuracy of $K_{V C O}$ does depend on $V_{\text {SET }}$ because the output frequency is controlled by the ratio of $V_{\text {CTRL }}$ to $\mathrm{V}_{\text {SET. }}$ The frequency error (in Hertz) due to $\Delta \mathrm{V}_{\text {SET }}$ is approximated by:

$$
\Delta \mathrm{f}_{\mathrm{OUT}} \cong \mathrm{~K}_{\mathrm{VCO}} \bullet \mathrm{~V}_{\mathrm{CTRL}} \cdot \frac{\Delta \mathrm{~V}_{\mathrm{SET}}}{\mathrm{~V}_{\mathrm{SET}}}
$$

As the equation indicates, the potential for error in output frequency due to $\mathrm{V}_{\text {SET }}$ error increases with $\mathrm{K}_{\mathrm{VCO}}$ and is at its largest when $V_{\text {CTRL }}$ is at its maximum. Recall that when $V_{\text {CTRL }}$ is at its maximum, the output frequency is at its minimum. With the maximum absolute frequency error (in Hertz) occurring at the lowest output frequency, the relative frequency error (in percent) can be significant.
$V_{\text {SET }}$ is nominally 1.0 V with a maximum error of $\pm 30 \mathrm{mV}$ for at most a $\pm 3 \%$ error term. However, this $\pm 3 \%$ potential error term is multiplied by both $\mathrm{V}_{\text {CTRL }}$ and $\mathrm{K}_{V C O}$. Wide frequency range applications (high K Vco) can have frequency errors greater than $\pm 50 \%$ at the highest $V_{\text {CTRL }}$ voltage (lowest fout). For this reason the simple, two resistor VCO circuit must be used with caution for applications where the frequency range is greater than $4: 1$. Restricting the range to $4: 1$ typically keeps the frequency error due to $V_{\text {SET }}$ variation below 10%.
For wide frequency range applications, the non-inverting VCO circuit shown in Figure 13 is preferred because the maximum frequency error occurs when the frequency is highest, keeping the relative error (in percent) much smaller.

Figure 12. VCO Transfer Function

Example: Design a VCO with the Following Parameters

$$
\begin{aligned}
& f_{\text {OUT }(M A X)}=100 \mathrm{kHz} \text { at } V_{\text {CTRL(MIN })}=1 \mathrm{~V} \\
& \mathrm{f}_{\text {OUT }(\text { MIN })}=10 \mathrm{kHz} \text { at } \mathrm{V}_{\text {CTRL(MAX) }}=4 \mathrm{~V}
\end{aligned}
$$

Step 1: Select the NoIv Value

First, choose an $N_{\text {DIV }}$ that meets the requirements of Equation (3a).

$$
6.25 \leq N_{\text {DIV }} \leq 10
$$

The application's desired frequency range is $10: 1$, which isn't always possible. However, in this case NDIV = 8 meets both requirements of Equation (3).

Step 2: Calculate $\mathrm{K}_{\mathrm{vco}}$ and $\mathrm{f}_{(\mathrm{OV})}$

Next, calculate the intermediate values $\mathrm{K}_{\mathrm{VCO}}$ and $\mathrm{f}_{(\mathrm{OV})}$ using Equations (3b) and (3c).

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{vco}}=\frac{100 \mathrm{kHz}-10 \mathrm{kHz}}{4 \mathrm{~V}-1 \mathrm{~V}}=30 \mathrm{kHz} \mathrm{~V} \\
& \mathrm{f}_{(0 \mathrm{~V})}=100 \mathrm{kHz}+30 \mathrm{kHz} / \mathrm{V} \cdot 1 \mathrm{~V}=130 \mathrm{kHz}
\end{aligned}
$$

Step 3: Calculate and Select Ryco

The next step is to use Equation (3d) to calculate the correct value for Ryco.

$$
\mathrm{R}_{\mathrm{Vco}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{8 \cdot 1 \mathrm{~V} \cdot 30 \mathrm{kHz} / \mathrm{N}}=208.333 \mathrm{k}
$$

Select RVCO $=210 \mathrm{k}$.

Step 4: Calculate and Select REET

The final step is to calculate the correct value for $\mathrm{R}_{\text {SET }}$ using Equation (3e).

$$
\mathrm{R}_{\mathrm{SET}}=\frac{1 \mathrm{MHz} \cdot 50 \mathrm{k}}{8 \cdot(130 \mathrm{kHz}-1 \mathrm{~V} \cdot 30 \mathrm{kHz} \mathrm{~N})}=62.5 \mathrm{k}
$$

Select RSET $=61.9 \mathrm{k}$
In this design example, with its wide 10:1 frequency range, the potential outputfrequency error due to $\vee_{\text {SET }}$ error alone ranges from less than $\pm 1 \%$ when $V_{\text {CTRL }}$ is at its minimum up to $\pm 36 \%$ when $V_{\text {CTRL }}$ is at its maximum. This error must be accounted for in the system design.

APPLICATIONS InFORMATION

Depending on the application's requirements, the noninverting VCO circuit in Figure 13 may be preferred for this wide of a frequency variation as its maximum inaccuracy due to $\mathrm{V}_{\text {SET }}$ error is only $\pm 9 \%$ and can be reduced to only $\pm 3 \%$ with a small change to the voltage tuning range specification.

Reducing V SET Error Effects in VCO Applications

Figure 13 shows a VCO that reduces the effect of $\Delta V_{\text {SET }}$ by adding an op-amp to make $V_{\text {CTRL }}$ dependent on $V_{\text {SET }}$. This circuit also has a positive transfer function (the output frequency increases as $V_{I N}$ increases). Furthermore, for positive $\mathrm{V}_{\text {IN }}$ voltages, this circuit places the greatest absolute frequency error at the highest output frequency. Compared to the simple VCO circuit of Figure 11, the absolute frequency error is unchanged. However, with
the maximum absolute frequency error (in Hertz) now occurring at the highest output frequency, the relative frequency error (in percent) is greatly improved.

Additionally, by choosing the VCO's specifications shrewdly, the frequency error (in percent) due to $\mathrm{V}_{\text {SET }}$ variation is reduced to $\Delta \mathrm{V}_{\mathrm{SET}} / \mathrm{V}_{\mathrm{SET}}= \pm 3 \%$. To realize this improvement, the design must abide by three conditions. First, the $\mathrm{V}_{\text {IN }}$ voltage must be positive throughout the range. Second, choose $\mathrm{V}_{\text {MAX }} / \mathrm{V}_{\text {MIN }} \geq \mathrm{f}_{\text {MAX }} / \mathrm{f}_{\text {MIN }}$. Last, choose $R_{V C O} / R_{S E T} \geq R 4 / R 3$.
Figure 13 shows a design similar to the previous design example where the $\mathrm{V}_{\text {MIN }}$ voltage is now specified to be 0.4 V . This satisfies the $\mathrm{V}_{\text {MAX }} / \mathrm{V}_{\text {MIN }} \geq \mathrm{f}_{\text {MAX }} / \mathrm{f}_{\text {MIN }}$ condition and the design assures that the output frequency error due to $V_{\text {SET }}$ variation is only $\pm 3 \%$.

Figure 13. VCO with Reduced $\Delta V_{\text {SET }}$ Sensitivity

APPLICATIONS INFORMATION

Eliminating V ${ }_{\text {SET }}$ Error Effects with DAC Frequency Control

Many DACs allow for the use of an external reference. If such a DAC is used to provide the $V_{\text {CTRL }}$ voltage, the $V_{\text {SET }}$ error is eliminated by buffering $\mathrm{V}_{\text {SET }}$ and using it as the DAC's reference voltage, as shown in Figure 14. The DAC's output voltage now tracks any $V_{\text {SET }}$ variation and eliminates it as an error source. The SET pin cannot be tied directly to the reference input of the DAC because the current drawn by the DAC's REF input would affect the frequency.

$I_{\text {SET }}$ Extremes (Master Oscillator Frequency Extremes)

Pushing $I_{\text {SET }}$ outside of the recommended $1.25 \mu \mathrm{~A}$ to $20 \mu \mathrm{~A}$ range forces the master oscillator to operate outside of the 62.5 kHz to 1 MHz range in which it is most accurate.

The oscillator will still function with reduced accuracy in its extended range (see the Electrical Characteristics section).

The LTC6990 is designed to function normally for I ISET as low as $1.25 \mu \mathrm{~A}$. At approximately 500 nA , the oscillator output will be frozen in its current state. For NDIV $=1$ or 2 , OUT will halt in a low state. But for larger divider ratios, it could halt in a high or low state. This avoids introducing short pulses while modulating a very low frequency output. Note that the output will not be disabled as when OE is low (e.g. the output will not enter a high impedance state if $\mathrm{Hi}-\mathrm{Z}=1$).

At the other extreme, the master oscillator frequency can reach 2 MHz for $\mathrm{I}_{\mathrm{SET}}=40 \mu \mathrm{~A}\left(\mathrm{R}_{\text {SET }}=25 \mathrm{k}\right)$. It is not recommended to operate the master oscillator beyond 2 MHz because the accuracy of the DIV pin ADC will suffer.

Figure 14. Digitally Controlled Oscillator with $\mathrm{V}_{\text {SET }}$ Variation Eliminated

APPLICATIONS INFORMATION

Modulation Bandwidth and Settling Time

The LTC6990 will respond to changes in $I_{\text {SET }}$ up to a - 3 dB bandwidth of $0.4 \bullet \mathrm{f}_{\text {OUT }}$ (see Figure 15). This makes it easy to stabilize a feedback loop around the LTC6990, since it does not introduce a low-frequency pole.
Settling time depends on the master oscillator frequency. Following a $2 x$ or $0.5 x$ step change in $I_{\text {SET }}$, the output frequency takes approximately six master clock cycles ($6 \cdot \mathrm{t}_{\text {MASTER }}$) to settle to within 1% of the final value. An example is shown in Figure 16.

Power Supply Current

The power supply current varies with frequency, supply voltage and output loading. It can be estimated under any condition using the following equation:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{S}(\mathrm{TYP})} \approx \mathrm{V}^{+} \bullet \mathrm{f}_{\mathrm{MASTER}} \bullet 7 \mathrm{pF}+\mathrm{V}^{+} \bullet \mathrm{f}_{\mathrm{OUT}} \bullet\left(13 \mathrm{pF}+\mathrm{C}_{\mathrm{LOAD}}\right) \\
& +\frac{\mathrm{V}^{+}}{480 \mathrm{k} \Omega}+\frac{\mathrm{V}^{+}}{2 \bullet \mathrm{R}_{\mathrm{LOAD}}}+1.75 \bullet \mathrm{I}_{\mathrm{SET}}+50 \mu \mathrm{~A}
\end{aligned}
$$

The equation is also valid for $0 \mathrm{E}=0$ (output disabled), with $\mathrm{f}_{\mathrm{OUT}}=0 \mathrm{~Hz}$.

Figure 16. Settling Time

APPLICATIONS INFORMATION

SUPPLY BYPASSING AND PCB LAYOUT GUIDELINES

The LTC6990 is a 2.2% accurate silicon oscillator when used in the appropriate manner. The part is simple to use and by following a few rules, the expected performance is easily achieved. The most important use issues involve adequate supply bypassing and proper PCB layout.
Figure 17 shows example PCB layouts for both the SOT-23 and DCB packages using 0603 sized passive components. The layouts assume a two layer board with a ground plane layer beneath and around the LTC6990. These layouts are a guide and need not be followed exactly.

1. Connect the bypass capacitor, $\mathrm{C1}$, directly to the V^{+}and GND pins using a low inductance path. The connection from C 1 to the V^{+}pin is easily done directly on the top layer. For the DCB package, C1's connection to GND is also simply done on the top layer. For the SOT-23, OUT can be routed through the C1 pads to allow a good C1 GND connection. If the PCB design rules do not allow that, C1's GND connection can be accomplished through multiple vias to the ground plane. Multiple vias for both the GND pin connection to the ground plane and the

C1 connection to the ground plane are recommended to minimize the inductance. Capacitor C1 should be a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
2. Place all passive components on the top side of the board. This minimizes trace inductance.
3. Place $R_{\text {SET }}$ as close as possible to the SET pin and make a direct, short connection. The SET pin is a current summing node and currents injected into this pin directly modulate the operating frequency. Having a short connection minimizes the exposure to signal pickup.
4. Connect $R_{\text {SET }}$ directly to the GND pin. Using a long path or vias to the ground plane will not have a significant affect on accuracy, but the direct, short connection is recommended and easy to apply.
5. Use a ground trace to shield the SET pin. This provides another layer of protection from radiated signals.
6. Place R1 and R2 close to the DIV pin. A direct, short connection to the DIV pin minimizes the external signal coupling.

Figure 17. Supply Bypassing and PCB Layout

TYPICAL APPLICATIONS
Programming $\mathrm{N}_{\text {DIV }}$ Using an 8-Bit DAC

DIVCODE		
0		DAC CODE
1		24
2		40
3		56
4		72
5		88
6		104
7		120
8		136
9		152
10		168
11		184
12		200
13		216
14		232
15	255	

Full Range VCO with Any $\mathrm{N}_{\text {DIV }}$ Setting (Positive Frequency Control, $\mathrm{f}_{\text {MIN }}$ to $\mathrm{f}_{\text {MAX }}$ for $\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$ to $\mathrm{V}_{\text {SET }}$

TYPICAL APPLICATIONS

Speaker Alarm. Modulate Tone with Ryco within 500 Hz to 8 kHz Span

Overvoltage Detector/Alarm. Direct Drive of Piezo Alarm

Direct Piezo Alarm Driver. Adjust Frequency for Maximum Alarm Sound Pressure (Maximum Annoyance for Best Effect)

TYPICAL APPLICATIONS

Isolated $\mathbf{V} \rightarrow \mathrm{F}$ Converter. \mathbf{V}_{IN} Provided by Isolated Measurement Circuit.
$5 \mu \mathrm{~s}$ Rise/Fall Time of Isolator Limits $\mathrm{f}_{\text {max }}$ to 60 kHz

Quadrature Sine Wave Oscillator. Voltage Controlled Frequency Range from 2 Hz to 18 kHz with $1 \mathrm{~V}_{\text {P.p }}$ Constant Output Amplitude

TYPICAL APPLICATIONS

Temperature to Frequency Converter.
3% Linearity from $-20^{\circ} \mathrm{C}\left(\mathrm{f}_{\text {OUT }} \approx 20 \mathrm{kHz}\right.$) to $75^{\circ} \mathrm{C}\left(\mathrm{f}_{O U T} \approx 25 \mathrm{kHz}\right)$

Full Range Temperature to Frequency Converter. 16 kHz to 1 kHz from $-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$

Light to Frequency Converter. $\mathrm{f}_{\text {OUT }} \approx=\mathbf{- 1 . 4 k H z}$ per Microampere of Photo Diode Current, IPD

DCB Package

6 -Lead Plastic DFN ($2 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1715)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

$\rightarrow \quad 1.35 \pm 0.10$
BOTTOM VIEW—EXPOSED PAD

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (TBD)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

PACKAGE DESCRIPTION

S6 Package

6-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1636)

1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. JEDEC PACKAGE REFERENCE IS MO-193

NOTE:

Ultrasonic Frequency Sweep Generator

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1799	1MHz to 33MHz ThinSOT Silicon Oscillator	Wide Frequency Range
LTC6900	1MHz to 20MHz ThinSOT Silicon Oscillator	Low Power, Wide Frequency Range
LTC6906/LTC6907	10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillator	Micropower, ISuPPLY $=35 \mu \mathrm{~A}$ at 400 kHz
LTC6930	Fixed Frequency Oscillator, 32.768kHz to 8.192 MHz	0.09% Accuracy, 110 $\mu \mathrm{s}$ Start-Up Time, $105 \mu \mathrm{~A}$ at 32kHz

[^0]: $\mathrm{V}^{+}=3.3 \mathrm{~V}$, DIVCODE $=0$
 $\mathrm{R}_{\text {SET }}=200 \mathrm{k}, \mathrm{R}_{\mathrm{VCO}}=464 \mathrm{k}$
 fout $=175 \mathrm{kHz}$ to 350 kHz

