SEMICONDUCTOR

This device is an advanced direct conversion receiver for operation up to 470 MHz . The design is based on the SL6609 receiver and is a pin for pin product upgrade. The device integrates all functions to translate a binary FSK modulated RF signal into a demodulated data stream. Adjacent channel rejection is provided using tuneable gyrator filters. To assist operation in the presence of large interfering signals both RF and audio AGC functions are provided.

The device also includes a 1 volt regulator capable of sourcing up to 5 mA , a battery flag and the facility of incorporating a more complex post detection filter off-chip. Both battery flag and data outputs have open collector outputs to ease their interface with other devices.

FEATURES

- Very low power operation - typ 3.0 mW
- Single cell operation for most of the device. Limited functional blocks operating via an inverter
- Superior sensitivity of -130 dBm
- Operation at wide range of paging data rates 512, 1200, 2400 baud
- On chip 1 volt regulator
- Small package offering SSOP

APPLICATIONS

- Credit card pagers
- Watch pagers
- Small form factor pagers i.e. PCMCIA
- Low data rate data receivers i.e. Security/remote control

Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Supply voltage
Storage temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating temperature
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ORDERING INFORMATION

SL6609A / KG / NPDS - SSOP devices in anti-static sticks SL6609A / KG / NPDE - SSOP devices in tape and reel

Fig. 2 Block diagram of SL6609A

ELECTRICAL CHARACTERISTICS

These characteristics are guaranteed over the following conditions unless otherwise stated:
Tamb $=25^{\circ} \mathrm{C}, \mathrm{VCC} 1=1.3 \mathrm{~V}, \mathrm{VCC2}=2.7 \mathrm{~V}$

Characteristics	Pin	Value			Units	Comments
		Min	Typ	Max		
VCC1 - Supply voltage	21	0.95	1.3	2.8	V	VCC1 \leq VCC2 - 0.7 volts
VCC2 - Supply voltage	13	1.8	2.7	3.5	V	
ICC1-Supply current	21,27,28		1.5	1.8	mA	Includes IRF. Does not include regulator supply. Audio AGC inactive
ICC2 - Supply current	11,13,14		550	700	$\mu \mathrm{A}$	Batt flag \& Data O/P high Pin 27 voltage: $0.3-1.3 \mathrm{~V}$
Power down ICC1	21,27,28			1	$\mu \mathrm{A}$	
Power down ICC2	11,13,14			8	$\mu \mathrm{A}$	
1 volt regulator	23	0.95	1.0	1.05	V	I Load $=3 m A$. Ext PNP. $B>=100, V_{C E}=0.1 \mathrm{volt}$
Band gap voltage reference	19	1.15	1.21	1.27	V	
Band gap current source	19			20	$\mu \mathrm{A}$	
Voltage reference	6	0.93	1.0	1.07	V	
Voltage reference sink/source	6			10	$\mu \mathrm{A}$	$\mathrm{VCC} 1>1.1 \mathrm{~V}$
1 volt regulator load current		0.25	3	5	mA	
Turn on Time			5		ms	Stable data o/p when 3dB above sensitivity. $C_{B G}$ and $C_{V R}=2.2 \mu \mathrm{~F}$
Turn off Time			1		ms	Fall to 10% of steady state current C_{BG} and $\mathrm{C}_{\mathrm{VR}}=2.2 \mu \mathrm{~F}$
Detector output current	17		+/-4		$\mu \mathrm{A}$	
RF current source						
Current Source (IRF)	27	400	500	600	$\mu \mathrm{A}$	Pin 27 voltage: $0.3-1.3 \mathrm{~V}$
Decoder						
Sensitivity		40			$\mu \mathrm{Vrms}$	Signal injected at TPX and TPY B.E.R. ≤ 1 in 30 5 KHz deviation @ 1200 bits/sec BRF capacitor $=1 \mathrm{nF}$
Output mark space ratio	14	7:9		9:7		
Data O/P Sink Current	14	100		500	$\mu \mathrm{A}$	Output logic low
Data O/P Leakage Current	14			1.0	$\mu \mathrm{A}$	Output logic high

ELECTRICAL CHARACTERISTICS

These characteristics are guaranteed over the following conditions unless otherwise stated:
$\mathrm{Tamb}=25^{\circ} \mathrm{C}, \mathrm{VCC} 1=1.3 \mathrm{~V}, \mathrm{VCC} 2=2.7 \mathrm{~V}$

Characteristics	Pin	Value			Units	Comments
		Min	Typ	Max		
Battery Economy		$\left(\mathrm{V}_{\mathrm{CC2}}-0.3\right)$	$\begin{gathered} 0.05 \\ 6 \end{gathered}$			
Input logic high	10				V	Powered Up
Input logic low	10			0.3	V	Powered Down
Input current	10			1	$\mu \mathrm{A}$	Powered Up
Input current	10			8	$\mu \mathrm{A}$	Powered down transient initial
Battery Flag Input						
Input current	20			1		$\mu \mathrm{A}$
Battery Flag Output		50				
Battfl Sink Current	11			500	$\mu \mathrm{A}$	(VBATT-VR) $>20 \mathrm{mV}$
Battfl leakage current	11			1	$\mu \mathrm{A}$	(VBATT-VR) <-20mV
Mixers		34		41	dB	LO inputs driven in parallel with $50 \mathrm{mVRMS} @ 50 \mathrm{MHz} . \mathrm{IF}=2 \mathrm{kHz}$ See Figs.8a, 8b See Fig. 9 Equal to Pin 21 (VCC1)
Gain to "IF Test"						
RF input impedance	24, 26					
LO input impedance	3, 5					
LO DC bias voltage	3, 5				V	
Audio AGC Max Audio AGC Sink Current	28	45	65	85	$\mu \mathrm{A}$	

RECEIVER CHARACTERISTICS (Demonstration board)

Measurement conditions unless stated $\mathrm{Vcc1}=1.3 \mathrm{~V}, \mathrm{Vcc2}=2.7 \mathrm{~V}, \mathrm{LNA}=18 \mathrm{~dB}$ Power Gain, 2 dB Noise figure,
Carrier frequency 153 MHz , BER 1 in 30, Tamb $=25^{\circ} \mathrm{C}$
(TPx/TPy typically:- $160 \mathrm{mV} \mathrm{VP}_{\mathrm{Pp}} \pm 10 \%$ for -73 dBm RF input to the LNA)

Characteristics	Pin	Value			Units	Comments

RECEIVER CHARACTERISTICS (Demonstration board)
Measurement conditions unless stated $\mathrm{Vcc}_{\mathrm{c} 1}=1.3 \mathrm{~V}, \mathrm{Vccc}^{2}=2.7 \mathrm{~V}$, LNA $=20 \mathrm{~dB}$ Power Gain, 2dB Noise figure,
Carrier frequency 282MHz, BER 1 in 30, Tamb $=25^{\circ} \mathrm{C}$
(TPx/TPy typically:- $160 \mathrm{mV} \mathrm{VP}_{\mathrm{pp}} \pm 10 \%$ for -73 dBm RF input to the LNA)

Characteristics	Pin	Value			Units	Comments
		Min	Typ	Max		
Sensitivity		-130	$\begin{gathered} -128 \\ -125.5 \end{gathered}$	$\begin{aligned} & -125 \\ & -122 \end{aligned}$	dBm dBm	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & 2400 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Intermodulation (IP3)		$\begin{aligned} & 52 \\ & 49 \end{aligned}$	$\begin{gathered} 56 \\ 53.5 \end{gathered}$		dB	$\begin{aligned} & 1200 \text { bps } \Delta f=4 \mathrm{kHz} \\ & 2400 \text { bps } \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Intermodulation (IP2)		47	52		dB	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Adjacent channel		$\begin{aligned} & 67 \\ & 64 \end{aligned}$	$\begin{aligned} & 72.5 \\ & 69.5 \end{aligned}$		dB	$\begin{aligned} & 1200 \text { bps } \Delta \mathrm{f}=4 \mathrm{kHz} \\ & 2400 \text { bps } \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \\ & \text { Channel spacing } 25 \mathrm{kHz} \end{aligned}$
Centre frequency acceptance		+/-1.9	$\begin{gathered} +/-2.3 \\ +/-2 \end{gathered}$		kHz	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & 2400 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Deviation acceptance			$\begin{gathered} +/-2.2 \\ +/-2 \end{gathered}$		kHz	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & 2400 \mathrm{bps} \Delta \mathrm{f}=4.5 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$

RECEIVER CHARACTERISTICS

Measurement conditions unless stated $\mathrm{Vcc}_{\mathrm{c}}=1.3 \mathrm{~V}, \mathrm{Vcc2}=2.7 \mathrm{~V}, \mathrm{LNA}=22 \mathrm{~dB}$ Power Gain, 2dB Noise figure, Carrier frequency 470 MHz , BER 1 in 30, Tamb $=25^{\circ} \mathrm{C}$
(TPx/TPy typically:- $140 \mathrm{mV} \mathrm{Vp}_{\mathrm{pp}} \pm 10 \%$ for -73 dBm RF input to the LNA)

Characteristics	Pin	Value			Units	Comments
		Min	Typ	Max		
Sensitivity		-128	-126	-123	dBm	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Intermodulation		50	55.5		dB	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Adjacent channel		67	72.5		dB	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \\ & \text { Channel spacing } 25 \mathrm{kHz} \end{aligned}$
Centre frequency acceptance			+/-2.3		kHz	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$
Deviation acceptance			+/-2.2		kHz	$\begin{aligned} & 1200 \mathrm{bps} \Delta \mathrm{f}=4 \mathrm{kHz} \\ & \mathrm{LO}=-15 \mathrm{dBm} \end{aligned}$

OPERATION OF SL6609A

The SL6609A is a Direct Converson Receiver designed for use up to 470 MHz . It is available in a 28 pin SSOP package and it integrates all the facilities required for the conversion of an RF FSK signal to a base-band data signal.

Low Noise Amplifier

To achieve optimum performance it is necessary to incorporate a Low Noise RF Amplifier at the front end of the receiver. This is easily biased using the on chip voltage and current sources provided.

All voltages and current sources used for bias of the RF amplifier, receiver and mixers should be RF decoupled using suitable capacitors (see Fig. 4 for a suitable Low-NoiseAmplifier).

Local Oscillator

The Local Oscillator signal is applied to the device in phase quadrature. This can be achieved with the use of two RC networks operating at the $-3 \mathrm{~dB} / 45^{\circ}$ transfer characteristic, giving a full 90° phase differential between the LO ports of the device. Each LO port of the device also requires an equal level of drive from the Oscillator. (see Fig.5).

Gyrator Filters

The on chip filters include an adjustable gyrator filter. This may be adjusted with the use of an additional resistor between Pin 4 and GND. This allows flexibility of filter characterstics and also allows for compensation for possible process variations.

Audio AGC

The Audio AGC fundamentally consists of a current sink which is controlled by the audio (baseband data) signal. It has three parameters that may be controlled by the user. These are the Attack (turn on) time, Decay (duration) time and Threshold level (see Figs. 6 and 7). See Application note for details.

Regulator

The on chip regulator must be used in conjunction with a suitable PNP transistor to achieve regulation. As the transistor forms part of the regulator feedback loop the transistor should exhibit the following characteristics:-
$\mathrm{H}_{\mathrm{FE}}>=100$ for $\mathrm{V}_{\mathrm{CE}}>=0.1 \mathrm{~V}$

Pin Number	Pin Name	Pin Description
1	TPX	X channel pre-gyrator filter test-point. This can be used for input and output
2	RFIADJ	RF current source adjustment pin
3	LOY	LO input channel Y
4	GYRI	Gyrator current adjust pin
5	LOX	LO input channel X
6	VR	VREF 1.0 V internal signal ground
7	TPY	Y channel pre-gyrator filter test point, input or output
8	GTHADJ	Audio AGC gain and threshold adjust. RSSI signal indicator
9	TCADJ	Audio AGC time constant adjust
10	BEC	Battery economy control
11	BATTFL	Battery flag output
12	TPLIMY	Y channel limiter (post gyrator filter) test point, output only
13	VCC2	Supply connection
14	DATAOP	Data output pin
15	TPLIMX	X channel limiter (post gyrator filter) test point, output only
16	BRF2	Bit rate filter 2, input to data output stage
17	BRF1	Bit rate filter 1, output from detector
18	DIG GND	Digital ground
19	VBG	Bandgap voltage output
20	VBATT	Battery flag input voltage
21	VCC1	Supply connection
22	REGCNT	1V regulator control external PNP drive
23	VREG	1V regulator output voltage
24	MIXB	Mixer input B
25	GND	Ground
26	MIXA	Mixer input A
27	IRFAMP	Current source for external LNA. Value of current output will decrease at high mixer
28		Input signal levels due to RF AGC
		Audio AGC output current

Fig. 3 Application circuit board

At 282MHz, 25kHz Channel Spacing.

(LO Circuit in Fig.3)	
Resistors	
R1	open circuit
R2	open circuit
R3	100
R4	100k
R5	1k
R6	1k
R7	100
R8	open circuit
R9	220k
R10	1M
R11	$100{ }^{(6)}$
R12	not used
R13	$1 \mathrm{k5}{ }^{(1)}$
R14	4k7
R15	4k7
R16	33k
R17	not used
R18	$0 \mathrm{R}^{(3)}$
R19	10k
R20	620
R21	1k
R22	open circuit

Capacitors

C1	1 n
C2	$2 p 7$

C3 4p7
C4 $\quad 1 n$

C6	2 p
C	2 L

C7 1 n
C8 100n
C9 $\quad 1 n^{(2)}$
C10 2 u 2
C11 100n
C12 $1 n$
C13 1n
C14 $1 n$
C15 in
C16 1n
C17 1n

Notes

1. The values of R13 is determined by the set-up procedure. See Application Note.
2. The value of C 9 is determined by the output data rate. Use $2 n F$ for 512bps, 1nF for 1200bps and 470pF for 2400bps.
3. L2 is used in the Audio AGC circuit (see Fig. 6). For the characteristics of the Audio AGC current source see Fig.7. If the audio AGC is not required then the current source (Pin 28) may be disabled by connecting Pin 9 (TCADJ) to VR (Pin 6) and by connecting Pin 28 (IAGCOUT) to Vcc1, (R18). The voltage at Pin 8 may still be used as an RSSI. R9, C8, C14, C19, R17 and D1 may then be omitted. See Fig. 6 for AGC component values.
4. L1and C26 form the low noise matching network for the RF amplifier. The values given are for the RF amplifier specified in the Applications Circuit with no Audio AGC connected. i.e. R17 and D1 omitted.
5. Suggested diode for use with the Audio AGC circuit (see Fig.6) (D1 is not included on the general demonstration circuit).
6. The value of R11 is dependent on the data output load. R11 should allow sufficient current to drive the data output load.

SL6609A

COMPONENTS LIST FOR APPLICATION BOARD At $470 \mathrm{MHz}, 25 \mathrm{kHz}$ Channel Spacing.
(LO circuit is 50Ω network as in Fig. 5 - crystal oscillator not specified)

Resistors			
		C14	1 n
R1	open circuit	C15	1 n
R2	open circuit	C16	1 n
R3	100	C17	1 n
R4	100k	C18	1 n
R5	100	C19	not used
R6	100	C20	1 n
R7	100	C21	1 n
R8	open circuit	C22	not used
R9	220k	C23	not used
R10	1M	C24	1 n
R11	$100 \mathrm{k}^{(2)}$	C25	1 n
R12	$300{ }^{(3)}$	C26	open circuit
R13	$3 \mathrm{~kg}{ }^{(1)}$	C27	not used
R14	4k7	C28	not used
R15	4k7	C29	100p
R16	33k	C30	2 L 2
R17	open circuit ${ }^{(4)}$	C31	2 L 2
R18	OR ${ }^{(4)}$	C34	1 p 5
R22	open circuit	VC1	1-3pF
Capacitors		Inductors	
C1	1n	L1	$47 \mathrm{nH}{ }^{(5)}$
C2	3.3pF	L2	not used ${ }^{(3)}$
C3	1 n	T1	16nH 2 Turn 1:1 (Coilcraft) Q4123-A
C4	1 n		
C5	3.9pF	Active Components	
C6	2 u 2		
C7	1 n	Q1	Zetex FMMT589
C8	$100 n$	Q2	Philips BFT25A
C9	$1 \mathrm{n}^{(2)}$	Q3	Not Used
C10	2 L 2	Q4	Philips BFT25A ${ }^{(3)}$
C11	100n	Q5	Philips BFT25A
C12	1 n	D1	Panasonic MA862 ${ }^{(6)}$
C13	1 n		

Notes

1. The values of R13 is determined by the set-up procedure. See Application Note.
2. The value of " C 9 " is determined by the output data rate. Use $2 n F$ for $512 b p s, 1 n F$ for 1200bps and 470 pF for 2400bps.
3. R12 \& Q4 form a dummy load for the regulator. Permitted load currents for the regulator are $250 \mu \mathrm{~A}$ to 5 mA . The 1 V regulator (output Pin 23) can be switched off by connecting Pin 23 directly to VCC2. Q1, Q4, R12 and C12 must then be omitted
4. $\quad \mathrm{L} 2$ is used in the Audio AGC circuit (see Fig.6). For the characteristics of the Audio AGC current source see figure 7. If the Audio AGC is not required then the current source (Pin 28) may be disabled by connecting

Pin 9 (TCADJ) to VR (Pin 6) and by connecting Pin 28 (IAGCOUT) to Vcc1, (R18). The voltage at Pin 8 may still be used as an RSSI. R9, C8, C14, C19, R17 and D1 may then be omitted.
5. L1and C26 form the low noise matching network for the RF amplifier. The values given are for the RF amplifier specified in the Applications Circuit with no Audio AGC connected. i.e. R17 and D1 omitted.
6. Suggested diode for use with the Audio AGC circuit (D1 is not included on the general demonstration circuit).
7. The value of R11 is dependent on the data output load. R11 should allow sufficient current to drive the data output load.

Fig. 4 RF amplifier
RF Amplifier Components Values

Resistors
R14, R15
R13
R22
4 k 7
see note 47k

Capacitors C13, C15 C16, C17
$\mathrm{C} 20, \mathrm{C} 21$
$\mathrm{C} 24, \mathrm{C} 25$
L2

1 nF	Active components
1 nF	D1 MA862 (Panasonic)

Notes:
(1) The value of R13 is determined by the set up procedure (See "Set up for optimum performance").
(2) C 20 and C21 are purely for deomonstration purposes. Pin 24 and Pin 26 may be DC coupled provided that no DC voltage is applied to the mixer inputs.

Frequency Dependent Components

C26		280 MHz	450MHz
C27	not used	not used	not used
L1	150 nH	68 nH	39 nH
C34	3 p 3	2p2	1 p 5
T1	100 nH	30 nH	16 nH
	Coilcraft N2261-A	Coilcraft M1686-A	Coilcraft Q4123-A
VC1	1-10pF	1-10pF	1-3pF
Q4, Q5	Toshiba 2SC5065	Toshiba 2SC5065	Philips BFT25A
(See also Lo drive Network)			

Fig. 5 Local oscillator drive network

\section*{LO Drive Network Component Values
 | 500hm input impedance (External LO injection) | | | |
| :---: | :---: | :---: | :---: |
| | 153MHz | 280MHz | 450MHz |
| C2 | 10p | 5p6 | 3p3 |
| C5 | 10p | 5p6 | 3p9 |

C3, C4, C18 = 1n
R3, R5, R6, R7 = 1000hms

Higher Input Impedance (crystal oscillator input)
C3 Set by load allowable on crystal oscillator (typical 4p7)

C3	Set by load allowable on crystal oscillato		
C2	$10 p$	$5 p 6$	$3 p 3$
C5	$10 p$	$5 p 6$	$3 p 9$
R3	100	100	100
R7	100	100	100
R5, R6 $=1 \mathrm{k}$			

Fig. 6 AGC Schematic

Fig. 7 Audio AGC current vs. IP power at $25^{\circ} \mathrm{C}$

S11	FREQ 50.000 100.000 150.000 200.000 250.000 300.000 350.000 400.000 450.000 500.000 550.000 600.000 650.000 700.000 750.000 800.000 850.000 900.000 950.000 1000.00	MAG 0.969 0.958 0.942 0.917 0.893 0.858 0.832 0.806 0.781 0.755 0.743 0.725 0.703 0.680 0.666 0.653 0.636 0.615 0.604 0.600	ANG -7.20 -14.45 -20.59 -26.40 -33.26 -39.84 -44.78 -49.01 -54.00 -59.53 $-64-35$ -68.43 -73.01 -78.74 -83.76 -87.48 -91.32 -97.17 -102.84 -105.23	

Fig.8a SL6609A Mixer A input S-Parameters

Fig.8b SL6609A Mixer B input S-Parameters

S11	FREQ 50.000 100.000 150.000 200.000 250.000 300.000 350.000 400.000 450.000 500.000 550.000 600.000 650.000 700.000 750.000 800.000 850.000 900.000 950.000 1000.00	MAG 0.993 0.995 0.997 0.997 0.996 0.986 0.965 0.936 0.902 0.872 0.838 0.804 0.798 0.810 0.784 0.779 0.790 0.788 0.768 0.743	ANG -4.17 -8.43 -12.88 -17.57 -22.63 -28.16 -33.87 -39.17 -43.88 -48.54 -52.81 -56.60 -59.47 -65.19 -71.49 -75.97 -82.54 -91.16 -100.20 -108.52	

Fig. 9 SL6609A LO X,Y inputs S-Parameters

Fig.10a AC parameters vs. supply and temperature

Conditions:- 282MHz demonstration board i.e. 20dB LNA, 2dB noise figure, carrier frequency $282 \mathrm{MHz}, 1200 \mathrm{bps}$ baud rate, 4 kHz deviation frequency, BER 1 in 30.

\square	$\mathrm{Vcc} 1=1.0 \mathrm{~V}, \mathrm{Vcc} 2=1.8 \mathrm{~V}$
\longrightarrow	$\mathrm{Vcc} 1=1.3 \mathrm{~V}$,
\square	$\mathrm{Vcc} 2=2.7 \mathrm{~V}$
\longrightarrow	$\mathrm{Vcc} 1=3.0 \mathrm{~V}$,
$\square c c 2=4.0 \mathrm{~V}$	

Fig.10b AC parameters vs. supply and temperature

Conditions:- 282MHz demonstration board i.e. 20dB LNA, 2dB noise figure, carrier frequency $282 \mathrm{MHz}, 1200 \mathrm{bps}$ baud rate, 4 kHz deviation frequency, BER 1 in 30.
——— $\mathrm{Vcc} 1=1.0 \mathrm{~V}, \mathrm{Vcc} 2=1.8 \mathrm{~V}$
$\longrightarrow \square \quad \mathrm{Vcc} 1=1.3 \mathrm{~V}, \quad \mathrm{Vcc} 2=2.7 \mathrm{~V}$
$\mathrm{Vcc} 1=3.0 \mathrm{~V}, \quad \mathrm{Vcc} 2=4.0 \mathrm{~V}$

Fig. 11 DC parameters vs. supply and temperature
(IP3 vs audio AGC both on and off)
Conditions:- ICC1 includes $500 \mu \mathrm{~A}$ LNA current but does not include the regulator supply (audio AGC inactive). ICC2 measured with BATT FLAG and DATA O/P HIGH, Fc = 282 MHz .

Note 1- IP3 is level above wanted needed to reduce

$$
\begin{array}{ll}
\longrightarrow — & \mathrm{Vcc} 1=0.98 \mathrm{~V}, \mathrm{Vcc} 2=1.78 \mathrm{~V} \\
\longrightarrow & \mathrm{Vcc} 1=1.3 \mathrm{~V}, \\
\mathrm{Vcc} 2=2.7 \mathrm{~V} \\
\longrightarrow & \mathrm{Vcc} 1=3.0 \mathrm{~V}, \\
\mathrm{Vcc} 2=4.0 \mathrm{~V}
\end{array}
$$ receiver to 1 in 30 B.E.R.

Fig. 12 Sensitivity, IP3 vs Receiver Gain

Fig. 13 Sensitivity, adjacent Channel vs Receiver Gain

Fig. 14 Sensitivity, IP3 vs LO level

Fig. 15 Sensitivity, Adjacent Channel vs LO level

SL6609A

PACKAGE DETAILS

Dimensions are shown thus: mm (in)

28-LEAD SHRUNK MINIATURE PLASTIC DIL (SSOP) - NP28

(\#) MITEL
 SEMICONDUCTOR

HEADQUARTERS OPERATIONS
MITEL SEMICONDUCTOR
Cheney Manor, Swindon,
Wiltshire SN2 2QW, United Kingdom.
Tel: (01793) 518000
Fax: (01793) 518411

MITEL SEMICONDUCTOR

1500 Green Hills Road,
Scotts Valley, California 95066-4922
United States of America.
Tel (408) 4382900
Fax: (408) 438 5576/6231

Internet: http://www.gpsemi.com

CUSTOMER SERVICE CENTRES

- FRANCE \& BENELUX Les Ulis Cedex Tel: (1) 69189000 Fax : (1) 64460607
- GERMANY Munich Tel: (089) 419508-20 Fax : (089) 419508-55
- ITALY Milan Tel: (02) 6607151 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- KOREA Seoul Tel: (2) 5668141 Fax: (2) 5697933
- NORTH AMERICA Scotts Valley, USA Tel: (408) 4382900 Fax: (408) 438 5576/6231
- SOUTH EAST ASIA Singapore Tel:(65) 3827708 Fax: (65) 3828872
- SWEDEN Stockholm Tel: 4687029770 Fax: 4686404736
- TAIWAN, ROC Taipei Tel: 886225461260 Fax: 886227190260
- UK, EIRE, DENMARK, FINLAND \& NORWAY

Swindon Tel: (01793) 726666 Fax : (01793) 518582
These are supported by Agents and Distributors in major countries world-wide.
© Mitel Corporation 1998 Publication No. DS4015 Issue No. 2.5 July 1995
TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM

