# **Document Title**

128Kx8 Bit High Speed Static RAM(5V Operating), Evolutionary Pin out. Operated at Commercial and Industrial Temperature Range.

# **Revision History**

| Rev.No.  | <u>History</u>                                                                                                                                                       | <u>Draft Data</u>                                                            | <u>Remark</u> |                |       |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------|----------------|-------|--|--|
| Rev. 0.0 | Initial release with Design                                                                                                                                          | Initial release with Design Target.                                          |               |                |       |  |  |
| Rev. 1.0 | •                                                                                                                                                                    | Release to Preliminary Data Sheet.  1. Replace Design Target to Preliminary. |               |                |       |  |  |
| Rev. 2.0 | Release to Final Data She  1. Delete Preliminary.  2. Delete 17ns, L-version a  3. Delete Voh1=3.95V.  4. Delete Data Retention C  5. Relex operating current  Speed | and Industrial Temperate Characteristics and Wave                            | ve form.      | Feb. 6th. 1998 | Final |  |  |
|          |                                                                                                                                                                      | 15ns 130mA 125mA<br>17ns 120mA -                                             |               |                |       |  |  |
|          | 20ns                                                                                                                                                                 | 110mA                                                                        | 123mA         |                |       |  |  |

The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.



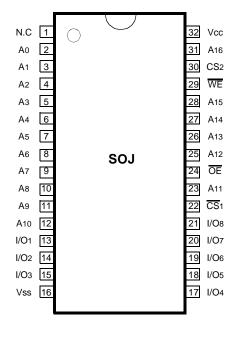
# 128K x 8 Bit High-Speed CMOS Static RAM

### **FEATURES**

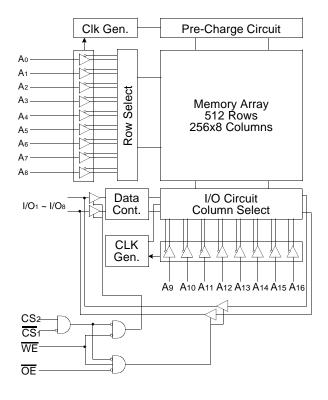
- Fast Access Time 15, 20ns(Max.)
- Low Power Dissipation

Standby (TTL) : 20mA(Max.) (CMOS) : 5mA(Max.)

Operating KM681001B - 15 : 125mA(Max.) KM681001B - 20 : 123mA(Max.)


- Single 5.0V±10% Power Supply
- TTL Compatible Inputs and Outputs
- Fully Static Operation
  - No Clock or Refresh required
- · Three State Outputs
- · Standard Pin Configuration

KM681001BJ : 32-SOJ-400 KM681001BSJ : 32-SOJ-300


### **GENERAL DESCRIPTION**

The KM681001B is a 1,048,576-bit high-speed Static Random Access Memory organized as 131,072 words by 8 bits. The KM681001B uses 8 common input and output lines and has an output enable pin which operates faster than address access time at read cycle. The device is fabricated using Samsung's advanced CMOS process and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The KM681001B is packaged in a 400/300 mil 32-pin plastic SOJ.

# PIN CONFIGURATION (Top View)



# **FUNCTIONAL BLOCK DIAGRAM**



### **PIN FUNCTION**

| Pin Name                          | Pin Function        |
|-----------------------------------|---------------------|
| A0 - A16                          | Address Inputs      |
| WE                                | Write Enable        |
| CS <sub>1</sub> , CS <sub>2</sub> | Chip Selects        |
| ŌĒ                                | Output Enable       |
| I/O1 ~ I/O8                       | Data Inputs/Outputs |
| Vcc                               | Power(+5.0V)        |
| Vss                               | Ground              |
| N.C                               | No Connection       |



### **ABSOLUTE MAXIMUM RATINGS\***

| Parameter                             | Symbol    | Rating      | Unit |
|---------------------------------------|-----------|-------------|------|
| Voltage on Any Pin Relative to Vss    | VIN, VOUT | -0.5 to 7.0 | V    |
| Voltage on Vcc Supply Relative to Vss | Vcc       | -0.5 to 7.0 | V    |
| Power Dissipation                     | PD        | 1.0         | W    |
| Storage Temperature                   | Тѕтс      | -65 to 150  | °C   |
| Operating Temperature                 | TA        | 0 to 70     | °C   |

<sup>\*</sup> Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

# RECOMMENDED DC OPERATING CONDITIONS(TA=0 to 70°C)

| Parameter          | Symbol | Min   | Тур | Max       | Unit |
|--------------------|--------|-------|-----|-----------|------|
| Supply Voltage     | Vcc    | 4.5   | 5.0 | 5.5       | V    |
| Ground             | Vss    | 0     | 0   | 0         | V    |
| Input High Voltage | ViH    | 2.2   | -   | Vcc+0.5** | V    |
| Input Low Voltage  | VIL    | -0.5* | -   | 0.8       | V    |

NOTE: \* Vı∟(Min) = -2.0V a.c(Pulse Width≤10ns) for l≤20mA \*\* Vıн(Max) = Vcc + 2.0V a.c (Pulse Width≤10ns) for l≤20mA

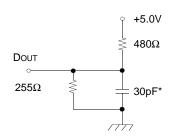
# DC AND OPERATING CHARACTERISTICS(TA=0 to 70°C, Vcc=5.0V±10%, unless otherwise specified)

| Parameter                 | Symbol | Test Conditions                                                           | Min | Max | Unit |    |
|---------------------------|--------|---------------------------------------------------------------------------|-----|-----|------|----|
| Input Leakage Current     | ILI    | VIN = Vss to Vcc                                                          |     | -2  | 2    | μΑ |
| Output Leakage Current    | lLO    | CS1=VIH or CS2=VIL or OE=VIH or WE=                                       | -2  | 2   | μА   |    |
| Operating Current         | Icc    | Min. Cycle, 100% Duty CS1=VIL, CS2=VIH, VIN=VIH or VIL, IOUT=0mA 20ns     |     | -   | 125  | mA |
|                           |        |                                                                           |     | -   | 123  |    |
| Standby Current           | Isb    | Min. Cycle, CS1=VIH or CS2=VIL                                            |     | -   | 20   | mA |
|                           | ISB1   | f=0MHz, <del>CS</del> 1≥Vcc-0.2V or CS2≤0.2V,<br>Vin≥Vcc-0.2V or Vin≤0.2V |     | -   | 5    |    |
| Output Low Voltage Level  | Vol    | IoL=8mA                                                                   |     | -   | 0.4  | V  |
| Output High Voltage Level | Voн    | IOH=-4mA                                                                  |     | 2.4 | -    | V  |

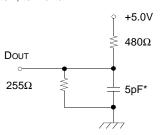
# **CAPACITANCE\***(TA=25°C, f=1.0MHz)

| Item                     | Symbol | Test Conditions | MIN | Max | Unit |
|--------------------------|--------|-----------------|-----|-----|------|
| Input/Output Capacitance | CI/O   | VI/O=0V         | -   | 8   | pF   |
| Input Capacitance        | CIN    | VIN=0V          | -   | 6   | pF   |

<sup>\*</sup> NOTE: Capacitance is sampled and not 100% tested.




# **AC CHARACTERISTICS**(TA=0 to 70°C, Vcc=5.0V±10%, unless otherwise noted.)


### **TEST CONDITIONS**

| Parameter                                | Value     |
|------------------------------------------|-----------|
| Input Pulse Levels                       | 0V to 3V  |
| Input Rise and Fall Times                | 3ns       |
| Input and Output timing Reference Levels | 1.5V      |
| Output Loads                             | See below |

Output Loads(A)



Output Loads(B) for thz, tLz, twhz, tow, toLz & toHz



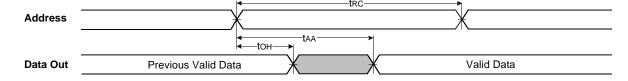
\* Including Scope and Jig Capacitance

# **READ CYCLE**

| Parameter                        | Symbol | KM681 | 001B-15 | KM681001B-20 |     | Unit |
|----------------------------------|--------|-------|---------|--------------|-----|------|
| Farameter                        | Symbol | Min   | Max     | Min          | Max | Unit |
| Read Cycle Time                  | trc    | 15    | -       | 20           | -   | ns   |
| Address Access Time              | taa    | -     | 15      | -            | 20  | ns   |
| Chip Select to Output            | tco*   | -     | 15      | -            | 20  | ns   |
| Output Enable to Valid Output    | toe    | -     | 8       | -            | 10  | ns   |
| Chip Enable to Low-Z Output      | tLZ*   | 3     | -       | 3            | -   | ns   |
| Output Enable to Low-Z Output    | toLz   | 0     | -       | 0            | -   | ns   |
| Chip Disable to High-Z Output    | tHZ*   | 0     | 6       | 0            | 8   | ns   |
| Output Disable to High-Z Output  | tonz   | 0     | 6       | 0            | 8   | ns   |
| Output Hold from Address Change  | tон    | 3     | -       | 3            | -   | ns   |
| Chip Selection to Power Up Time  | tpu    | 0     | -       | 0            | -   | ns   |
| Chip Selection to Power DownTime | tPD    | -     | 15      | -            | 20  | ns   |

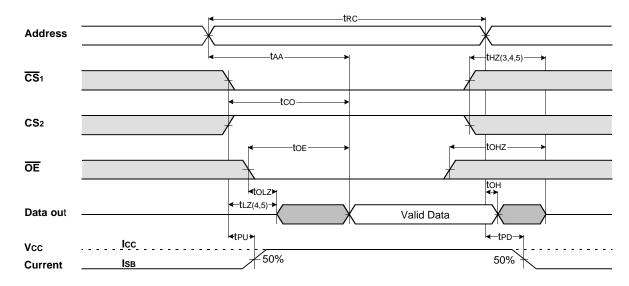
NOTE: tco=tco1, tco2 / tLz=tLz1, tLz2 / tHz=tHz1, tHz2




### WRITE CYCLE

| Parameter                     | Symbol | KM681 | 001B-15 | KM681 | 001B-20 | Unit |
|-------------------------------|--------|-------|---------|-------|---------|------|
| Farameter                     | Symbol | Min   | Max     | Min   | Max     | Unit |
| Write Cycle Time              | twc    | 15    | -       | 20    | -       | ns   |
| Chip Select to End of Write   | tcw    | 10    | -       | 12    | -       | ns   |
| Address Set-up Time           | tas    | 0     | -       | 0     | -       | ns   |
| Address Valid to End of Write | taw    | 10    | -       | 12    | -       | ns   |
| Write Pulse Width(OE High)    | twp    | 10    | -       | 12    | -       | ns   |
| Write Pulse Width(OE Low)     | twP1   | 15    | -       | 20    | -       | ns   |
| Write Recovery Time           | twr*   | 0     | -       | 0     | -       | ns   |
| Write to Output High-Z        | twnz   | 0     | 8       | 0     | 10      | ns   |
| Data to Write Time Overlap    | tow    | 7     | -       | 9     | -       | ns   |
| Data Hold from Write Time     | tDH    | 0     | -       | 0     | -       | ns   |
| End Write to Output Low-Z     | tow    | 3     | -       | 3     | -       | ns   |

NOTE: twr = twr1, twr2

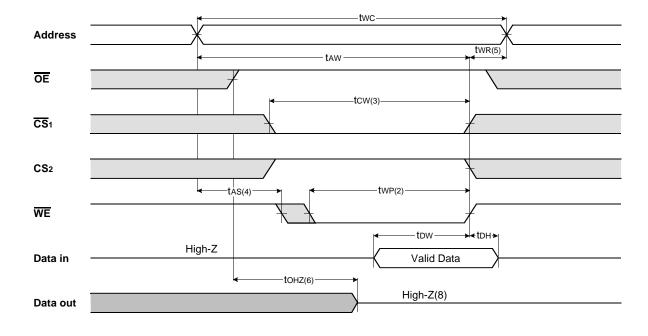

# **TIMMING DIAGRAMS**

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled,  $\overline{CS}_1 = \overline{OE} = V_{IL}$ ,  $CS_2 = \overline{WE} = V_{IH}$ )



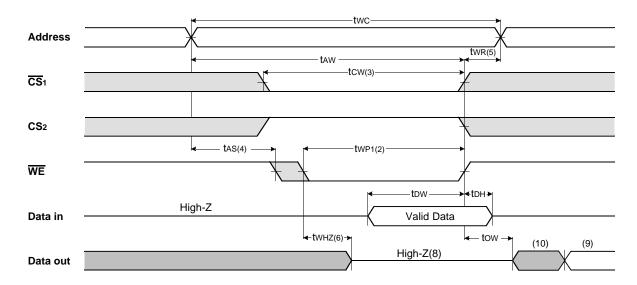


# TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

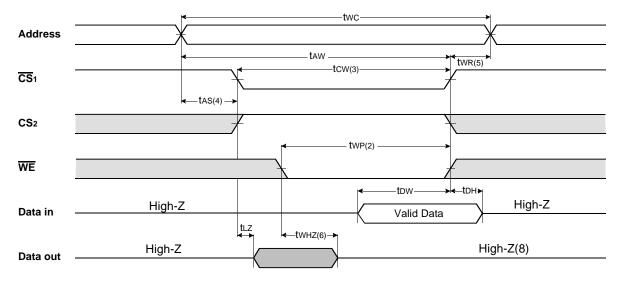



### NOTES(READ CYCLE)

- 1. WE is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- 3. tHz and toHz are defined as the time at which the outputs achieve the open circuit condition and are not referenced to VoH or
- 4. At any given temperature and voltage condition, tHz(Max.) is less than ttz(Min.) both for a given device and from device to device.
- 5. Transition is measured ±200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested.

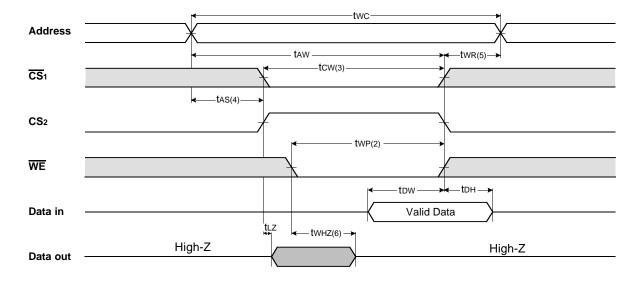

  6. Device is continuously selected with CS<sub>1</sub>=ViL and CS<sub>2</sub>=ViH.
- 7. Address valid prior to coincident with  $\overline{CS}_1$  transition low and  $CS_2$  transition high.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.

# TIMING WAVEFORM OF WRITE CYCLE(1) $(\overline{OE} = Clock)$






# TIMING WAVEFORM OF WRITE CYCLE(2) (OE=Low Fixed)




# TIMING WAVEFORM OF WRITE CYCLE(3) ( $\overline{CS}_1$ = Controlled)





### TIMING WAVEFORM OF WRITE CYCLE(4) (CS2 = Controlled)



### NOTES(WRITE CYCLE)

- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low  $\overline{CS}_1$ , a high  $CS_2$  and a low  $\overline{WE}$ . A write begins at the latest transition  $\overline{CS}_1$  going low, CS<sub>2</sub> going high and WE going low; A write ends at the earliest transition CS<sub>1</sub> going high or CS<sub>2</sub> going low or WE going high.  $\ensuremath{\mathsf{twP}}$  is measured from the beginning of write to the end of write.
- 3. tcw is measured from the later of  $\overline{CS}_1$  going low or  $CS_2$  going high to end of write.
- 4. tas is measured from the address valid to the beginning of write.
- 5. twn is measured from the end of write to the address change. twn applied in case a write ends as  $\overline{\text{CS}}_1$  or  $\overline{\text{WE}}$  going high. twn applied in case a write ends as CS2 going low.
- 6. If  $\overline{OE}$ ,  $\overline{CS}_1$ ,  $\overline{CS}_2$  and  $\overline{WE}$  are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.

  8. If  $\overline{CS}_1$  goes low and  $CS_2$  goes high simultaneously with  $\overline{WE}$  going or after  $\overline{WE}$  going low, the outputs remain high impedance
- 9. Dout is the read data of the new address.

  10.When  $\overline{CS_1}$  is low and  $CS_2$  is high: I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

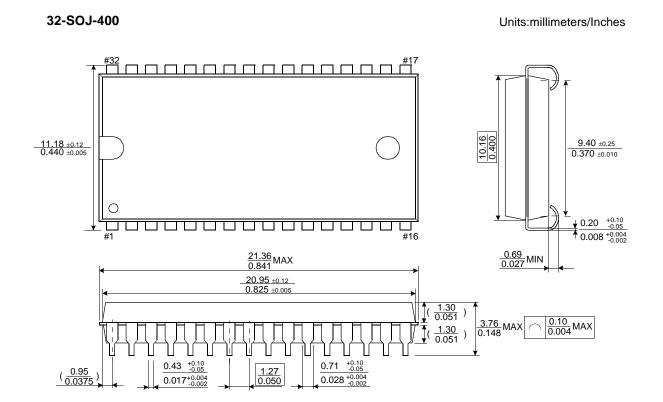
### **FUNCTIONAL DESCRIPTION**

| CS <sub>1</sub> | CS <sub>2</sub> | WE | ŌĒ | Mode           | I/O Pin | Supply Current |
|-----------------|-----------------|----|----|----------------|---------|----------------|
| Н               | Х               | Х  | X* | Not Select     | High-Z  | ISB, ISB1      |
| Х               | L               | Х  | Х  | Not Select     | High-Z  | ISB, ISB1      |
| L               | Н               | Н  | Н  | Output Disable | High-Z  | Icc            |
| L               | Н               | Н  | L  | Read           | Dout    | Icc            |
| L               | Н               | L  | Х  | Write          | DIN     | Icc            |

<sup>\*</sup> NOTE: X means Don't Care.



# **PACKAGE DIMENSIONS**


 $0.43 \begin{array}{l} +0.10 \\ -0.05 \\ \hline 0.017 \begin{array}{l} +0.004 \\ -0.002 \\ \end{array}$ 

 $(\frac{0.95}{0.0375}$ 

# 32-SOJ-300 Units:millimeters/Inches #32 #17 6.86 ±0.25 0.270 ±0.010 1.020 \*0.10 0.002 \*0.10 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002 0.002 \*0.002

 $0.71 \begin{array}{l} +0.10 \\ -0.05 \\ \hline 0.028 \begin{array}{l} +0.004 \\ -0.002 \\ \end{array}$ 

1.27 0.050



