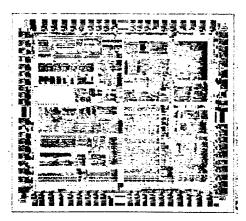
## www.DataSheet.in

intel.


PRELIMINARY

### 80C186XL/80C188XL 16-BIT HIGH-INTEGRATION EMBEDDED PROCESSORS

- Low Power, Fully Static Versions of 80C186/80C188
- **■** Operation Modes:
  - Enhanced Mode
    - DRAM Refresh Control Unit
    - Power-Save Mode
    - Direct Interface to 80C187 (80C186XL Only)
  - Compatible Mode
    - NMOS 80186/80188 Pin-for-Pin Replacement for Non-Numerics Applications
- Integrated Feature Set
  - Static, Modular CPU
  - Clock Generator
  - -2 Independent DMA Channels
  - Programmable Interrupt Controller
  - 3 Programmable 16-Bit Timers
  - Dynamic RAM Refresh Control Unit
  - Programmable Memory and Peripheral Chip Select Logic
  - Programmable Wait State Generator
  - Local Bus Controller
  - Power-Save Mode
  - System-Level Testing Support (High Impedance Test Mode)

- Completely Object Code Compatible with Existing 8086/8088 Software and Has 10 Additional Instructions over 8086/8088
- Speed Versions Available
  - -20 MHz (80C186XL20/80C188XL20)
  - 12 MHz (80C186XL12/80C188XL12)
- Direct Addressing Capability to 1 MByte Memory and 64 Kbyte I/O
- Complete System Development Support
  - ASM 86 Assembler, PL/M-86, iC-86 and System Utilities
  - In-Circuit-Emulator
- Available in 68-Pin:
  - Plastic Leaded Chip Carrier (PLCC)
  - Ceramic Pin Grid Array (PGA)
  - Ceramic Leadless Chip Carrier (JEDEC A Package)
- Available in 80-Pin:
  - Quad Flat Pack (EIAJ)
  - Shrink Quad Flat Pack (SGFP)
- Available in Extended Temperature Range (-40°C to +85°C)

The Intel 80C186XL is a Modular Core re-implementation of the 80C186 Microprocessor. It offers higher speed and lower power consumption than the standard 80C186 but maintains 100% clock-for-clock functional compatibility. Packaging and pinout are also identical.



272431-1

## www.DataSheet.in

## 80C186XL/80C188XL 16-Bit High-Integration Embedded Processors

| CONTENTS                                                            | PAGE |
|---------------------------------------------------------------------|------|
| INTRODUCTION                                                        | 2-37 |
| 80C186XL CORE ARCHITECTURE<br>80C186XL Clock Generator              | 2-37 |
| 80C186XL PERIPHERAL ARCHITECTURE Chip-Select/Ready Generation Logic | 2-38 |
| DMA Unit                                                            | 2-39 |
| Timer/Counter Unit                                                  | 2-39 |
| Interrupt Control Unit                                              |      |
| Enhanced Mode Operation                                             | 2-39 |
| Queue-Status Mode                                                   | 2-39 |
| DRAM Refresh Control Unit                                           |      |
| Power-Save Control                                                  |      |
| Interface for 80C187 Math Coprocessor (80C186XL Only)               | 2-40 |
| ONCE Test Mode                                                      | 2-40 |
| PACKAGE INFORMATION                                                 |      |
| Pin Descriptions                                                    |      |
| 80C186XL/80C188XL Pinout<br>Diagrams                                |      |
| ELECTRICAL SPECIFICATIONS                                           | 2-55 |
| Absolute Maximum Ratings                                            |      |
| DC SPECIFICATIONS                                                   | 2-55 |
| Power Supply Current                                                |      |
|                                                                     |      |

| CONTENTS                                          | PAGE |
|---------------------------------------------------|------|
| AC SPECIFICATIONS                                 | 2-57 |
| Major Cycle Timings (Read Cycle)                  | 2-57 |
| Major Cycle Timings (Write Cycle)                 |      |
| Major Cycle Timings (Interrupt Acknowledge Cycle) | 2-60 |
| Software Halt Cycle Timings                       |      |
| Clock Timings                                     |      |
| Ready, Peripheral and Queue Status<br>Timings     |      |
| Reset and Hold/HLDA Timings                       | 2-64 |
| AC TIMING WAVEFORMS                               | 2-69 |
| AC CHARACTERISTICS                                | 2-70 |
| EXPLANATION OF THE AC SYMBOLS                     | 2-72 |
| DERATING CURVES                                   | 2-73 |
| 80C186XL/80C188XL EXPRESS                         | 2-74 |
| 80C186XL/80C188XL EXECUTION TIMINGS               | 2-74 |
| INSTRUCTION SET SUMMARY                           | 2-75 |
| REVISION HISTORY                                  | 2-81 |
| Ennie.                                            |      |

PRODUCT IDENTIFICATION ..... 2-81



intel.

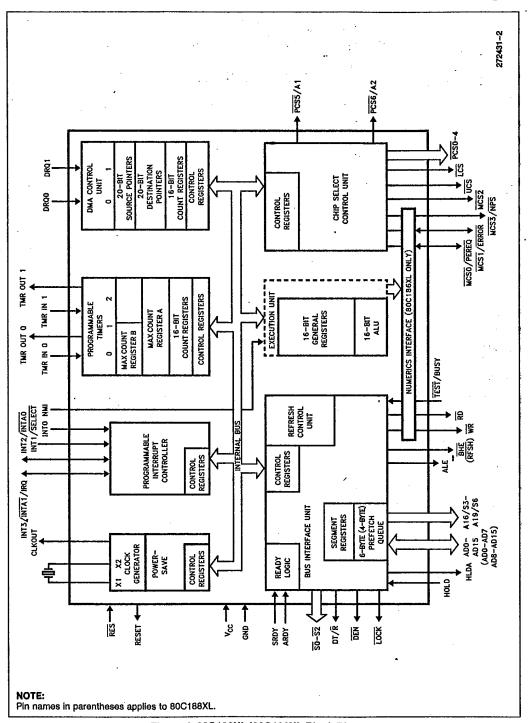



Figure 1. 80C186XL/80C188XL Block Diagram

2-36

## www.DataSheet.in



### 80C186XL/80C188XL

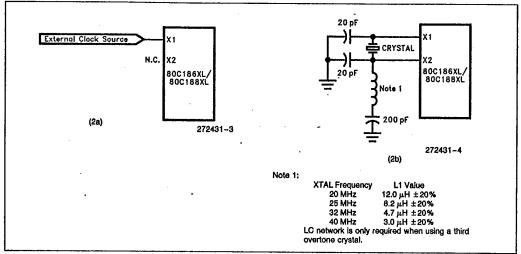





Figure 2. Oscillator Configurations (see text)

### INTRODUCTION

Unless specifically noted, all references to the 80C186XL apply to the 80C188XL. References to pins that differ between the 80C186XL and the 80C188XL are given in parentheses.

The following Functional Description describes the base architecture of the 80C186XL. The 80C186XL is a very high integration 16-bit microprocessor. It combines 15–20 of the most common microprocessor system components onto one chip. The 80C186XL is object code compatible with the 8086/8088 microprocessors and adds 10 new instruction types to the 8086/8088 instruction set.

The 80C186XL has two major modes of operation, Compatible and Enhanced. In Compatible Mode the 80C186XL is completely compatible with NMOS 80186, with the exception of 8087 support. The Enhanced mode adds three new features to the system design. These are Power-Save control, Dynamic RAM refresh, and an asynchronous Numerics Coprocessor interface (80C186XL only).

### **80C186XL CORE ARCHITECTURE**

### 80C186XL Clock Generator

The 80C186XL provides an on-chip clock generator for both internal and external clock generation. The clock generator features a crystal oscillator, a divide-by-two counter, synchronous and asynchronous ready inputs, and reset circuitry.

The 80C186XL oscillator circuit is designed to be used either with a parallel resonant fundamental or third-overtone mode crystal, depending upon the frequency range of the application. This is used as the time base for the 80C186XL.

The output of the oscillator is not directly available outside the 80C186XL. The recommended crystal configuration is shown in Figure 2b. When used in third-overtone mode, the tank circuit is recommended for stable operation. Alternately, the oscillator may be driven from an external source as shown in Figure 2a.

The crystal or clock frequency chosen must be twice the required processor operating frequency due to the internal divide by two counter. This counter is used to drive all internal phase clocks and the external CLKOUT signal. CLKOUT is a 50% duty cycle processor clock and can be used to drive other system components. All AC Timings are referenced to CLKOUT.

Intel recommends the following values for crystal selection parameters.

Temperature Range: Application Specific ESR (Equivalent Series Resistance):  $60\Omega$  max  $C_0$  (Shunt Capacitance of Crystal): 7.0 pF max  $C_1$  (Load Capacitance): 20 pF  $\pm 2$  pF Drive Level: 2 mW max

## www.DataSheet.in

### 80C186XL/80C188XL

# intel.

### **Bus Interface Unit**

The 80C186XL provides a local bus controller to generate the local bus control signals. In addition, it employs a HOLD/HLDA protocol for relinquishing the local bus to other bus masters. It also provides outputs that can be used to enable external buffers and to direct the flow of data on and off the local bus.

The bus controller is responsible for generating 20 bits of address, read and write strobes, bus cycle status information and data (for write operations) information. It is also responsible for reading data from the local bus during a read operation. Synchronous and asynchronous ready input pins are provided to extend a bus cycle beyond the minimum four states (clocks).

The 80C186XL bus controller also generates two control signals ( $\overline{\text{DEN}}$  and DT/R) when interfacing to external transceiver chips. This capability allows the addition of transceivers for simple buffering of the multiplexed address/data bus.

During RESET the local bus controller will perform the following action:

- Drive DEN, RD and WR HIGH for one clock cycle, then float them.
- Drive \$\overline{50}\$—\$\overline{52}\$ to the inactive state (all HIGH) and then float.
- Drive LOCK HIGH and then float.
- Float AD0-15 (AD0-8), A16-19 (A9-A19), BHE (RFSH), DT/R.
- Drive ALE LOW
- Drive HLDA LOW.

RD/QSMD, UCS, LCS, MCS0/PEREQ, MCS1/ERROR and TEST/BUSY pins have internal pullup devices which are active while RES is applied. Excessive loading or grounding certain of these pins causes the 80C186XL to enter an alternative mode of operation:

- RD/QSMD low results in Queue Status Mode.
- UCS and LCS low results in ONCE Mode.
- TEST/BUSY low (and high later) results in Enhanced Mode.

## 80C186XL PERIPHERAL ARCHITECTURE

All the 80C186XL integrated peripherals are controlled by 16-bit registers contained within an internal 256-byte control block. The control block may be mapped into either memory or I/O space. Internal logic will recognize control block addresses and re-

spond to bus cycles. An offset map of the 256-byte control register block is shown in Figure 3.

### Chip-Select/Ready Generation Logic

The 80C186XL contains logic which provides programmable chip-select generation for both memories and peripherals. In addition, it can be programmed to provide READY (or WAIT state) generation. It can also provide latched address bits A1 and A2. The chip-select lines are active for all memory and I/O cycles in their programmed areas, whether they be generated by the CPU or by the integrated DMA unit.

The 80C186XL provides 6 memory chip select outputs for 3 address areas; upper memory, lower memory, and midrange memory. One each is provided for upper memory and lower memory, while four are provided for midrange memory.

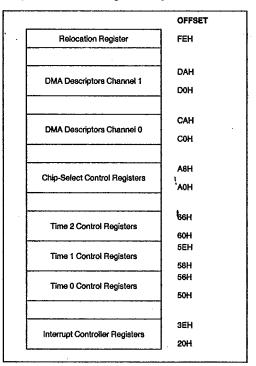



Figure 3. Internal Register Map

The 80C186XL provides a chip select, called UCS, for the top of memory. The top of memory is usually used as the system memory because after reset the 80C186XL begins executing at memory location FFFF0H.

2-38

The 80C186XL provides a chip select for low memory called LCS. The bottom of memory contains the interrupt vector table, starting at location 00000H.

The 80C186XL provides four MCS lines which are active within a user-locatable memory block. This block can be located within the 80C186XL 1 Mbyte memory address space exclusive of the areas defined by UCS and LCS. Both the base address and size of this memory block are programmable.

The 80C186XL can generate chip selects for up to seven peripheral devices. These chip selects are active for seven contiguous blocks of 128 bytes above a programmable base address. The base address may be located in either memory or I/O space.

The 80C186XL can generate a READY signal internally for each of the memory or peripheral CS lines. The number of WAIT states to be inserted for each peripheral or memory is programmable to provide 0-3 wait states for all accesses to the area for which the chip select is active. In addition, the 80C186XL may be programmed to either ignore external READY for each chip-select range individually or to factor external READY with the integrated ready generator.

Upon RESET, the Chip-Select/Ready Logic will perform the following actions:

- All chip-select outputs will be driven HIGH.
- Upon leaving RESET, the UCS line will be programmed to provide chip selects to a 1K block with the accompanying READY control bits set at 011 to insert 3 wait states in conjunction with external READY (i.e., UMCS resets to FFFBH).
- No other chip select or READY control registers have any predefined values after RESET. They will not become active until the CPU accesses their control registers.

### **DMA** Unit

The 80C186XL DMA controller provides two independent high-speed DMA channels. Data transfers can occur between memory and I/O spaces (e.g., Memory to I/O) or within the same space (e.g., Memory to Memory or I/O to I/O). Data can be transferred either in bytes (8 bits) or in words (16 bits) to or from even or odd addresses.

### NOTE:

Only byte transfers are possible on the 80C188XL.

Each DMA channel maintains both a 20-bit source and destination pointer which can be optionally incremented or decremented after each data transfer (by one or two depending on byte or word transfers). Each data transfer consumes 2 bus cycles (a minimum of 8 clocks), one cycle to fetch data and the other to store data.

### Timer/Counter Unit

BBE D

The 80C186XL provides three internal 16-bit programmable timers. Two of these are highly flexible and are connected to four external pins (2 per timer). They can be used to count external events, time external events, generate nonrepetitive waveforms, etc. The third timer is not connected to any external pins, and is useful for real-time coding and time delay applications. In addition, the third timer can be used as a prescaler to the other two, or as a DMA request source.

### **Interrupt Control Unit**

The 80C186XL can receive interrupts from a number of sources, both internal and external. The 80C186XL has 5 external and 2 internal interrupt sources (Timer/Couners and DMA). The internal interrupt controller serves to merge these requests on a priority basis, for individual service by the CPU.



### **Enhanced Mode Operation**

In Compatible Mode the 80C186XL operates with all the features of the NMOS 80186, with the exception of 8087 support (i.e. no math coprocessing is possible in Compatible Mode). Queue-Status information is still available for design purposes other than 8087 support.

All the Enhanced Mode features are completely masked when in Compatible Mode. A write to any of the Enhanced Mode registers will have no effect, while a read will not return any valid data.

In Enhanced Mode, the 80C186XL will operate with Power-Save, DRAM refresh, and numerics coprocessor support (80C186XL only) in addition to all the Compatible Mode features.

If connected to a math coprocessor (80C186XL only), this mode will be invoked automatically. Without an NPX, this mode can be entered by tying the RESET output signal from the 80C186XL to the TEST/BUSY input.

### **Queue-Status Mode**

The queue-status mode is entered by strapping the  $\overline{\text{RD}}$  pin low.  $\overline{\text{RD}}$  is sampled at RESET and if LOW, the 80C186XL will reconfigure the ALE and  $\overline{\text{WR}}$  pins to be QS0 and QS1 respectively. This mode is available on the 80C186XL in both Compatible and Enhanced Modes.

### **DRAM Refresh Control Unit**

The Refresh Control Unit (RCU) automatically generates DRAM refresh bus cycles. The RCU operates only in Enhanced Mode. After a programmable period of time, the RCU generates a memory read request to the BIU. If the address generated during a refresh bus cycle is within the range of a properly programmed chip select, that chip select will be activated when the BIU executes the refresh bus cycle.

### **Power-Save Control**

The 80C186XL, when in Enhanced Mode, can enter a power saving state by internally dividing the processor clock frequency by a programmable factor. This divided frequency is also available at the CLKOUT pin.

All internal logic, including the Refresh Control Unit and the timers, have their clocks slowed down by the division factor. To maintain a real time count or a fixed DRAM refresh rate, these peripherals must be re-programmed when entering and leaving the power-save mode.

### Interface for 80C187 Math Coprocessor (80C186XL Only)

In Enhanced Mode, three of the mid-range memory chip selects are redefined according to Table 1 for use with the 80C187. The fourth chip select, MCS2

functions as in compatible mode, and may be programmed for activity with ready logic and wait states accordingly. As in Compatible Mode, MCS2 will function for one-fourth a programmed block size.

Table 1. MCS Assignments

| Compatible<br>Mode | Enhanced Mode |                             |  |  |  |
|--------------------|---------------|-----------------------------|--|--|--|
| MCS0               | PEREQ         | Processor Extension Request |  |  |  |
| MCS1               | ERROR         | NPX Error                   |  |  |  |
| MCS2               | MCS2          | Mid-Range Chip Select       |  |  |  |
| MCS3               | NPS           | Numeric Processor Select    |  |  |  |

### **ONCE Test Mode**

PRE D

To facilitate testing and inspection of devices when fixed into a target system, the 80C186XL has a test mode available which allows all pins to be placed in a high-impedance state. ONCE stands for "ON Circuit Emulation". When placed in this mode, the 80C186XL will put all pins in the high-impedance state until RESET.

The ONCE mode is selected by tying the UCS and the LCS LOW during RESET. These pins are sampled on the low-to-high transition of the RES pin. The UCS and the LCS pins have weak internal pull-up resistors similar to the RD and TEST/BUSY pins to guarantee ONCE Mode is not entered inadvertently during normal operation. LCS and UCS must be held low at least one clock after RES goes high to guarantee entrance into ONCE Mode.

### **PACKAGE INFORMATION**

This section describes the pin functions, pinout and thermal characteristics for the 80C186XL in the Quad Flat Pack (QFP), Plastic Leaded Cnip Carrier (PLCC), Leadless Chip Carrier (LCC) and the Shrink Quad Flat Pack (SQFP). For complete package specifications and information, see the Intel Packaging Outlines and Dimensions Guide (Order Number: 231369).

### **Pin Descriptions**

Each pin or logical set of pins is described in Table 3. There are four columns for each entry in the Pin Description Table. The following sections describe each column.

### Column 1: Pin Name

In this column is a mnemonic that describes the pin function. Negation of the signal name (i.e., RESIN) implies that the signal is active low.

### Column 2: Pin Type

A pin may be either power (P), ground (G), input only (I), output only (O) or input/output (I/O). Please note that some pins have more than one function.

### Column 3: Input Type (for I and I/O types only)

These are two different types of input pins on the 80C186XL: asynchronous and synchronous. Asynchronous pins require that setup and hold times be met only to guarantee recognition. Synchronous input pins require that the setup and hold times be met to guarantee

### 80C186XL/80C188XL

proper operation. Stated simply, missing a setup or hold on an asynchronous pin will result in something minor (i.e., a timer count will be missed) whereas missing a setup or hold on a synchronous pin result in system failure (the system will "lock up").

An input pin may also be edge or level sensitive.

## Column 4: Output States (for O and I/O types only)

PBE D

The state of an output or I/O pin is dependent on the operating mode of the device. There are four modes of operation that are different from normal active mode: Bus Hold, Reset, Idle Mode, Powerdown Mode. This column describes the output pin state in each of these modes.



The legend for interpreting the information in the Pin Descriptions is shown in Table 2.

As an example, please refer to the table entry for AD7:0. The "I/O" signifies that the pins are bidirectional (i.e., have both an input and output function). The "S" indicates that, as an input the signal must be synchronized to CLKOUT for proper operation. The "H(Z)" indicates that these pins will float while the processor is in the Hold Acknowledge state. R(Z) indicates that these pins will float while RESIN is low.

All pins float while the processor is in the ONCE Mode (with the exception of X2).



**Table 2. Pin Description Nomenciature** 

| Symbol | Description                                        |
|--------|----------------------------------------------------|
| þ      | Power Pin (apply + V <sub>CC</sub> voltage)        |
| G      | Ground (connect to V <sub>SS</sub> )               |
| 1      | Input only pin                                     |
| 0      | Output only pin                                    |
| 1/0    | Input/Output pin                                   |
| S(E)   | Synchronous, edge sensitive                        |
| S(L)   | Synchronous, level sensitive                       |
| A(E)   | Asynchronous, edge sensitive                       |
| A(L)   | Asynchronous, level sensitive                      |
| H(1)   | Output driven to V <sub>CC</sub> during bus hold   |
| H(0)   | Output driven to VSS during bus hold               |
| H(Z)   | Output floats during bus hold                      |
| H(Q)   | Output remains active during bus hold              |
| H(X)   | Output retains current state during bus hold       |
| R(WH)  | Output weakly held at V <sub>CC</sub> during reset |
| R(1)   | Output driven to V <sub>CC</sub> during reset      |
| R(0)   | Output driven to VSS during reset                  |
| R(Z)   | Output floats during reset                         |
| R(Q)   | Output remains active during reset                 |
| R(X)   | Output retains current state during reset          |

### BBE D



### 80C186XL/80C188XL

**Table 3. Pin Descriptions** 

| Pin<br>Name         | Pin<br>Type | Input<br>Type | Output<br>States | Pin Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|-------------|---------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vcc                 | Р           |               |                  | System Power: +5 volt power supply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Vss                 | G           |               |                  | System Ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RESET<br>-          |             |               | H(0)<br>R(1)     | RESET Output indicates that the CPU is being reset, and can be used as a system reset. It is active HIGH, synchronized with the processor clock, and lasts an integer number of clock periods corresponding to the length of the RES signal. Reset goes inactive 2 clockout periods after RES goes inactive. When tied to the TEST/BUSY pin, RESET forces the processor into enhanced mode. RESET is not floated during bus hold.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| X1                  | 1           | A(E)          |                  | Crystal Inputs X1 and X2 provide external connections for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| X2                  | 0           |               | H(Q)<br>R(Q)     | fundamental mode or third overtone parallel resonant crystal for the internal oscillator. X1 can connect to an external clock instead of a crystal. In this case, minimize the capacitance on X2. The input or oscillator frequency is internally divided by two to generate the clock signal (CLKOUT).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CLKOUT              | 0           |               | H(Q)<br>R(Q)     | Clock Output provides the system with a 50% duty cycle waveform. All device pin timings are specified relative to CLKOUT. CLKOUT is active during reset and bus hold.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| res                 |             | A(L)          |                  | An active RES causes the processor to immediately terminate its present activity, clear the internal logic, and enter a dormant state. This signal may be asynchronous to the clock. The processor begins fetching instructions approximately 6½ clock cycles after RES is returned HIGH. For proper initialization, V <sub>CC</sub> must be within specifications and the clock signal must be stable for more than 4 clocks with RES held LOW. RES is internally synchronized. This input is provided with a Schmitt-trigger to facilitate power-on RES generation via an RC network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TEST/BUSY<br>(TEST) | _           | A(E)          |                  | The TEST pin is sampled during and after reset to determine whether the processor is to enter Compatible or Enhanced Mode. Enhanced Mode requires TEST to be HIGH on the rising edge of RES and LOW four CLKOUT cycles later. Any other combination will place the processor in Compatible Mode. During power-up, active RES is required to configure TEST/BUSY as an input. A weak internal pullup ensures a HIGH state when the input is not externally driven.  TEST—In Compatible Mode this pin is configured to operate as TEST. This pin is examined by the WAIT instruction. If the TEST input is HIGH when WAIT execution begins, instruction execution will suspend. TEST will be resampled every five clocks until it goes LOW, at which time execution will resume. If interrupts are enabled while the processor is waiting for TEST, interrupts will be serviced.  BUSY (80C186XL Only)—In Enhanced Mode, this pin is configured to operate as BUSY. The BUSY input is used to notify the 80C186XL of Math Coprocessor activity. Floating point instructions executing in the 80C186XL sample the BUSY pin to determine when the Math Coprocessor is ready to accept a new command. BUSY is active HIGH. |



**NOTE:** Pin names in parentheses apply to the 80C188XL.



Table 3. Pin Descriptions (Continued)

| Pin Pin Input Output         |      |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|------------------------------|------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name                         | Туре | Type         | States       | Pin Description                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| TMR IN 0<br>TMR IN 1         | 1    | A(L)<br>A(E) |              | Timer Inputs are used either as clock or control signals, depending upon the programmed timer mode. These inputs are active HIGH (or LOW-to-HIGH transitions are counted) and internally synchronized. Timer Inputs must be tied HIGH when not being used as clock or retrigger inputs.                                                                                                                                         |  |
| TMR OUT 0<br>TMR OUT 1       | 0    |              | H(Q)<br>R(1) | Timer outputs are used to provide single pulse or continuous waveform generation, depending upon the timer mode selected. These outputs are not floated during a bus hold.                                                                                                                                                                                                                                                      |  |
| DRQ0<br>DRQ1                 | l    | A(L)         |              | DMA Request is asserted HIGH by an external device when it is ready for DMA Channel 0 or 1 to perform a transfer. These signals are level-triggered and internally synchronized.                                                                                                                                                                                                                                                |  |
| NMI                          | 1    | A(E)         |              | The Non-Maskable Interrupt input causes a Type 2 interrupt. An NMI transition from LOW to HIGH is latched and synchronized internally, and initiates the interrupt at the next instruction boundary. NMI must be asserted for at least one CLKOUT period. The Non-Maskable Interrupt cannot be avoided by programming.                                                                                                          |  |
| INTO<br>INT1/SELECT          | ı    | A(E)<br>A(L) |              | Maskable Interrupt Requests can be requested by activating one of these pins. When configured as inputs, these pins are active HIGH. Interrupt Requests are                                                                                                                                                                                                                                                                     |  |
| INT2/INTAO<br>INT3/INTAT/IRQ | 1/0  | A(E)<br>A(L) | H(1)<br>R(Z) | synchronized internally. INT2 and INT3 may be configured to provide active-LOW interrupt-acknowledge output signals. All interrupt inputs may be configured to be either edge- or level-triggered. To ensure recognition, all interrupt requests must remain active until the interrupt is acknowledged. When Slave Mode is selected, the function of these pins changes (see Interrupt Controller section of this data sheet). |  |
| A19/S6<br>A18/S5<br>A17/S4   | 0    |              | H(Z)<br>R(Z) | Address Bus Outputs and Bus Cycle Status (3-6) indicate the four most significant address bits during T <sub>1</sub> . These signals are active HIGH.                                                                                                                                                                                                                                                                           |  |
| A16/S3<br>(A8-A15)           |      |              |              | During T <sub>2</sub> , T <sub>3</sub> , T <sub>W</sub> and T <sub>4</sub> , the S6 pin is LOW to indicate a CPU-initiated bus cycle or HIGH to indicate a DMA-initiated or refresh bus cycle. During the same T-states, S3, S4 and S5 are always LOW. On the 80C188XL, A15–A8 provide valid address information for the entire bus cycle.                                                                                      |  |
| AD0-AD15<br>(AD0-AD7)        | 1/0  | S(L)         | H(Z)<br>R(Z) | Address/Data Bus signals constitute the time multiplexed memory or I/O address $(T_1)$ and data $(T_2, T_3, T_W \text{ and } T_4)$ bus. The bus is active HIGH. For the 80C186XL, $A_0$ is analogous to $\overline{\text{BHE}}$ for the lower byte of the data bus, pins $D_7$ through $D_0$ . It is LOW during $T_1$ when a byte is to be transferred onto the lower portion of the bus in memory or I/O operations.           |  |

NOTE: Pin names in parentheses apply to the 80C188XL.

Table 3. Pin Descriptions (Continued)

| Pin           | Pin  | Input        | Output       | t Continued                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                    |  |  |
|---------------|------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| Name          | Туре | Туре         | States       |                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pin Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                    |  |  |
| BHE<br>(RESH) | 0    |              | H(Z)<br>R(Z) | used to<br>pins D1<br>transfe<br>not nee<br>to indic<br>In Enha<br>DRAM                                                                                                                                                                                                                                                                                                                                                                   | The BHE (Bus High Enable) signal is analogous to A0 in that it is used to enable data on to the most significant half of the data bus, pins D15–D8. BHE will be LOW during T1 when the upper byte is transferred and will remain LOW through T3 and Tw. BHE does not need to be latched. On the 80C188XL, RFSH is asserted LOW to indicate a refresh bus cycle.  In Enhanced Mode, BHE (RFSH) will also be used to signify DRAM refresh cycles. A refresh cycle is indicated by both BHE (RFSH) and A0 being HIGH. |                                                                                                                    |  |  |
|               |      |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OC186XL BHE and A0 Encodings                                                                                       |  |  |
|               |      |              |              | BHE<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                              | A0<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Function                                                                                                           |  |  |
| -             |      |              | ·            | 0<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Word Transfer Byte Transfer on upper half of data bus (D15-D8) Byte Transfer on lower half of data bus (D7-D0)     |  |  |
|               |      |              |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Refresh                                                                                                            |  |  |
| ALE/QS0       | 0    |              | H(0)<br>R(0) | process                                                                                                                                                                                                                                                                                                                                                                                                                                   | Address Latch Enable/Queue Status 0 is provided by the processor to latch the address. ALE is active HIGH, with addresses guaranteed valid on the trailing edge.                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                    |  |  |
| WR∕QS1        | 0    |              | H(Z)<br>R(Z) | to be wind when the WR/QS                                                                                                                                                                                                                                                                                                                                                                                                                 | Write Strobe/Queue Status 1 indicates that the data on the bus is to be written into a memory or an I/O device. It is active LOW. When the processor is in Queue Status Mode, the ALE/QS0 and WR/QS1 pins provide information about processor/instruction queue interaction.                                                                                                                                                                                                                                       |                                                                                                                    |  |  |
|               |      |              |              | QS1 QS0 Queue Operation                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                    |  |  |
|               |      |              |              | 0<br>0<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>1<br>1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No queue operation First opcode byte fetched from the queue Subsequent byte fetched from the queue Empty the queue |  |  |
| RD/QSMD       | 0    |              | H(Z)<br>R(1) | Read Strobe is an active LOW signal which indicates that the processor is performing a memory or I/O read cycle. It is guaranteed not to go LOW before the A/D bus is floated. An internal pull-up ensures that RD/QSMD is HIGH during RESET. Following RESET the pin is sampled to determine whether the processor is to provide ALE, RD, and WR, or queue status information. To enable Queue Status Mode, RD must be connected to GND. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                    |  |  |
| ARDY          | I    | A(L)<br>S(L) |              | Memory<br>ARDY p<br>and is a<br>synchro<br>always a                                                                                                                                                                                                                                                                                                                                                                                       | connected to GND.  Asynchronous Ready informs the processor that the addressed memory space or I/O device will complete a data transfer. The ARDY pin accepts a rising edge that is asynchronous to CLKOUT and is active HIGH. The falling edge of ARDY must be synchronized to the processor clock. Connecting ARDY HIGH will always assert the ready condition to the CPU. If this line is unused, it should be tied LOW to yield control to the SRDY pin.                                                       |                                                                                                                    |  |  |



Pin names in parentheses apply to the 80C188XL.

Preliminary





Table 3. Pin Descriptions (Continued)

| Pin<br>Name | Pin<br>Type | input<br>Type | Output<br>States |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | 1 la 11                         | Pin Description                                                                                                                   |  |
|-------------|-------------|---------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| SRDY        | ; -         | S(L)          |                  | Synchronous Ready informs the processor that the addressed memory space or I/O device will complete a data transfer. The SRDY pin accepts an active-HIGH input synchronized to CLKOUT. The use of SRDY allows a relaxed system timing over ARDY. This is accomplished by elimination of the one-half clock cycle required to internally synchonize the ARDY input signal. Connecting SRDY high will always assert the ready condition to the CPU. If this line is unused, it should be tied LOW to yield control to the ARDY pin.                                                                                                                             |                            |                                 |                                                                                                                                   |  |
| LOCK        | 0           | _             | H(Z)<br>R(Z)     | LOCK output indicates that other system bus masters are not to gain control of the system bus. LOCK is active LOW. The LOCK signal is requested by the LOCK prefix instruction and is activated at the beginning of the first data cycle associated with the instruction immediately following the LOCK prefix. It remains active until the completion of that instruction. No instruction prefetching will occur while LOCK is asserted.                                                                                                                                                                                                                     |                            |                                 |                                                                                                                                   |  |
| \$0<br>\$1  | 0           | _             | H(Z)<br>R(1)     | Bus cycle status \$0 - \$2 are encoded to provide bus-transaction information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                 |                                                                                                                                   |  |
| <u>S2</u>   |             |               |                  | Bus Cycle Status Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                 |                                                                                                                                   |  |
|             |             | ]             |                  | <u>52</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>51</u>                  | Š0                              | Bus Cycle Initiated                                                                                                               |  |
|             |             |               |                  | 0<br>0<br>0<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>1<br>1<br>0<br>0<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0 | Interrupt Acknowledge Read I/O Write I/O Halt Instruction Fetch Read Data from Memory Write Data to Memory Passive (no bus cycle) |  |
|             |             |               |                  | S2 may be used as a logical M/IO indicator, and S1 as a DT/R indicator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                 |                                                                                                                                   |  |
| HOLD        | I           | A(L)          |                  | HOLD indicates that another bus master is requesting the local bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                 |                                                                                                                                   |  |
| HLDA        | 0           |               | H(1)<br>R(0)     | The HOLD input is active HIGH. The processor generates HLDA (HIGH) in response to a HOLD request. Simultaneous with the issuance of HLDA, the processor will float the local bus and control lines. After HOLD is detected as being LOW, the processor will lower HLDA. When the processor needs to run another bus cycle, it will again drive the local bus and control lines.  In Enhanced Mode, HLDA will go low when a DRAM refresh cycle is pending in the processor and an external bus master has control of the bus. It will be up to the external master to relinquish the bus by lowering HOLD so that the processor may execute the refresh cycle. |                            |                                 |                                                                                                                                   |  |

NOTE: Pin names in parentheses apply to the 80C188XL.



| Table 3. Pin Descriptions (Continued) |             |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|---------------------------------------|-------------|---------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Pin<br>Name                           | Pin<br>Type | Input<br>Type | Output<br>States  | Pin Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| UCS                                   | 1/0         | A(L)          | H(1)<br>R(WH)     | Upper Memory Chip Select is an active LOW output whenever a memory reference is made to the defined upper portion (1K-256K block) of memory. The address range activating UCS is software programmable.  UCS and LCS are sampled upon the rising edge of RES. If both pins are held low, the processor will enter ONCE Mode. In ONCE Mode all pins assume a high impedance state and remain so until a subsequent RESET. UCS has a weak internal pullup that is active during RESET to ensure that the processor does not enter ONCE Mode inadvertently. |  |  |  |  |
| LCS                                   | 1/0         | A(L)          | H(1)<br>R(WH)     | Lower Memory Chip Select is active LOW whenever a memory reference is made to the defined lower portion (1K-256K) of memory. The address range activating LCS is software programmable.  UCS and LCS are sampled upon the rising edge of RES. If both pins are held low, the processor will enter ONCE Mode. In ONCE Mode all pins assume a high impedance state and remain so until a subsequent RESET. LCS has a weak internal pullup that is active only during RESET to ensure that the processor does not enter ONCE mode inadvertently.            |  |  |  |  |
| MCS0/PEREQ<br>MCS1/ERROR              | 1/0         | A(L)          | H(1)<br>R(WH)     | Mid-Range Memory Chip Select signals are active LOW when a memory reference is made to the defined mid-                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| MCS2<br>MCS3/NPS                      | 0           |               | H(1)<br>R(1)      | range portion of memory (8K–512K). The address ranges activating MCS0–3 are software programmable. On the 80C186XL, in Enhanced Mode, MCS0 becomes a PEREQ input (Processor Extension Request). When connected to the Math Coprocessor, this input is used to signal the 80C186XL when to make numeric data transfers to and from the coprocessor. MCS3 becomes NPS (Numeric Processor Select) which may only be activated by communication to the 80C187. MCS1 becomes ERROR in Enhanced Mode and is used to signal numerics coprocessor errors.        |  |  |  |  |
| PCSO<br>PCS1<br>PCS2<br>PCS3<br>PCS4  | 0           |               | H(1)<br>R(1)      | Peripheral Chip Select signals 0-4 are active LOW when a reference is made to the defined peripheral area (64 Kbyte I/O or 1 MByte memory space). The address ranges activating PCS0-4 are software programmable.                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| PCS5/A1                               | 0           |               | H(1)/H(X)<br>R(1) | Peripheral Chip Select 5 or Latched A1 may be programmed to provide a sixth peripheral chip select, or to provide an internally latched A1 signal. The address range activating PCS5 is software-programmable. PCS5/A1 does not float during bus HOLD. When programmed to provide latched A1, this pin will retain the previously latched value during HOLD.                                                                                                                                                                                             |  |  |  |  |



**NOTE:** Pin names in parentheses apply to the 80C188XL.



Table 3. Pin Descriptions (Continued)

| Pin<br>Name | Pin<br>Type | Input<br>Type | Output<br>States  | Pin Description                                                                                                                                                                                                                                                                                                                                                |
|-------------|-------------|---------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCS6/A2     | 0           | -             | H(1)/H(X)<br>R(1) | Peripheral Chip Select 6 or Latched A2 may be programmed to provide a seventh peripheral chip select, or to provide an internally latched A2 signal. The address range activating PCS6 is software-programmable. PCS6/A2 does not float during bus HOLD. When programmed to provide latched A2, this pin will retain the previously latched value during HOLD. |
| DT/R        | 0           | -             | H(Z)<br>R(Z)      | Data Transmit/Receive controls the direction of data flow through an external data bus transceiver. When LOW, data is transferred to the procesor. When HIGH the processor places write data on the data bus.                                                                                                                                                  |
| DEN         | 0           | -             | H(Z)<br>R(1,Z)    | Data Enable is provided as a data bus transceiver output enable. DEN is active LOW during each memory and I/O access (including 80C187 access). DEN is HIGH whenever DT/R changes state. During RESET, DEN is driven HIGH for one clock, then floated.                                                                                                         |
| N.C.        | _           | _             | _                 | Not connected. To maintain compatibility with future products, do not connect to these pins.                                                                                                                                                                                                                                                                   |

NOTE: Pin names in parentheses apply to the 80C188XL.

# intel,

### 80C186XL/80C188XL

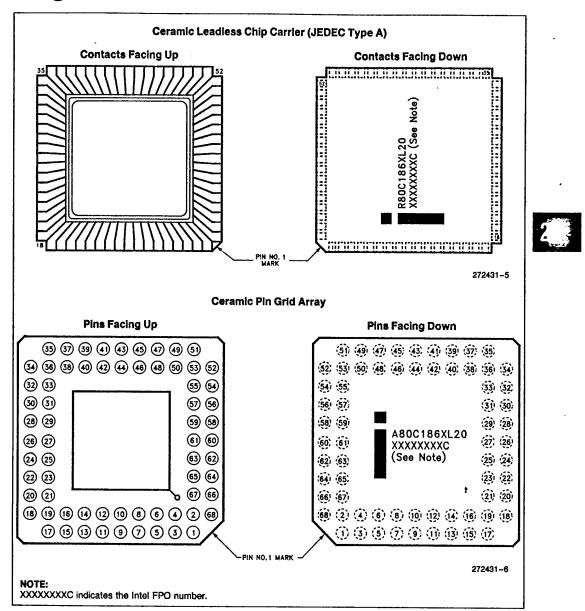
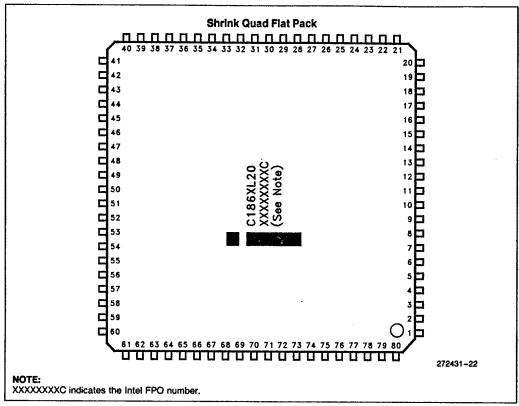




Figure 4. 80C186XL/80C188XL Pinout Diagrams



68E D

Figure 4. 80C186XL/80C188XL Pinout Diagrams (Continued)

### 80C186XL/80C188XL

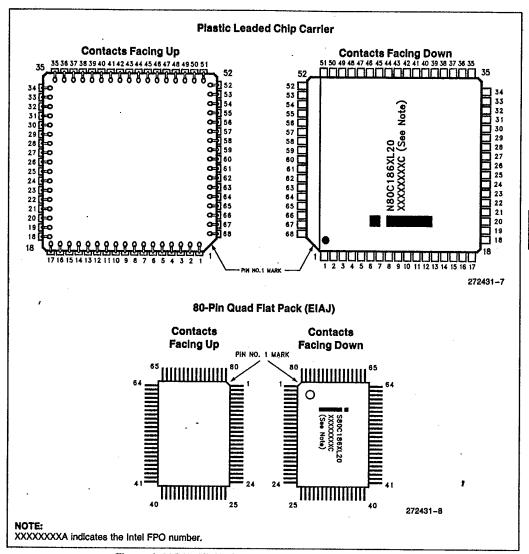



Figure 4. 80C186XL/80C288XL Pinout Diagrams (Continued)

Preliminary

Table 4. LCC/PLCC Pin Functions with Location

| AD Bus     |    |
|------------|----|
| AD0        | 17 |
| AD1        | 15 |
| AD2        | 13 |
| AD3        | 11 |
| AD4        | 8  |
| AD5        | 6  |
| AD6        | 4  |
| AD7        | 2  |
| AD8 (A8)   | 16 |
| AD9 (A9)   | 14 |
| AD10 (A10) | 12 |
| AD11 (A11) | 10 |
| AD12 (A12) | 7  |
| AD13 (A13) | 5  |
| AD14 (A14) | 3  |
| AD15 (A15) | 1  |
| A16/S3     | 68 |
| A17/S4     | 67 |
| A18/S5     | 66 |
| A19/S6     | 65 |

| <b>Bus Control</b> |    |  |  |  |
|--------------------|----|--|--|--|
| ALE/QS0            | 61 |  |  |  |
| BHE (RFSH)         | 64 |  |  |  |
| <u>so</u> -        | 52 |  |  |  |
| <u>\$1</u>         | 53 |  |  |  |
| <u>\$2</u>         | 54 |  |  |  |
| RD/QSMD            | 62 |  |  |  |
| WR/QS1             | 63 |  |  |  |
| ARDY               | 55 |  |  |  |
| SRDY               | 49 |  |  |  |
| DEN                | 39 |  |  |  |
| DT/R               | 40 |  |  |  |
| LOCK               | 48 |  |  |  |
| HOLD               | 50 |  |  |  |
| HLDA               | 51 |  |  |  |

| Processor Control |    |
|-------------------|----|
| RES               | 24 |
| RESET             | 57 |
| X1                | 59 |
| X2                | 58 |
| CLKOUT            | 56 |
| TEST/BUSY         | 47 |
| NMI               | 46 |
| INTO              | 45 |
| INT1/SELECT       | 44 |
| INT2/INTAO        | 42 |
| INT3/INTA1        | 41 |

| Power and Ground |    |
|------------------|----|
| V <sub>CC</sub>  | 9  |
| Vcc              | 43 |
| V <sub>SS</sub>  | 26 |
| V <sub>SS</sub>  | 60 |

| 1/0        |    |
|------------|----|
| UCS        | 34 |
| LCS        | 33 |
| MCS0/PEREQ | 38 |
| MCS1/ERROR | 37 |
| MCS2       | 36 |
| MCS3/NPS   | 35 |
| PCS0       | 25 |
| PCS1       | 27 |
| PCS2       | 28 |
| PCS3       | 29 |
| PCS4       | 30 |
| PCS5/A1    | 31 |
| PCS6/A2    | 32 |
| TMR IN 0   | 20 |
| TMR IN 1   | 21 |
| TMR OUT 0  | 22 |
| TMR OUT 1  | 23 |
| DRQ0       | 18 |
| DRQ1       | 19 |

**NOTE:** Pin names in parentheses apply to the 80C188XL.

Table 5. LCC/PGA/PLCC Pin Locations with Pin Names

| 1  | AD15 (A15) |
|----|------------|
| 2  | AD7        |
| 3  | AD14 (A14) |
| 4  | AD6        |
| 5  | AD13 (A13) |
| 6  | AD5        |
| 7  | AD12 (A12) |
| 8  | AD4        |
| 9  | Vcc        |
| 10 | AD11 (A11) |
| 11 | AD3        |
| 12 | AD10 (A10) |
| 13 | AD2        |
| 14 | AD9 (A9)   |
| 15 | AD1        |
| 16 | AD8 (A8)   |
| 17 | AD0        |
|    | ·          |

| 18 | DRQ0            |
|----|-----------------|
| 19 | DRQ1            |
| 20 | TMR IN 0        |
| 21 | TMR IN 1        |
| 22 | TMR OUT 0       |
| 23 | TMR OUT 1       |
| 24 | RES             |
| 25 | PCS0            |
| 26 | V <sub>SS</sub> |
| 27 | PCS1            |
| 28 | PCS2            |
| 29 | PCS3            |
| 30 | PCS4            |
| 31 | PCS5/A1         |
| 32 | PCS6/A2         |
| 33 | LCS             |
| 34 | UCS             |

| 35 | MCS3/NPS    |
|----|-------------|
| 36 | MCS2        |
| 37 | MCS1/ERROR  |
| 38 | MCS0/PEREQ  |
| 39 | DEN         |
| 40 | DT/R        |
| 41 | INT3/INTA1  |
| 42 | INT2/INTAO  |
| 43 | Vcc         |
| 44 | INT1/SELECT |
| 45 | INTO        |
| 46 | NMI         |
| 47 | TEST/BUSY   |
| 48 | LOCK        |
| 49 | SRDY        |
| 50 | HOLD        |
| 51 | HLDA        |
|    |             |

| 52 | <u>50</u>       |
|----|-----------------|
| 53 | <u>\$1</u>      |
| 54 | <u>\$2</u>      |
| 55 | ARDY            |
| 56 | CLKOUT          |
| 57 | REŞET           |
| 58 | X2 .            |
| 59 | X1              |
| 60 | V <sub>SS</sub> |
| 61 | ALE/QS0         |
| 62 | RD/QSMD         |
| 63 | WR/QS1          |
| 64 | BHE (RFSH)      |
| 65 | A19/S2          |
| 66 | A18/S3          |
| 67 | A17/S4          |
| 68 | A16/S3          |

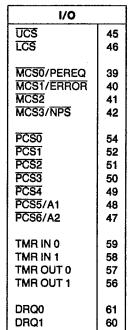
### NOTE:

Pin names in parentheses apply to the 80C188XL.

2-52

### 80C186XL/80C188XL

Table 6. QFP Pin Functions with Location


| AD Bus     |    |
|------------|----|
| AD0        | 64 |
| AD1        | 66 |
| AD2        | 68 |
| AD3        | 70 |
| AD4        | 74 |
| AD5        | 76 |
| AD6        | 78 |
| AD7        | 80 |
| AD8 (A8)   | 65 |
| AD9 (A9)   | 67 |
| AD10 (A10) | 69 |
| AD11 (A11) | 71 |
| AD12 (A12) | 75 |
| AD13 (A13) | 77 |
| AD14 (A14) | 79 |
| AD15 (A15) | 1  |
| A16/S3     | 3  |
| A17/S4     | 4  |
| A18/S5     | 5  |
| A19/S6     | 6  |

| Bus Control     |    |  |
|-----------------|----|--|
| ALE/QS0         | 10 |  |
| BHE (RFSH)      | 7  |  |
| <del>\$</del> 0 | 23 |  |
| <u>\$1</u>      | 22 |  |
| <u>52</u>       | 21 |  |
| RD/QSMD         | 9  |  |
| WR/QS1          | 8  |  |
| ARDY            | 20 |  |
| SRDY            | 27 |  |
| DEN             | 38 |  |
| DT/Ř            | 37 |  |
| LOCK            | 28 |  |
| HOLD            | 26 |  |
| HLDA            | 25 |  |
|                 |    |  |

| No Connection |    |
|---------------|----|
| N.C.          | 2  |
| N.C.          | 11 |
| N.C.          | 14 |
| N.C.          | 15 |
| N.C.          | 24 |
| N.C.          | 43 |
| N.C.          | 44 |
| N.C.          | 62 |
| N.C.          | 63 |

| Processor Control |    |
|-------------------|----|
| RES               | 55 |
| RESET             | 18 |
| X1                | 16 |
| X2                | 17 |
| CLKOUT            | 19 |
| TEST/BUSY         | 29 |
| NMI               | 30 |
| INTO              | 31 |
| INT1/SELECT       | 32 |
| INT2/INTAO        | 35 |
| INT3/INTAT        | 36 |

| Power and Ground |    |
|------------------|----|
| V <sub>CC</sub>  | 33 |
| V <sub>CC</sub>  | 34 |
| Vcc              | 72 |
| Vcc              | 73 |
| V <sub>SS</sub>  | 12 |
| V <sub>SS</sub>  | 13 |
| VSS              | 53 |





### NOTE:

Pin names in parentheses apply to the 80C188XL.

Table 7. QFP Pin Locations with Pin Names

| 1  | AD15 (A15) |
|----|------------|
| 2  | N.C.       |
| 3  | A16/S3     |
| 4  | A17/S4     |
| 5  | A18/S5     |
| 6  | A19/S6     |
| 7  | BHE/(RFSH) |
| 8  | WR/QS1     |
| 9  | RD/QSMD    |
| 10 | ALE/QS0    |
| 11 | N.C.       |
| 12 | Vcc        |
| 13 | Vcc        |
| 14 | N.C.       |
| 15 | N.C.       |
| 16 | X1         |
| 17 | X2         |
| 18 | RESET      |
| 19 | CLKOUT     |
| 20 | ARDY       |
| 20 | אחטז       |

| Table 7. QFP Pin Lo |             |  |
|---------------------|-------------|--|
| 21                  | <u>\$2</u>  |  |
| 22                  | \$ī         |  |
| 23                  | <u>\$0</u>  |  |
| 24                  | N.C.        |  |
| 25                  | HLDA        |  |
| 26                  | HOLD        |  |
| 27                  | SRDY        |  |
| 28                  | LOCK        |  |
| 29                  | TEST/BUSY   |  |
| 30                  | NMI         |  |
| 31                  | INTO        |  |
| 32                  | INT1/SELECT |  |
| 33                  | Vcc         |  |
| 34                  | Vcc         |  |
| 35                  | INT2/INTAO  |  |
| 36                  | INT3/INTA1  |  |
| 37                  | DT/R        |  |
| 38                  | DEN         |  |
| 39                  | MCS0/PEREQ  |  |
| 40                  | MCS1/ERROR  |  |
|                     |             |  |

| 41 | MCS2              |
|----|-------------------|
| 42 | MCS3/NPS          |
| 43 | N.C.              |
| 44 | N.C.              |
| 45 | UCS               |
| 46 | <u>LCS</u>        |
| 47 | PCS6/A2           |
| 48 | PCS5/A1           |
| 49 | PCS4              |
| 50 | PCS3              |
| 51 | PCS2              |
| 52 | PCS1              |
| 53 | V <sub>CC</sub> . |
| 54 | PCS0              |
| 55 | RES               |
| 56 | TMR OUT 1         |
| 57 | TMR OUT 0         |
| 58 | TMR IN 1          |
| 59 | TMR IN 0          |
| 60 | DRQ1              |

| 61 | DRQ0       |
|----|------------|
| 62 | N.C.       |
| 63 | N.C.       |
| 64 | AD0        |
| 65 | AD8 (A8)   |
| 66 | AD1        |
| 67 | AD9 (A9)   |
| 68 | AD2        |
| 69 | AD10 (A10) |
| 70 | AD3        |
| 71 | AD11 (A11) |
| 72 | Vcc        |
| 73 | Vcc        |
| 74 | AD4        |
| 75 | AD12 (A12) |
| 76 | AD5        |
| 77 | AD13 (A13) |
| 78 | AD6        |
| 79 | AD14 (A14) |
| 80 | AD7        |
|    |            |

### NOTE:

Pin names in parentheses apply to the 80C188XL.

**Table 8. SQFP Pin Functions with Location** 

| AD Bus     |    |
|------------|----|
| AD0        | 1  |
| AD1        | 3  |
| AD2        | 6  |
| AD3        | 8  |
| AD4        | 12 |
| AD5        | 14 |
| AD6        | 16 |
| AD7        | 18 |
| AD8 (A8)   | 2  |
| AD9 (A9)   | 5  |
| AD10 (A10) | 7  |
| AD11 (A11) | 9  |
| AD12 (A12) | 13 |
| AD13 (A13) | 15 |
| AD14 (A14) | 17 |
| AD15 (A15) | 19 |
| A16/S3     | 21 |
| A17/S4     | 22 |
| A18/S5     | 23 |
| A19/S6     | 24 |

| <b>Bus Control</b> |    |
|--------------------|----|
| ALE/QS0            | 29 |
| BHE (RFSH)         | 26 |
| SO SO              | 40 |
| <del>\$1</del>     | 39 |
| <u>\$2</u>         | 38 |
| RD/QSMD            | 28 |
| WR/QS1             | 27 |
| ARDY               | 37 |
| SRDY               | 44 |
| DEN                | 56 |
| DT/R               | 54 |
| LOCK               | 45 |
| HOLD               | 43 |
| HLDA               | 42 |
|                    |    |

| No Connectio | n  |
|--------------|----|
| N.C.         | 4  |
| N.C.         | 25 |
| N.C.         | 35 |
| N.C.         | 55 |
| N.C.         | 72 |

| Processor Control |    |
|-------------------|----|
| RES               | 73 |
| RESET             | 34 |
| X1                | 32 |
| X2                | 33 |
| CLKOUT            | 36 |
| TEST/BUSY         | 46 |
| NMI               | 47 |
| INTO              | 48 |
| INT1/SELECT       | 49 |
| INT2/INTAO        | 52 |
| INT3/INTA1        | 53 |

| Power and Gro   | und |
|-----------------|-----|
| Vcc             | 10  |
| Vcc             | 11  |
| V <sub>CC</sub> | 20  |
| Vcc             | 50  |
| V <sub>CC</sub> | 51  |
| Vcc             | 61  |
| V <sub>SS</sub> | 30  |
| V <sub>SS</sub> | 31  |
| $V_{SS}$        | 41  |
| V <sub>SS</sub> | 70  |
| V <sub>SS</sub> | 80  |

| 1/0        |    |
|------------|----|
| UCS        | 62 |
| LCS        | 63 |
| MCS0/PEREQ | 57 |
| MCS1/ERROR | 58 |
| MCS2       | 59 |
| MCS3/NPS   | 60 |
| PCS0       | 71 |
| PCS1       | 69 |
| PCS2       | 68 |
| PCS3       | 67 |
| PCS4       | 66 |
| PCS5/A1    | 65 |
| PCS6/A2    | 64 |
| TMR IN 0   | 77 |
| TMR IN 1   | 76 |
| TMR OUT 0  | 75 |
| TMR OUT 1  | 74 |
| DRQ0       | 79 |
| DRQ1       | 78 |

**NOTE:** Pin names in parentheses apply to the 80C188XL.

Table 9. SQFP Pin Locations with Pin Names

|   | 1  | AD0             |
|---|----|-----------------|
|   | 2  | AD8 (A8)        |
|   | 3  | AD1             |
|   | 4  | N.C.            |
|   | 5  | AD9 (A9)        |
|   | 6  | AD2             |
|   | 7  | AD10 (A10)      |
|   | 8  | AD3             |
|   | 9  | AD11 (A11)      |
|   | 10 | V <sub>CC</sub> |
|   | 11 | Vcc             |
| i | 12 | AD4             |
|   | 13 | AD12 (A12)      |
|   | 14 | AD5             |
|   | 15 | AD13 (A13)      |
| ļ | 16 | AD6             |
|   | 17 | AD14 (A14)      |
| İ | 18 | AD7             |
| ı | 19 | AD15 (A15)      |
|   | 20 | V <sub>CC</sub> |

| 21 | A16/S3          |
|----|-----------------|
| 22 | A17/S4          |
| 23 | A18/S5          |
| 24 | A19/S6          |
| 25 | N.C.            |
| 26 | BHE (RFSH)      |
| 27 | WR/QS1          |
| 28 | RD/QSMD         |
| 29 | ALE/QS0         |
| 30 | V <sub>SS</sub> |
| 31 | Vss             |
| 32 | X1              |
| 33 | X2              |
| 34 | RESET           |
| 35 | N.C.            |
| 36 | CLKOUT          |
| 37 | ARDY            |
| 38 | <u>\$2</u>      |
| 39 | জ               |
| 40 | <u>50</u>       |
|    |                 |

| 41 | V <sub>SS</sub> |
|----|-----------------|
| 42 | HLDA            |
| 43 | HOLD            |
| 44 | SRDY            |
| 45 | LOCK            |
| 46 | TEST/BUSY       |
| 47 | NMI             |
| 48 | INTO            |
| 49 | INT1/SELECT     |
| 50 | V <sub>CC</sub> |
| 51 | Vcc             |
| 52 | INT2/INTAO      |
| 53 | INT3/INTA1      |
| 54 | DT/R            |
| 55 | N.C.            |
| 56 | DEN             |
| 57 | MCS0/PEREQ      |
| 58 | MCS1/ERROR      |
| 59 | MCS2            |
| 60 | MCS3/NPS        |

| 61 | Vcc             |
|----|-----------------|
| 62 | UČŠ             |
| 63 | TCS.            |
| 64 | PCS6/A2         |
| 65 | PCS5/A1         |
| 66 | PCS4            |
| 67 | PCS3            |
| 68 | PCS2            |
| 69 | PCS1            |
| 70 | V <sub>SS</sub> |
| 71 | PCS0            |
| 72 | N.C.            |
| 73 | RES             |
| 74 | TMR OUT 1       |
| 75 | TMR OUT 0       |
| 76 | TMR IN 1        |
| 77 | TMR IN 0        |
| 78 | DRQ1            |
| 79 | DRQ0            |
| 80 | Vss             |

### NOTE:

Pin names in parentheses apply to the 80C188XL.

2-54



### **ELECTRICAL SPECIFICATIONS**

### **Absolute Maximum Ratings\***

Ambient Temperature under Bias ....0°C to +70°C Storage Temperature .....-65°C to +150°C Voltage on Any Pin with Respect to Ground .....-1.0V to +7.0V Package Power Dissipation ......1W Not to exceed the maximum allowable die temperature based on thermal resistance of the package.

NOTICE: This data sheet contains preliminary information on new products in production. The specifications are subject to change without notice. Verify with your local Intel Sales office that you have the latest data sheet before finalizing a design.

\*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

NOTICE: The specifications are subject to change without notice.

### **DC SPECIFICATIONS** $T_A = 0^{\circ}C$ to $\pm 70^{\circ}C$ , $V_{CC} = 5V \pm 10\%$

| Symbol           | Parameter                                     | Min                       | Max                       | Units | Test Conditions                                                          |
|------------------|-----------------------------------------------|---------------------------|---------------------------|-------|--------------------------------------------------------------------------|
| V <sub>IL</sub>  | Input Low Voltage<br>(Except X1)              | -0.5                      | 0.2 V <sub>CC</sub> - 0.3 | ٧     |                                                                          |
| V <sub>IL1</sub> | Clock Input Low<br>Voltage (X1)               | -0.5                      | 0.6                       | ٧     |                                                                          |
| V <sub>IH</sub>  | Input High Voltage<br>(All except X1 and RES) | 0.2 V <sub>CC</sub> + 0.9 | V <sub>CC</sub> + 0.5     | ٧     |                                                                          |
| V <sub>IH1</sub> | Input High Voltage (RES)                      | 3.0                       | V <sub>CC</sub> + 0.5     | ٧     |                                                                          |
| V <sub>IH2</sub> | Clock Input High<br>Voltage (X1)              | 3.9                       | V <sub>CC</sub> + 0.5     | ٧     |                                                                          |
| V <sub>OL</sub>  | Output Low Voltage                            |                           | 0.45                      | ٧     | I <sub>OL</sub> = 2.5 mA (S0, 1, 2)<br>I <sub>OL</sub> = 2.0 mA (others) |
| V <sub>OH</sub>  | Output High Voltage                           | 2.4                       | V <sub>CC</sub>           | ٧     | I <sub>OH</sub> = -2.4 mA @ 2.4V (4)                                     |
|                  |                                               | V <sub>CC</sub> - 0.5     | V <sub>CC</sub>           | ٧     | $I_{OH} = -200 \mu\text{A} @ V_{CC} - 0.5(4)$                            |
| lcc              | Power Supply Current                          |                           | 100                       | mA    | @ 20 MHz, 0°C<br>V <sub>CC</sub> = 5.5V(3)                               |
|                  |                                               |                           | 62.5                      | mA    | @ 12 MHz, 0°C<br>V <sub>CC</sub> = 5.5V (3)                              |
|                  |                                               |                           | 100                       | μА    | @ DC 0°C<br>V <sub>CC</sub> = 5.5V                                       |
| ш                | Input Leakage Current                         |                           | ±10                       | μА    | @ 0.5 MHz,<br>0.45V ≤ V <sub>IN</sub> ≤ V <sub>CC</sub>                  |
| LO               | Output Leakage Current                        |                           | ±10                       | μА    | @ 0.5 MHz,<br>0.45V ≤ V <sub>OUT</sub> ≤ V <sub>CC</sub> <sup>(1)</sup>  |
| V <sub>CLO</sub> | Clock Output Low                              |                           | 0.45                      | ٧     | I <sub>CLO</sub> = 4.0 mA                                                |





### DC SPECIFICATIONS (Continued) $T_A = 0$ °C to +70°C, $V_{CC} = 5V \pm 10$ %

| Symbol           | Parameter                 | Min                   | Max | Units | Test Conditions              |
|------------------|---------------------------|-----------------------|-----|-------|------------------------------|
| V <sub>CHO</sub> | Clock Output High         | V <sub>CC</sub> - 0.5 |     | ٧     | $I_{CHO} = -500 \mu\text{A}$ |
| CIN              | Input Capacitance         |                       | 10  | рF    | @ 1 MHz(2)                   |
| C <sub>IO</sub>  | Output or I/O Capacitance |                       | 20  | рF    | @ 1 MHz(2)                   |

### NOTES:

1. Pins being floated during HOLD or by invoking the ONCE Mode.

2. Characterization conditions are a) Frequency = 1 MHz; b) Unmeasured pins at GND; c) V<sub>IN</sub> at + 5.0V or 0.45V. This

Current is measured with the device in RESET with X1 and X2 driven and all other non-power pins open.
 RD/QSMD, UCS, LCS, MCSO/PEREQ, MCS1/ERROR and TEST/BUSY pins have internal pullup devices. Loading some of these pins above I<sub>OH</sub> = -200 μA can cause the processor to go into alternative modes of operation. See the section on Local Bus Controller and Reset for details.

### **Power Supply Current**

Current is linearly proportional to clock frequency and is measured with the device in RESET with X1 and X2 driven and all other non-power pins open.

Maximum current is given by  $I_{\mbox{\footnotesize CC}}$  = 5 mA  $\times$  freq. (MHz) +  $I_{\mbox{\footnotesize QL}}.$ 

IQL is the quiescent leakage current when the clock is static.  $I_{QL}$  is typically less than 100  $\mu$ A.

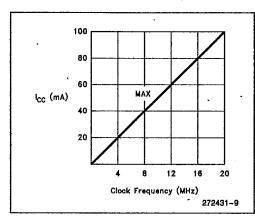



Figure 5. I<sub>CC</sub> vs Frequency



LBE D

### **AC SPECIFICATIONS**

### MAJOR CYCLE TIMINGS (READ CYCLE)

 $T_A=0^{\circ}\text{C}$  to  $+70^{\circ}\text{C}$ ,  $V_{CC}=5V\pm10\%$ All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted. All output test conditions are with  $C_L=50$  pF. For AC tests, input  $V_{IL}=0.45V$  and  $V_{IH}=2.4V$  except at X1 where  $V_{IH}=V_{CC}-0.5V$ .

|                    |                                           |                        |         | ues                    |     | <u> </u> |                    |
|--------------------|-------------------------------------------|------------------------|---------|------------------------|-----|----------|--------------------|
| Symbol             | Parameter                                 | 80C186XL               | -12     | 80C186XL               | .20 | Unit     | Test<br>Conditions |
|                    |                                           | Min                    | Max     | Min                    | Max |          | Conditions         |
| <b>80C</b> 186X    | L GENERAL TIMING REQUIR                   | EMENTS (Liste          | d More  | Than Once)             |     | ·        | *. *               |
| T <sub>DVCL</sub>  | Data in Setup (A/D)                       | 15                     |         | 10                     |     | ns       |                    |
| TCLDX              | Data in Hold (A/D)                        | 3                      | -       | 3                      |     | ns       |                    |
| 80C186X            | L GENERAL TIMING RESPON                   | ISES (Listed M         | ore Tha | an Once)               |     |          |                    |
| TCHSV              | Status Active Delay                       | 3                      | 35      | 3                      | 25  | ns       | •                  |
| TCLSH              | Status Inactive Delay                     | 3                      | 35      | 3                      | 25  | ns       |                    |
| T <sub>CLAV</sub>  | Address Valid Delay                       | 3                      | 36      | 3                      | 27  | ns       |                    |
| TCLAX              | Address Hold                              | 0                      |         | 0                      |     | กร       |                    |
| T <sub>CLDV</sub>  | Data Valid Delay                          | 3                      | 36      | 3                      | 27  | ns       |                    |
| T <sub>CHDX</sub>  | Status Hold Time                          | 10                     |         | 10                     |     | ns       |                    |
| T <sub>CHLH</sub>  | ALE Active Delay                          |                        | 25      |                        | 20  | ns       |                    |
| T <sub>LHLL</sub>  | ALE Width                                 | T <sub>CLCL</sub> - 15 |         | T <sub>CLCL</sub> - 15 |     | ns       |                    |
| TCHLL              | ALE Inactive Delay                        |                        | 25      |                        | 20  | ns       |                    |
| TAVLL              | Address Valid to ALE Low                  | T <sub>CLCH</sub> — 15 |         | T <sub>CLCH</sub> - 10 |     | ns       | Equal<br>Loading   |
| TLLAX              | Address Hold from ALE<br>Inactive         | T <sub>CHCL</sub> - 15 |         | T <sub>CHCL</sub> - 10 |     | ns       | Equal<br>Loading   |
| TAVCH              | Address Valid to Clock High               | 0                      |         | 0                      |     | ns       | _                  |
| TCLAZ              | Address Float Delay                       | TCLAX                  | 25      | TCLAX                  | 20  | ns       |                    |
| T <sub>CLCSV</sub> | Chip-Select Active Delay                  | 3                      | 33      | 3                      | 25  | ns       |                    |
| T <sub>CXCSX</sub> | Chip-Select Hold from<br>Command Inactive | T <sub>CLCH</sub> - 10 |         | T <sub>CLCH</sub> - 10 |     | ns       | Equal<br>Loading   |
| T <sub>CHCSX</sub> | Chip-Select Inactive Delay                | 3                      | 30      | 3                      | 20  | ns       |                    |
| T <sub>DXDL</sub>  | DEN Inactive to DT/R Low                  | 0                      |         | 0                      |     | ns       | Equal<br>Loading   |
| TCVCTV             | Control Active Delay 1                    | 3                      | 37      | 3                      |     | ns       |                    |
| TCVDEX             | DEN Inactive Delay                        | 3                      | 37      | 3                      |     | ns       |                    |
| ТСНСТУ             | Control Active Delay 2                    | 3                      | 37      | 3                      |     | ns       |                    |
| T <sub>CLLV</sub>  | LOCK Valid/Invalid Delay                  | 3                      | 37      | 3                      |     | ns       |                    |



Preliminary

### **AC SPECIFICATIONS (Continued)**

### MAJOR CYCLE TIMINGS (READ CYCLE) (Continued)

T<sub>A</sub> = 0°C to +70°C,  $V_{CC}$  = 5V ±10% All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted. All output test conditions are with  $C_L$  = 50 pF. For AC tests, input  $V_{IL}$  = 0.45V and  $V_{IH}$  = 2.4V except at X1 where  $V_{IH}$  =  $V_{CC}$  - 0.5V.

|                   |                               | Values                  |     |                         |     |      | _                                     |
|-------------------|-------------------------------|-------------------------|-----|-------------------------|-----|------|---------------------------------------|
| Symbol            | Parameter                     | 80C186XL12              |     | 80C186XL                | 20  | Unit | Test<br>Conditions                    |
|                   |                               | Min                     | Max | Min                     | Max |      | Conditions                            |
| 80C186X           | L TIMING RESPONSES (Rea       | d Cycle)                |     |                         |     |      | · · · · · · · · · · · · · · · · · · · |
| TAZRL             | Address Float to RD Active    | 0                       |     | 0                       |     | ns   |                                       |
| T <sub>CLRL</sub> | RD Active Delay               | 3                       | 37  | 3                       | 27  | ns   |                                       |
| T <sub>RLRH</sub> | RD Pulse Width                | 2T <sub>CLCL</sub> - 25 |     | 2T <sub>CLCL</sub> - 20 |     | ns   |                                       |
| T <sub>CLRH</sub> | RD Inactive Delay             | 3                       | 37  | 3                       | 27  | ns   |                                       |
| TRHLH             | RD Inactive to ALE High       | T <sub>CLCH</sub> - 14  |     | T <sub>CLCH</sub> - 14  |     | ns   | Equal<br>Loading                      |
| T <sub>RHAV</sub> | RD Inactive to Address Active | T <sub>CLCL</sub> - 15  |     | T <sub>CLCL</sub> - 15  |     | ns   | Equal<br>Loading                      |

LAE D



### **AC SPECIFICATIONS (Continued)**

### **MAJOR CYCLE TIMINGS (WRITE CYCLE)**

 $T_A = 0^{\circ}\text{C}$  to  $+70^{\circ}\text{C}$ ,  $V_{CC} = 5V \pm 10\%$ All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted.

All output test conditions are with  $C_L=50$  pF. For AC tests, input  $V_{IL}=0.45V$  and  $V_{IH}=2.4V$  except at X1 where  $V_{IH}=V_{CC}-0.5V$ .

|                    |                                           | Z.+V OXCOPT             |         | ues                     |     | J <b>v</b> . |                    |
|--------------------|-------------------------------------------|-------------------------|---------|-------------------------|-----|--------------|--------------------|
| Symbol             | Parameter                                 | 80C186XL                | .12     | 80C186XL                | .20 | Unit         | Test<br>Conditions |
|                    |                                           | Min                     | Max     | Min                     | Max | 1            | Conditions         |
| 80C186X            | L GENERAL TIMING RESPON                   | ISES (Listed Mo         | ore Tha | n Once)                 |     |              |                    |
| T <sub>CHSV</sub>  | Status Active Delay                       | 3                       | 35      | 3                       | 25  | ns           |                    |
| T <sub>CLSH</sub>  | Status Inactive Delay                     | 3                       | 35      | 3                       | 25  | ns           |                    |
| TCLAV              | Address Valid Delay                       | 3                       | 36      | 3                       | 27  | ns           |                    |
| TCLAX              | Address Hold                              | 0                       |         | 0                       |     | ns           |                    |
| T <sub>CLDV</sub>  | Data Valid Delay                          | 3                       | 36      | 3                       | 27  | ns           |                    |
| T <sub>CHDX</sub>  | Status Hold Time                          | 10                      |         | 10                      |     | ns           |                    |
| T <sub>CHLH</sub>  | ALE Active Delay                          |                         | 25      |                         | 20  | ns           |                    |
| TLHLL              | ALE Width                                 | T <sub>CLCL</sub> - 15  |         | T <sub>CLCL</sub> - 15  |     | ns           |                    |
| TCHLL              | ALE Inactive Delay                        |                         | 25      |                         | 20  | ns           |                    |
| TAVLL              | Address Valid to ALE Low                  | T <sub>CLCH</sub> — 15  |         | T <sub>CLCH</sub> - 10  |     | ns           | Equal<br>Loading   |
| TLLAX              | Address Hold from ALE<br>Inactive         | T <sub>CHCL</sub> - 15  |         | T <sub>CHCL</sub> - 10  |     | ns           | Equal<br>Loading   |
| TAVCH              | Address Valid to Clock High               | 0                       |         | 0                       |     | ns           |                    |
| TCLDOX             | Data Hold Time                            | 3                       |         | 3                       |     | ns           |                    |
| TCVCTV             | Control Active Delay 1                    | 3                       | 37      | . 3                     | 25  | ns           |                    |
| T <sub>CVCTX</sub> | Control Inactive Delay                    | 3                       | 37      | 3                       | 25  | ns           |                    |
| T <sub>CLCSV</sub> | Chip-Select Active Delay                  | 3                       | 33      | 3                       | 25  | ns           | 1                  |
| T <sub>CXCSX</sub> | Chip-Select Hold from<br>Command Inactive | T <sub>CLCH</sub> - 10  |         | T <sub>CLCH</sub> — 10  |     | ns           | Equal<br>Loading   |
| T <sub>CHCSX</sub> | Chip-Select Inactive Delay                | 3                       | 30      | 3                       | 20  | ns           |                    |
| TOXOL              | DEN Inactive to DT/R Low                  | 0                       |         | 0                       |     | ns           | Equal<br>Loading   |
| T <sub>CLLV</sub>  | LOCK Valid/Invalid Delay                  | 3                       | 37      | 3                       | 22  | ns           |                    |
| 80C186X            | L TIMING RESPONSES (Write                 | Cycle)                  |         |                         |     |              |                    |
| T <sub>WLWH</sub>  | WR Pulse Width                            | 2T <sub>CLCL</sub> - 25 |         | 2T <sub>CLCL</sub> - 20 |     | ns           |                    |
| TWHLH              | WR Inactive to ALE High                   | T <sub>CLCH</sub> - 14  |         | T <sub>CLCH</sub> - 14  |     | ns           | Equal<br>Loading   |
| T <sub>WHDX</sub>  | Data Hold after WR                        | T <sub>CLCL</sub> - 20  |         | T <sub>CLCL</sub> — 15  |     | ns           | Equal<br>Loading   |
| T <sub>WHDEX</sub> | WR Inactive to DEN Inactive               | T <sub>CLCH</sub> - 10  |         | T <sub>CLCH</sub> - 10  |     | ns           | Equal<br>Loading   |



PRELIMINARY

2-59



### **AC SPECIFICATIONS (Continued)**

**MAJOR CYCLE TIMINGS (INTERRUPT ACKNOWLEDGE CYCLE)** T<sub>A</sub> = 0°C to +70°C,  $V_{CC} = 5V \pm 10\%$  All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted. All output test conditions are with  $C_L = 50$  pF. For AC tests, input  $V_{IL} = 0.45V$  and  $V_{IH} = 2.4V$  except at X1 where  $V_{IH} = V_{CC} - 0.5V$ .

BBE D

|                    |                                          | Values                 |         |                        |     |      |                    |
|--------------------|------------------------------------------|------------------------|---------|------------------------|-----|------|--------------------|
| Symbol             | Parameter                                | 80C186XL               | _12     | 80C186XL20             |     | Unit | Test<br>Conditions |
|                    |                                          | Min                    | Max     | Min                    | Max | 1    | Conditions         |
| 80C186X            | L GENERAL TIMING REQUIR                  | EMENTS (Liste          | ed More | Than Once)             |     | •    |                    |
| TDVCL              | Data in Setup (A/D)                      | 15                     |         | 10                     |     | ns   |                    |
| T <sub>CLDX</sub>  | Data in Hold (A/D)                       | 3                      |         | 3                      |     | ns   |                    |
| 80C186X            | L GENERAL TIMING RESPON                  | ISES (Listed M         | ore Tha | an Once)               |     |      |                    |
| T <sub>CHSV</sub>  | Status Active Delay                      | 3                      | 35      | 3                      | 25  | ns   |                    |
| T <sub>CLSH</sub>  | Status Inactive Delay                    | 3                      | 35      | 3                      | 25  | ns   |                    |
| TCLAV              | Address Valid Delay                      | 3                      | 36      | 3                      | 27  | ns   |                    |
| TAVCH              | Address Valid to Clock High              | 0                      |         | 0                      |     | ns   |                    |
| TCLAX              | Address Hold                             | 0                      |         | 0                      |     | ns   |                    |
| T <sub>CLDV</sub>  | Data Valid Delay                         | 3                      | 36      | 3                      | 27  | ns   |                    |
| T <sub>CHDX</sub>  | Status Hold Time                         | 10                     |         | 10                     |     | ns   |                    |
| T <sub>CHLH</sub>  | ALE Active Delay                         |                        | 25      |                        | 20  | ns   |                    |
| T <sub>LHLL</sub>  | ALE Width                                | T <sub>CLCL</sub> - 15 |         | T <sub>CLCL</sub> - 15 |     | ns   |                    |
| T <sub>CHLL</sub>  | ALE Inactive Delay                       |                        | 25      |                        | 20  | ns   | !                  |
| TAVLL              | Address Valid to ALE Low                 | T <sub>CLCH</sub> - 15 |         | T <sub>CLCH</sub> - 10 |     | ns   | Equal<br>Loading   |
| T <sub>LLAX</sub>  | Address Hold to ALE<br>Inactive          | T <sub>CHCL</sub> - 15 |         | T <sub>CHCL</sub> - 10 |     | ns   | Equal<br>Loading   |
| TCLAZ              | Address Float Delay                      | TCLAX                  | 25      | T <sub>CLAX</sub>      | 20  | ns   | 2                  |
| Тсусту             | Control Active Delay 1                   | 3                      | 37      | 3                      | 25  | ns   |                    |
| T <sub>CVCTX</sub> | Control Inactive Delay                   | 3                      | 37      | 3                      | 25  | ns   |                    |
| T <sub>DXDL</sub>  | DEN Inactive to DT/R Low                 | 0                      |         | 0                      |     | ns   | Equal<br>Loading   |
| T <sub>CHCTV</sub> | Control Active Delay 2                   | 3                      | 37      | 3                      | 22  | ns   |                    |
| TCVDEX             | DEN Inactive Delay<br>(Non-Write Cycles) | 3                      | 37      | 3                      | 22  | ns   |                    |
| T <sub>CLLV</sub>  | LOCK Valid/Invalid Delay                 | 3                      | 37      | 3                      | 22  | ns   |                    |

2-60



### AC SPECIFICATIONS (Continued)

SOFTWARE HALT CYCLE TIMINGS  $T_A = 0^{\circ}\text{C to } + 70^{\circ}\text{C}, \ V_{CC} = 5\text{V} \pm 10\%$  All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted. All output test conditions are with  $C_L = 50$  pF. For AC tests, input  $V_{IL} = 0.45\text{V}$  and  $V_{IH} = 2.4\text{V}$  except at X1 where  $V_{IH} = V_{CC} - 0.5\text{V}$ .

|                    |                          |                        | Val        | lues                   |     |      |                    |
|--------------------|--------------------------|------------------------|------------|------------------------|-----|------|--------------------|
| Symbol             | Parameter                | 80C186XL               | 80C186XL12 |                        | .20 | Unit | Test<br>Conditions |
|                    |                          | Min                    | Max        | Min                    | Max |      | Odiamone           |
| 80C186X            | L GENERAL TIMING REQUIP  | REMENTS (List          | ed Mor     | e Than Once)           |     |      | <del></del>        |
| T <sub>CHSV</sub>  | Status Active Delay      | 3                      | 35         | 3                      | 25  | ns   |                    |
| T <sub>CLSH</sub>  | Status Inactive Delay    | 3                      | 35         | 3                      | 25  | ns   |                    |
| T <sub>CLAV</sub>  | Address Valid Delay      | 3                      | 36         | 3                      | 27  | ns   |                    |
| TCHLH              | ALE Active Delay         |                        | 25         |                        | 20  | ns   |                    |
| T <sub>LHLL</sub>  | ALE Width                | T <sub>CLCL</sub> - 15 |            | T <sub>CLCL</sub> - 15 |     | ns   |                    |
| TCHLL              | ALE Inactive Delay       |                        | 25         |                        | 20  | ns   |                    |
| T <sub>DXDL</sub>  | DEN Inactive to DT/R Low |                        | 0          |                        | 0   | ns   | Equal<br>Loading   |
| T <sub>CHCTV</sub> | Control Active Delay 2   | 3                      | 37         | 3                      | 22  | ns   |                    |





### **AC SPECIFICATIONS (Continued)**

### **CLOCK TIMINGS**

 $T_A=0^{\circ}C$  to  $+70^{\circ}C,\,V_{CC}=5V\,\pm10\%$  All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted. All output test conditions are with  $C_L=50$  pF. For AC tests, input  $V_{IL}=0.45V$  and  $V_{IH}=2.4V$  except at X1 where  $V_{IH}=V_{CC}-0.5V$ .

|                     |                      |                           | Val | ues                       |             |             |                    |  |
|---------------------|----------------------|---------------------------|-----|---------------------------|-------------|-------------|--------------------|--|
| Symbol              | Parameter            | 80C186XL12                |     | 80C186XL20                |             | Unit        | Test<br>Conditions |  |
|                     |                      | Min                       | Max | Min                       | Max         |             | Conditions         |  |
| 80C186X             | L CLKIN REQUIREMENTS | (1)                       |     |                           | <del></del> | <b></b>     | <u> </u>           |  |
| TCKIN               | CLKIN Period         | 40                        | ∞   | 25                        | <b>∞</b>    | ns          |                    |  |
| TCLCK               | CLKIN Low Time       | 16                        | ∞   | 10                        | 00          | ns          | 1.5V(2)            |  |
| TCHCK               | CLKIN High Time      | 16                        | ∞   | 10                        | 00          | ns          | 1.5V(2)            |  |
| TCKHL               | CLKIN Fall Time      |                           | 5   |                           | 5           | ns          | 3.5 to 1.0V        |  |
| TCKLH               | CLKIN Rise Time      |                           | 5   |                           | 5           | ns          | 1.0 to 3.5V        |  |
| 80C186XI            | L CLKOUT TIMING      |                           |     |                           |             | <del></del> |                    |  |
| TCICO               | CLKIN to CLKOUT Skew |                           | 21  |                           | 17          | ns          |                    |  |
| TCLCL               | CLKOUT Period        | 80                        | 90  | 50                        |             | ns          |                    |  |
| T <sub>CLCH</sub>   | CLKOUT Low Time      | 0.5 T <sub>CLCL</sub> - 5 |     | 0.5 T <sub>CLCL</sub> - 5 |             | ns          | $C_L = 100  pF(3)$ |  |
| T <sub>CHCL</sub>   | CLKOUT High Time     | 0.5 T <sub>CLCL</sub> - 5 |     | 0.5 T <sub>CLCL</sub> 5   |             | ns          | $C_L = 100  pF(4)$ |  |
| T <sub>CH1CH2</sub> | CLKOUT Rise Time     |                           | 10  |                           | 8           | ns          | 1.0 to 3.5V        |  |
| T <sub>CL2CL1</sub> | CLKOUT Fall Time     |                           | 10  |                           | 8           | ns          | 3.5 to 1.0V        |  |

### NOTES:

1. External clock applied to X1 and X2 not connected.
2. T<sub>CLCK</sub> and T<sub>CHCK</sub> (CLKIN Low and High times) should not have a duration less than 40% of T<sub>CKIN</sub>.
3. Tested under worst case conditions: V<sub>CC</sub> = 5.5V. T<sub>A</sub> = 70°C.
4. Tested under worst case conditions: V<sub>CC</sub> = 4.5V. T<sub>A</sub> = 0°C.

2-62





### **AC SPECIFICATIONS (Continued)**

### READY, PERIPHERAL AND QUEUE STATUS TIMINGS

 $T_A$  = 0°C to +70°C,  $V_{CC}$  = 5V ±10% All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted. All output test conditions are with  $C_L$  = 50 pF. For AC tests, input  $V_{IL}$  = 0.45V and  $V_{IH}$  = 2.4V except at X1 where  $V_{IH}$  =  $V_{CC}$  - 0.5V.

|                    | •                                                         |            | Val      |            |         |         |                    |
|--------------------|-----------------------------------------------------------|------------|----------|------------|---------|---------|--------------------|
| Symbol             | Parameter *                                               | 80C186XL12 |          | 80C186XL20 |         | Unit    | Test<br>Conditions |
|                    |                                                           | Min        | Max      | Min        | Max     | 1       | Conditions         |
| 80C186XL           | READY AND PERIPHERAL TIM                                  | ING REQ    | UIREMEN' | TS (Listed | More Th | an Once | e)                 |
| T <sub>SRYCL</sub> | Synchronous Ready (SRDY) Transition Setup Time(1)         | 15         |          | 10         |         | ns      |                    |
| T <sub>CLSRY</sub> | SRDY Transition Hold Time(1)                              | 15         |          | 10         |         | ns      |                    |
| TARYCH             | ARDY Resolution Transition<br>Setup Time <sup>(2)</sup>   | 15         |          | 10         |         | ns      |                    |
| T <sub>CLARX</sub> | ARDY Active Hold Time(1)                                  | 15         |          | 10         |         | ns      |                    |
| TARYCHL            | ARDY Inactive Holding Time                                | 15         |          | 10         |         | ns      |                    |
| TARYLCL            | Asynchronous Ready<br>(ARDY) Setup Time(1)                | 25         |          | 15         |         | ns      |                    |
| T <sub>INVCH</sub> | INTx, NMI, TEST/BUSY,<br>TMR IN Setup Time <sup>(2)</sup> | 15         |          | 10         |         | ns      | ·                  |
| TINVCL             | DRQ0, DRQ1 Setup Time(2)                                  | 15         |          | 10         |         | ns      |                    |
| 80C186XL           | PERIPHERAL AND QUEUE STA                                  | TUS TIM    | ING RESP | ONSES      |         |         |                    |
| T <sub>CLTMV</sub> | Timer Output Delay                                        | _          | 33       |            | 22      | ns      |                    |
| T <sub>CHQSV</sub> | Queue Status Delay                                        |            | 32       |            | 27      | ns      |                    |



### NOTES:

1. To guarantee proper operation.

2. To guarantee recognition at clock edge.



### **AC SPECIFICATIONS (Continued)**

**RESET AND HOLD/HLDA TIMINGS** T<sub>A</sub> = 0°C to +70°C, V<sub>CC</sub> = 5V  $\pm$ 10% All timings are measured at 1.5V and 50 pF loading on CLKOUT unless otherwise noted. All output test conditions are with C<sub>L</sub> = 50 pF. For AC tests, input V<sub>IL</sub> = 0.45V and V<sub>IH</sub> = 2.4V except at X1 where V<sub>IH</sub> = V<sub>CC</sub> - 0.5V.

|                   |                                         |                   | Val     | Unit              | Test<br>Conditions |            |            |
|-------------------|-----------------------------------------|-------------------|---------|-------------------|--------------------|------------|------------|
| Symbol            | Parameter                               | 80C186XL12        |         |                   |                    | 80C186XL20 |            |
|                   |                                         | Min               | Max     | Min               | Max                |            | Outditions |
| 80C186X1          | RESET AND HOLD/HLDA TIN                 | ING REQU          | IREMEN  | TS                |                    | •          |            |
| TRESIN            | RES Setup                               | 15                |         | 15                |                    | ns         |            |
| THYCL             | HOLD Setup(1)                           | 15                |         | 10                |                    | ns         |            |
| 80C186XI          | GENERAL TIMING RESPONS                  | ES (Listed        | More Th | an Once)          | <del>'</del>       | •          |            |
| TCLAZ             | Address Float Delay                     | T <sub>CLAX</sub> | 25      | T <sub>CLAX</sub> | 20                 | ns         |            |
| T <sub>CLAV</sub> | Address Valid Delay                     | 3                 | 36      | 3                 | 22                 | ns         |            |
| 80C186XI          | RESET AND HOLD/HLDA TIN                 | ING RESP          | ONSES   |                   |                    |            |            |
| TCLRO             | Reset Delay                             |                   | 33      |                   | 22                 | ns         |            |
| TCLHAV            | HLDA Valid Delay                        | 3                 | 33      | 3                 | 22                 | ns         |            |
| T <sub>CHCZ</sub> | Command Lines Float Delay               |                   | 33      |                   | 25                 | ns         |            |
| T <sub>CHCV</sub> | Command Lines Valid Delay (after Float) |                   | 36      |                   | 26                 | ns         |            |

<sup>1.</sup> To guarantee recognition at next clock.

### 80C186XL/80C188XL

### **AC SPECIFICATIONS (Continued)** CLKOUT TCHSV TCLSH(Note 1) S2 - S0 **STATUS** TCLDV Тснох → TCLAV-> -TCLAX BHE (RFSH), A19/S6 - A16/S3 BHE, A19-A16 BHE, S6-S3 (A19 - A8) TLLAX ALE TCHLL T<sub>CHLH</sub>-T<sub>DVCL</sub>→ **4**-TCLAZ AD15 - AD0 A15-A0 (AD7 - AD0) TAVCH TRHLH TAZRL TRHAV RD T<sub>RLRH</sub>T<sub>CLRH</sub> TCLRL 🖊 TċLCSV-• LCS, MCS, UCS, PCS, NPS (Note 2) Tcxcsx CHCSX TCVCTV . TCVDEX -DEN TOXOL (Note 3) DT/R TCHCTV T<sub>CHCTV</sub> (Note 5) → T<sub>CLLV</sub> (Note 4) LOCK 272431-10 Status inactive in state preceding T<sub>4</sub>. If latched A<sub>1</sub> and A<sub>2</sub> are selected instead of PCS5 and PCS6, only T<sub>CLCSV</sub> is applicable. For write cycle followed by read cycle. 4. T<sub>1</sub> of next bus cycle. 5. Changes in T-state preceding next bus cycle if followed by write. Pin names in parentheses apply to the 80C188XL.

Figure 6. Read Cycle Waveforms



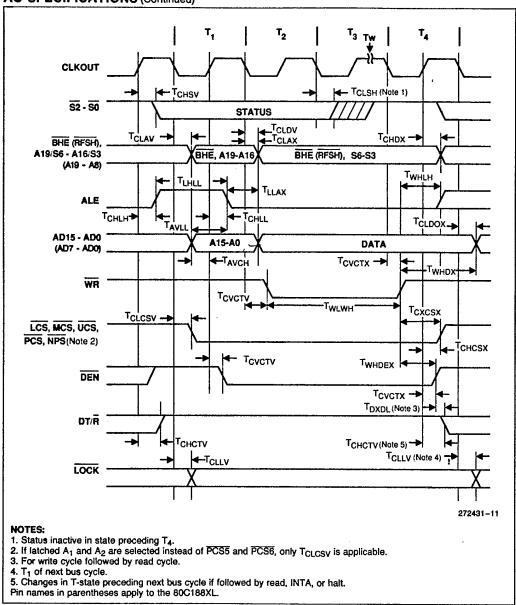
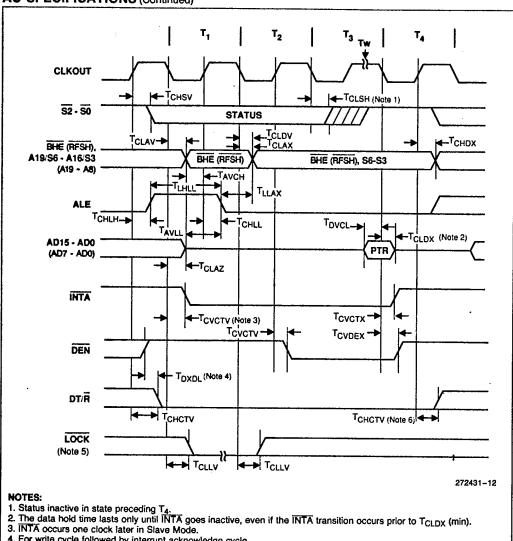



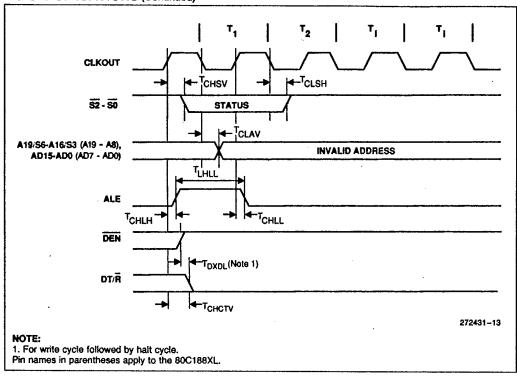

Figure 7. Write Cycle Waveforms

2-66

### 80C186XL/80C188XL

### **AC SPECIFICATIONS (Continued)**






4. For write cycle followed by interrupt acknowledge cycle.
5. LOCK is active upon T<sub>1</sub> of the first interrupt acknowledge cycle and inactive upon T<sub>2</sub> of the second interrupt acknowledge.

6. Changes in T-state preceding next bus cycle if followed by write. Pin names in parentheses apply to the 80C188XL.

Figure 8. Interrupt Acknowledge Cycle Waveforms

### **AC SPECIFICATIONS (Continued)**



PRE D

Figure 9. Software Halt Cycle Waveforms

### **WAVEFORMS**

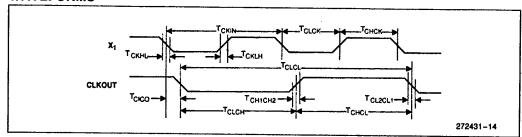



Figure 10. Clock Waveforms

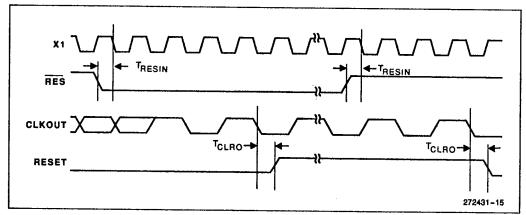



Figure 11. Reset Waveforms

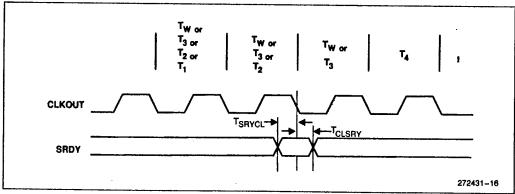



Figure 12. Synchronous Ready (SRDY) Waveforms

# intel.

# **AC CHARACTERISTICS**

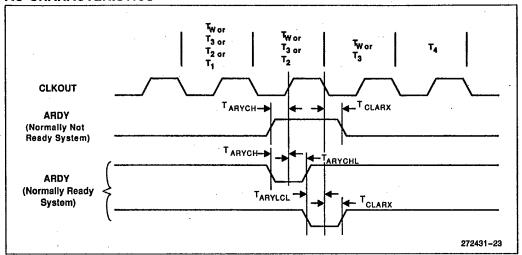



Figure 13. Asynchronous Ready (ARDY) Waveforms

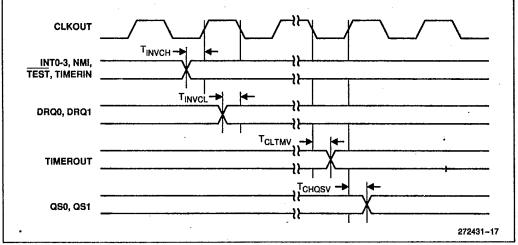



Figure 14. Peripheral and Queue Status Waveforms

# intطِ

## 80C186XL/80C188XL

# **AC CHARACTERISTICS (Continued)**

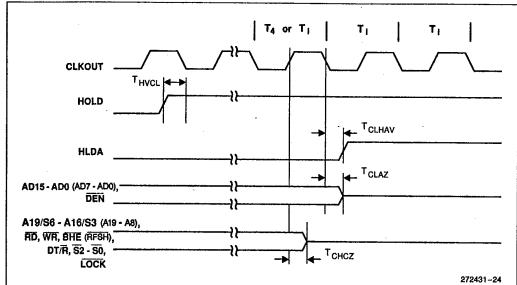





Figure 15. HOLDA/HLDA Waveforms (Entering Hold)

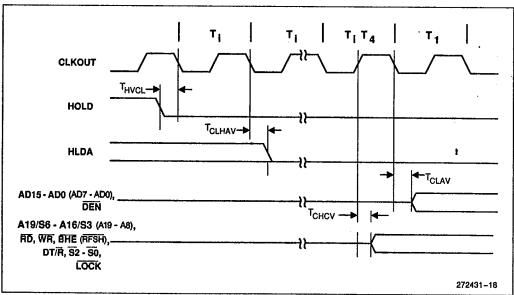



Figure 16. HOLD/HLDA Waveforms (Leaving Hold)



## **EXPLANATION OF THE AC SYMBOLS**

Each timing symbol has from 5 to 7 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

A: Address

ARY: Asynchronous Ready Input

C: Clock Output CK: Clock Input

CS: Chip Select

CT: Control (DT/A, DEN, ...)

D: Data Input

DE: DEN

H: Logic Level High

OUT: Input (DRQ0, TIM0, ...)

L: Logic Level Low or ALE

O: Output

QS: Queue Status (QS1, QS2)

R: RD Signal, RESET Signal

S: Status (SO, S1, S2)

SRY: Synchronous Ready Input

V: Valid

W: WR Signal

X: No Longer a Valid Logic Level

Z: Float

#### Examples:

 $T_{CLAV}$  — Time from Clock low to Address valid

T<sub>CHLH</sub> — Time from Clock high to ALE high

T<sub>CLCSV</sub> --- Time from Clock low to Chip Select valid



# **DERATING CURVES**

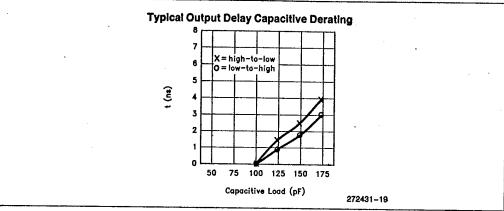



Figure 17. Capacitive Derating Curve



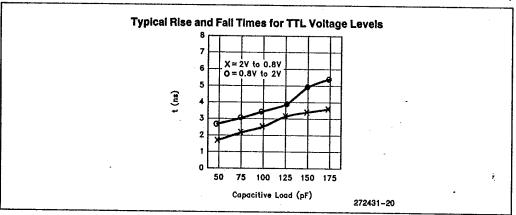



Figure 18. TTL Level Rise and Fall Times for Output Buffers

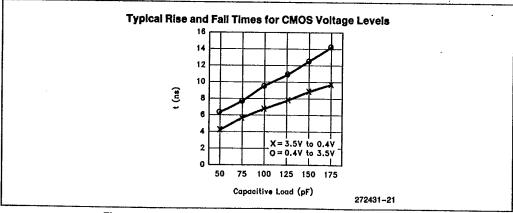



Figure 19. CMOS Level Rise and Fall Times for Output Buffers

PRELIMINARY

#### 80C186XL/80C188XL EXPRESS

The Intel EXPRESS system offers enhancements to the operational specifications of the 80C186XL microprocessor. EXPRESS products are designed to meet the needs of those applications whose operating requirements exceed commercial standards.

The 80C186XL EXPRESS program includes an extended temperature range. With the commercial standard temperature range, operational characteristics are guaranteed over the temperature range of 0°C to +70°C. With the extended temperature range option, operational characteristics are guaranteed over the range of -40°C to +85°C.

Package types and EXPRESS versions are identified by a one or two-letter prefix to the part number. The prefixes are listed in Table 10. All AC and DC specifications not mentioned in this section are the same for both commercial and EXPRESS parts.

Table 10. Prefix Identification

| Prefix | Package<br>Typ <del>e</del> | Temperature<br>Range |
|--------|-----------------------------|----------------------|
| Α      | PGA                         | Commercial           |
| N      | PLCC                        | Commercial           |
| R      | LCC                         | Commercial           |
| S      | QFP                         | Commercial           |
| SB     | SQFP                        | Commercial           |
| TA     | PGA                         | Extended             |
| ¹ TN   | PLCC                        | Extended             |
| TR     | LCC                         | Extended             |
| TS     | QFP                         | Extended             |

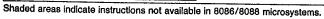
#### 80C186XL/80C188XL EXECUTION **TIMINGS**

A determination of program execution timing must consider the bus cycles necessary to prefetch instructions as well as the number of execution unit cycles necessary to execute instructions. The following instruction timings represent the minimum execution time in clock cycles for each instruction. The timings given are based on the following assumptions:

- The opcode, along with any data or displacement required for execution of a particular instruction, has been prefetched and resides in the queue at the time it is needed.
- · No wait states or bus HOLDs occur.
- All word-data is located on even-address boundaries (80C186XL only).

All jumps and calls include the time required to fetch the opcode of the next instruction at the destination address.

All instructions which involve memory accesses can require one or two additional clocks above the minimum timings shown due to the asynchronous handshake between the bus interface unit (BIU) and execution unit.


With a 16-bit BIU, the 80C186XL has sufficient bus performance to ensure that an adequate number of prefetched bytes will reside in the queue (6 bytes) most of the time. Therefore, actual program execution time will not be substantially greater than that derived from adding the instruction timings shown.

The 80C188XL 8-bit BIU is limited in its performance relative to the execution unit. A sufficient number of prefetched bytes may not reside in the prefetch queue (4 bytes) much of the time. Therefore, actual program execution time will be substantially greater than that derived from adding the instruction timings shown.



# **INSTRUCTION SET SUMMARY**

| Function                            |             | Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ermat                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80C186XL<br>Clock<br>Cycles | 80C188XL<br>Clock<br>Cycles            | Commente  |
|-------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------|-----------|
| DATA TRANSFER<br>MOV ~ Move:        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cycles                      | Cycles                                 |           |
| Register to Register/Memory         | 1000100w    | mod reg r/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/12                        | 2/12*                                  |           |
| Register/memory to register         | 1000101w    | mod reg r/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2/9                         | 2/9*                                   |           |
| Immediate to register/memory        | 1100011w    | mod 000 r/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | data                    | data if w=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12/13                       | 12/13                                  | 8/16-bit  |
| immediate to register               | 1011w reg   | data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | data if w=1             | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/4                         | 3/4                                    | 8/16-bit  |
| Memory to accumulator               | 1010000w    | addr-low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | addr-high               | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                           | 8.                                     | 67 10-DIL |
| Accumulator to memory               | 1010001w    | addr-low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | addr-high               | ,<br>]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ů                           | 9.                                     |           |
| Register/memory to segment register | 10001110    | mod 0 reg r/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uodi tiigit             | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2/9                         | 2/13                                   |           |
| Segment register to register/memory | 10001100    | mod 0 reg r/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/11                        | 2/13                                   |           |
| PUSH = Push:                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/11                        | 2115                                   |           |
| Memory                              | 11111111    | mod 1 1 0 r/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                          | 20                                     |           |
| Register                            | 01010 reg   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                          | 14                                     |           |
| Segment register                    | 000 reg 110 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                           | 13                                     |           |
| mmediate                            | 01101080    | data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | data if s=0             | The state of the s | 10                          | ************************************** |           |
| PUSHA = Push All                    | [           | retrans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eta en lask cinas, s.a. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                        | 333       |
| POP = Pop:                          | 01100000    | odkramite riše j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PINSPER TO THE          | 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36                          | 66                                     |           |
| Memory                              | 10001111    | mod 0 0 0 r/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                          | 24                                     |           |
| Register                            | 01011 reg   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                          | 14                                     |           |
| Segment register                    | 000 reg 111 | (reg≠01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                           | 12                                     |           |
| OPA = Pop Ali                       | 01100001    | e transport de la company de l | Tarana Na               | thing of the continue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | gram plant gray                        |           |
| (CHG = Exchange:                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · Sand Comments         | et e di <del>mendidika</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51                          | 83                                     | فنصند     |
| Register/memory with register       | 1000011w    | mod reg r/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4/17                        | 4/17*                                  |           |
| Register with accumulator           | 10010 reg   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                           | 3 .                                    |           |
| N = Input from:                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ĭ                           | •                                      |           |
| fixed port                          | 1110010w    | port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                          | 10. 1                                  |           |
| /ariable port ·                     | 1110110w    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                           | 8.                                     |           |
| OUT = Output to:                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                           | ١                                      |           |
| ixed port                           | 1110011w    | port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                           | 9*                                     |           |
| 'ariable port                       | 1110111w    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠                       | j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                           | 7*                                     |           |
| LAT = Translate byte to AL          | 11010111    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                          | 15                                     |           |
| EA ≈ Load EA to register            | 10001101    | mod reg r/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                           | 6                                      |           |
| D8 = Load pointer to DS             | 11000101    | mod reg r/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (mođ≠11)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                          | 26                                     |           |
| ES = Load pointer to ES             | 11000100    | mod reg r/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (mod≠11)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                          | 26                                     |           |
| AHF = Load AH with flags            | 10011111    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                           | 2                                      |           |
| AHF = Store AH into flags           | 10011110    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                           | а                                      | -         |
|                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                         | -                                      | 1         |
| USHF = Push flags                   | 10011100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                           | 13                                     |           |



**NOTE:** \*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.

PRELIMINARY



# intel.

# INSTRUCTION SET SUMMARY (Continued)

| Function                           |           | Format        |               |                  | 80C186XL<br>Clock<br>Cycles | 80C188XL<br>Clock<br>Cycles | Comments |
|------------------------------------|-----------|---------------|---------------|------------------|-----------------------------|-----------------------------|----------|
| DATA TRANSFER (Continued)          |           | <del></del>   |               |                  |                             |                             |          |
| SEGMENT == Segment Override:<br>CS | 00101110  |               |               |                  | 2                           | 2                           |          |
| 88                                 | 00110110  |               | •             | _                | 2                           | 2                           |          |
| DS                                 | 00111110  |               |               |                  | 2                           | 2                           |          |
| ES .                               | 00100110  |               |               |                  | 2                           | 2                           |          |
| ARITHMETIC                         |           |               |               |                  | _                           |                             |          |
| ADD = Add:                         |           |               |               |                  |                             |                             |          |
| Reg/memory with register to either | 000000dw  | mod reg r/m   |               |                  | 3/10                        | 3/10*                       |          |
| Immediate to register/memory       | 100000sw  | mod 0 0 0 r/m | data          | data if s w=01   | 4/16                        | 4/16*                       |          |
| immediate to accumulator           | 0000010w  | data          | data if w=1   |                  | 3/4                         | 3/4                         | 8/16-bit |
| ADC = Add with carry:              |           |               |               |                  | 1                           |                             |          |
| Reg/memory with register to either | 000100dw  | mod reg r/m   |               |                  | 3/10                        | 3/10*                       |          |
| Immediate to register/memory       | 100000sw  | mod 0 1 0 r/m | data          | data if s w = 01 | 4/16                        | 4/16*                       |          |
| Immediate to accumulator           | 0001010w  | data          | data if w≔ 1  |                  | 3/4                         | 3/4                         | 8/16-bit |
| INC = Increment:                   |           |               |               |                  |                             |                             |          |
| Register/memory                    | 1111111w  | mod 0 0 0 r/m |               |                  | 3/15                        | 3/15*                       |          |
| Register                           | 01000 reg | -             |               |                  | 3                           | 3                           |          |
| SUB = Subtract:                    |           | •             |               |                  |                             |                             |          |
| Reg/memory and register to either  | 001010dw  | mod reg r/m   |               |                  | 3/10                        | 3/10*                       |          |
| Immediate from register/memory     | 100000sw  | mod 1 0 1 r/m | data          | data if s w=01   | 4/16                        | 4/16*                       |          |
| Immediate from accumulator         | 0010110w  | data          | data if w = 1 |                  | 3/4                         | 3/4                         | 8/16-bit |
| SB8 = Subtract with borrow:        |           |               |               | •                |                             |                             |          |
| Reg/memory and register to either  | 000110dw  | mod reg r/m   |               |                  | 3/10                        | 3/10*                       |          |
| Immediate from register/memory     | 100000sw  | mod 0 1 1 r/m | data          | data if s w = 01 | 4/16                        | 4/16*                       |          |
| Immediate from accumulator         | 0001110w  | data          | data if w = 1 | 1                | 3/4                         | 3/4*                        | 8/16-bit |
| DEC = Decrement                    | 0001110#  | <u> </u>      | - Guilli III  | J                | "                           |                             |          |
| Register/memory                    | 1111111W  | mod 0 0 1 r/m |               | -                | 3/15                        | d/15°                       |          |
| Register                           | 01001 reg |               | ·•            |                  | 3                           | 3                           |          |
| CMP = Compare:                     | <u> </u>  | •             |               | ř                |                             | 1                           |          |
| Register/memory with register      | 0011101w  | mod reg r/m   |               |                  | 3/10                        | 3/10*                       |          |
| Register with register/memory      | 0011100w  | mod reg r/m   |               |                  | 3/10                        | 3/10*                       |          |
| Immediate with register/memory     | 100000sw  | mod 1 1 1 r/m | data          | data if s w≃01   | 3/10                        | 3/10*                       |          |
| Immediate with accumulator         | 0011110w  | data          | data if w = 1 | 1                | 3/4                         | - 3/4                       | 8/16-bit |
| į                                  |           |               | UALAH W - I   |                  | 1                           | 3/10*                       | 0,102,1  |
| NEG = Change sign register/memory  | 1111011w  | mod 0 1 1 r/m | I             | •                | 3/10                        | 1                           |          |
| AAA = ASCII adjust for add         | 00110111  | <u>]</u><br>3 |               |                  | 8                           | 8                           | 1        |
| DAA = Decimal adjust for add       | 00100111  | j             |               | •                | 4                           | 1 4                         |          |
| AAS = ASCII adjust for subtract    | 00111111  | j             |               |                  | 7                           | 7                           |          |
| DAS = Decimal adjust for subtract  | 00101111  | J             |               |                  | 4                           | 4                           |          |
| MUL = Multiply (unsigned):         | 1111011w  | mod 100 r/m-  | 1             |                  |                             |                             |          |
| Register-Byte                      |           | <del></del>   | -             |                  | 26-28                       | 26-28                       |          |
| Register-Word                      |           |               |               |                  | 35-37<br>32-34              | 35-37<br>32-34              |          |
| Memory-Byte<br>Memory-Word         |           |               |               |                  | 41-43                       | 41-43*                      |          |

Shaded areas indicate instructions not available in 8086/8088 microsystems.

NOTE

\*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.

# intel.

# 80C186XL/80C188XL

# INSTRUCTION SET SUMMARY (Continued)

| Function                                                     | Format      |                                                                             |               |               |                                  | 80C188XL<br>Clock                 | Comments                      |
|--------------------------------------------------------------|-------------|-----------------------------------------------------------------------------|---------------|---------------|----------------------------------|-----------------------------------|-------------------------------|
| ARITHMETIC (Continued)                                       |             | ·                                                                           |               |               | Cycles                           | Cycles                            | <del> </del>                  |
| IMUL = Integer multiply (signed):                            | 1111011w    | mod 1 0 1 r/m                                                               |               |               | 1                                |                                   |                               |
| Register-Byte<br>Register-Word<br>Memory-Byte<br>Memory-Word |             |                                                                             | -             |               | 25-28<br>34-37<br>31-34<br>40-43 | 25~28<br>34~37<br>32~34<br>40~43* |                               |
| intill. = integer immediate multiply<br>(signed)             | 01101081    | mod reg r/m                                                                 | date          | data if s=0   | 22-25/<br>29-32                  | 22-25/<br>29-32                   | 9777 3<br>1 4 2007 4 <b>2</b> |
| DIV = Divide (unsigned):                                     | 1111011w    | mod 1 1 0 r/m                                                               | ו             |               |                                  | ļ                                 |                               |
| Register-Byte<br>Register-Word<br>Memory-Byte<br>Memory-Word |             |                                                                             | J             |               | 29<br>38<br>35<br>44             | 29.<br>38<br>35<br>44*            |                               |
| IDIV = Integer divide (signed):                              | 1111011w    | mod 1 1 1 r/m                                                               | ]             |               | "                                | 1                                 |                               |
| Register-Byte<br>Register-Word<br>Memory-Byte<br>Memory-Word |             |                                                                             |               |               | 44-52<br>53-61<br>50-58<br>59-67 | 44-52<br>53-61<br>50-58<br>59-67* |                               |
| AAM = ASCII adjust for multiply                              | 11010100    | 00001010                                                                    |               |               | z 19                             | 19                                |                               |
| AAD = ASCII adjust for divide                                | 11010101    | 00001010                                                                    | ]             |               | 15                               | 15                                |                               |
| CBW = Convert byte to word                                   | 10011000    | ] ,                                                                         |               |               | 2                                | 2                                 |                               |
| CWD = Convert word to double word                            | 10011001    | ]                                                                           |               |               | 4                                | 4                                 |                               |
| LOGIC<br>Shift/Rotate Instructions:                          |             | _                                                                           |               |               |                                  |                                   |                               |
| Register/Memory by 1                                         | 1101000w    | mod TTT r/m                                                                 | •             |               | 2/15                             | 2/15                              |                               |
| Register/Memory by Ct.                                       | 1101001w    | mod TTT r/m                                                                 |               |               | 5+n/17+n                         | 5+n/17+n                          |                               |
| Register/Memory by Count                                     | 1100000w    | mod TTT r/m.                                                                | count         |               | 5+n/17+n                         | 6+n/17+n                          |                               |
| AND = And:                                                   |             | TTT Instruction 000 ROL 001 ROR 010 RCL 011 RCR 100 SHL/SAL 101 SHR 111 SAR |               |               |                                  | •                                 |                               |
| Reg/memory and register to either                            | 001000dw    | mod reg r/m                                                                 |               | •             | 3/10                             | 3/10*                             |                               |
| Immediate to register/memory                                 | 1000000w    | mod 1 0 0 r/m                                                               | data          | data if w=1   | 4/18                             | 4/16°                             | [                             |
| Immediate to accumulator                                     | 0010010w    | data                                                                        | data if w = 1 | ]             | 3/4                              | 3/4*                              | 8/16-bit                      |
| TEST = And function to flags, no resul                       | t           |                                                                             |               |               |                                  |                                   |                               |
| Register/memory and register                                 | 1000010w    | mod reg r/m                                                                 |               |               | 3/10                             | 3/10*                             |                               |
| Immediate data and register/memory                           | 1111011w    | mod 0 0 0 r/m                                                               | data          | data if w=1   | 4/10                             | 4/10*                             |                               |
| immediate data and accumulator                               | 1010100w    | data                                                                        | data if w=1   | · .           | 3/4                              | 3/4                               | 8/16-bit                      |
| OR=Or:                                                       | <del></del> |                                                                             |               |               |                                  | l                                 |                               |
| Reg/memory and register to either                            | 000010dw    | mod reg r/m                                                                 |               |               | 3/10                             | 3/10*                             |                               |
| Immediate to register/memory                                 | 1000000w    | mod 0 0 1 r/m                                                               | data          | data if w = 1 | 4/16                             | 4/16*                             | }                             |
| Immediate to accumulator                                     | 0000110w    | data                                                                        | data if w = 1 |               | 3/4                              | 3/4*                              | 8/16-bit                      |

Shaded areas indicate instructions not available in 8086/8088 microsystems.

\*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.

PRELIMINARY





# **INSTRUCTION SET SUMMARY** (Continued)

| Function                                              |               | For           | mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 80C186XL<br>Clock<br>Cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80C188XL<br>Clock<br>Cycles | Comments                          |
|-------------------------------------------------------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|
| LOGIC (Continued)                                     |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                           |                                   |
| XOR = Exclusive or: Reg/memory and register to either | 001100dw      | mod reg r/m   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 3/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/10*                       |                                   |
| Immediate to register/memory                          | 1000000w      | mod 1 1 0 r/m | data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | data if w=1                           | 4/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4/16*                       |                                   |
| •                                                     |               |               | data if w ≈ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uata ii W - 1                         | 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/4                         | 8/16-bit                          |
| Immediate to accumulator                              | 0011010w      | data          | data n W ≈ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 6/10-DR                           |
| NOT ∞ Invert register/memory<br>STRING MANIPULATION   | 1111011w      | mod 0 1 0 r/m |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 3/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/10*                       |                                   |
| MOVS - Move byte/word                                 | 1010010w      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14*                         |                                   |
| CMPS ≠ Compare byte/word                              | 1010011w      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22*                         |                                   |
| SCAS = Scan byte/word                                 | 1010111w      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15*                         |                                   |
| ·                                                     |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                   |
| LODS = Load byte/wd to AL/AX                          | 1010110w      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12*                         |                                   |
| STOS = Store byte/wd from AL/AX                       | 1010101w      |               | Market to the terror white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10*                         | e september of the state alphabet |
| NS = Input byte/wd from DX port                       | 0110110w      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                          |                                   |
| OUTS - Output byte/ved to DX port                     | 0110111W      | 4             | Abreita vez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ويريد والمرافق                        | - 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                          |                                   |
| Repeated by count in CX (REP/REPE/F                   | EPZ/REPNE/REP | NZ)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ì                           |                                   |
| MOVS ≃ Move string                                    | 11110010      | 1010010w      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 8+8n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8+8n*                       |                                   |
| CMPS = Compare string                                 | 1111001z      | 1010011w      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 5+22n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5+22n*                      |                                   |
| SCAS = Scan string                                    | 1111001z      | 1010111w      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 5+15n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5+15n*                      |                                   |
| LODS = Load string                                    | 11110010      | 1010110w      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 6+11n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6+11n*                      |                                   |
| STOS = Store string                                   | 11110010      | 1010101w      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 6+9n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6+9n*                       |                                   |
| 1665 = Input string                                   | 11110010      | 0110110w      | 7. INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1</b>                              | 6 + 8n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6+8n*                       |                                   |
| OUTS = Output string 2.5                              | -11110010     | 0110111w      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 8+8n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8+8n*                       |                                   |
| CONTROL TRANSFER                                      | •             | <u> </u>      | met to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o | A CONTRACTOR OF STREET                | (Company   Company   Compa |                             | RY, THE LABOR ST. T               |
| CALL = Call:                                          |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;                           | ŀ                                 |
| Direct within segment                                 | 11101000      | disp-low      | disp-high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | }                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                          |                                   |
| Register/memory<br>Indirect within segment            | 11111111      | mod 0 1 0 r/m |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 13/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17/27                       |                                   |
| Direct intersegment                                   | 10011010      | segmen        | nt offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ]                                     | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                          |                                   |
|                                                       |               | segment       | selector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                   |
| Indirect Intersegment                                 | 11111111      | mod 0 1 1 r/m | (mod ≠ 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54                          |                                   |
| JMP = Unconditional jump:                             |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | [                                 |
| Short/long                                            | 11101011      | disp-low      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                          |                                   |
| Direct within segment                                 | 11101001      | disp-low      | disp-high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ]                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                          |                                   |
| Register/memory indirect within segment               | 11111111      | mod 1 0 0 r/m |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     | 11/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/21                       |                                   |
| Direct intersegment                                   | 11101010      |               | nt offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ] ,                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                          |                                   |
|                                                       |               | segment       | selector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ]                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                           |                                   |
| Indirect intersegment                                 | 11111111      | mod 1 0 1 r/m | (mod ≠ 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34                          |                                   |

Shaded areas indicate instructions not available in 8086/8088 microsystems.

NOTE: \*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.

2-78



# **INSTRUCTION SET SUMMARY (Continued)**

| Function                                             | -        | Format      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 80C186XL<br>Clock<br>Cycles | 80C188XL<br>Clock<br>Cycles | Comments                      |
|------------------------------------------------------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|-----------------------------|-------------------------------|
| CONTROL TRANSFER (Continued) REY = Return from CALL: |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                             |                             |                               |
| Within segment                                       | 11000011 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 16                          | 20                          |                               |
| Within seg adding immed to SP                        | 11000010 | data-low    | data-high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                    | 18                          | 22                          |                               |
| Intersegment                                         | 11001011 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                    | 22                          | 30                          |                               |
| Intersegment adding immediate to SP                  | 11001010 | data-low    | data-high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                    | 25                          | 33                          |                               |
| JE/JZ = Jump on equal/zero                           | 01110100 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                    | 4/13                        | 4/13                        | JMP not                       |
| JL/JNGE = Jump on less/not greater or equal          | 01111100 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        | taken/JMP                     |
| JLE/JNG = Jump on less or equal/not greater          | 01111110 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        | taken                         |
| JB/JNAE = Jump on below/not above or equal           | 01110010 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        |                               |
| JBE/JNA = Jump on below or equal/not above           | 01110110 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        | }                             |
| JP/JPE = Jump on parity/parity even                  | 01111010 | deb         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        |                               |
| JO = Jump on overflow                                | 01110000 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        |                               |
| JS = Jump on sign                                    | 01111000 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        |                               |
| JNE/JNZ = Jump on not equal/not zero                 | 01110101 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        |                               |
| JNL/JGE = Jump on not less/greater or equal          | 01111101 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        |                               |
| JNLE/JG = Jump on not less or equal/greater          | 01111111 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        |                               |
| JNB/JAE = Jump on not below/above or equal           | 01110011 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        |                               |
| JNBE/JA = Jump on not below or equal/above           | 01110111 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        |                               |
| JNP/JPO = Jump on not per/per odd                    | 01111011 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        |                               |
| JNO ≃ Jump on not overflow                           | 01110001 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        |                               |
| JNS = Jump on not sign                               | 01111001 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 4/13                        | 4/13                        |                               |
| JCXZ = Jump on CX zero                               | 11100011 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 5/15                        | 5/15                        |                               |
| LOOP = Loop CX times                                 | 11100010 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 6/16                        | 6/16                        | LOOP not                      |
| LOOPZ/LOOPE = Loop while zero/equal                  | 11100001 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 6/16                        | 6/16 2                      | taken/LOOP                    |
| LOOPNZ/LOOPNE = Loop while not zero/equal            | 11100000 | disp        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 6/16                        | 6/16                        | taken                         |
| ENTER = Enter Procedure                              | 11001000 | data-low    | data-high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | * 297 17                    | g Marijan                   | y                             |
| L=0<br>L=1                                           | <b></b>  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 15<br>25                    | 18<br>29                    | 77.8                          |
| <b>L&gt;1</b>                                        |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 22+18(n-1)                  | 26+20(n-1)                  |                               |
| LEAVE = Leave Procedure                              | 11001001 |             | San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - San - | 5~ ÷                 | a" 💆 🖰                      | Lo ● <sub>Lo I</sub>        | . Salar                       |
| INT = Interrupt:                                     |          | <del></del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                             |                             |                               |
| Type specified                                       | 11001101 | type        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 47                          | 47                          |                               |
| Type 3                                               | 11001100 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 45                          | 45                          | If INT. taken/<br>If INT. not |
| INTO = Interrupt on overflow                         | 11001110 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 48/4                        | 48/4                        | taken                         |
| IRET = Interrupt return                              | 11001111 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 28                          | 28                          |                               |
| BOUND = Detect value out of range                    | 01100010 | moding r/m  | 9 00 C 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ا المنطق حتوالا<br>ا | 38-36                       | 33-36                       |                               |



Shaded areas indicate instructions not available in 8086/8088 microsystems.

NOTE:

\*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.

PRELIMINARY



INSTRUCTION SET SUMMARY (Continued)

| Function               | Format                                      | 80C186XL<br>Clock<br>Cycles | 80C188XL<br>Clock<br>Cycles | Comments  |
|------------------------|---------------------------------------------|-----------------------------|-----------------------------|-----------|
| PROCESSOR CONTROL      |                                             |                             |                             |           |
| CLC = Clear carry      | 11111000                                    | 2                           | 2                           |           |
| CMC = Complement carry | 11110101                                    | 2                           | 2                           |           |
| STC = Set carry        | 11111001                                    | 2                           | 2                           |           |
| CLD = Clear direction  | 11111100                                    | 2                           | 2                           |           |
| STD = Set direction    | 11111101                                    | 2                           | 2.                          |           |
| CLI = Clear interrupt  | 11111010                                    | 2                           | 2                           | ·         |
| STI = Set interrupt    | 11111011 -                                  | 2                           | 2                           |           |
| HLT = Halt             | 11110100                                    | 2                           | 2                           |           |
| <b>WAIT</b> = Wait     | 10011011                                    | 6                           | 6                           | NTEST = 0 |
| LOCK - Bus lock prefix | 11110000                                    | 2                           | 2                           |           |
| NOP = No Operation     | 10010000                                    | 3                           | 3                           |           |
|                        | (TTT LLL are opcode to processor extension) |                             |                             |           |

Shaded areas indicate instructions not available in 8086/8088 microsystems.

#### NOTE:

\*Clock cycles shown for byte transfers. For word operations, add 4 clock cycles for all memory transfers.

The Effective Address (EA) of the memory operand is computed according to the mod and r/m fields:

if mod 11 then r/m is treated as a REG field if mod 00 then DISP = 0\*, disp-low and disphigh are absent 01 then DISP = disp-low sign-exif mod 01 then DISP = disp-low sign-extended to 16-bits, disp-high is absent 10 then DISP = disp-high: disp-low 000 then EA = (BX) + (SI) + DISP 010 then EA = (BP) + (SI) + DISP 011 then EA = (BP) + (SI) + DISP 100 then EA = (SI) + DISP 101 then EA = (DI) + DISP 110 then EA = (BP) + DISP 110 then EA = (BR) + DISP 111 then EA = (BX) + DISP 111 then EA = (BX) + DISP if mod if r/m if r/m if r/m if r/m if r/m if r/m if r/m if r/m 111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before data if required)

\*except if mod = 00 and r/m = 110 then EA = disp-high: disp-low.

EA calculation time is 4 clock cycles for all modes, and is included in the execution times given whenever appropriate.

# Segment Override Prefix

1 reg reg is assigned according to the following:

LAE D

|     | Segmen   |
|-----|----------|
| reg | Register |
| 00  | ËS       |
| 01  | CS       |
| 10  | SS       |
| 11  | DS       |

REG is assigned according to the following table:

| 16-Bit (w = 1) | 8-Bit (w = |
|----------------|------------|
| 000 AX         | 000 AL     |
| 001 CX         | 001 CL     |
| 010 DX         | 010 DL     |
| 011 BX         | 011 BL     |
| 100 SP         | 100 AH     |
| 101 BP         | 101 CH     |
| 110 SI         | 110 DH     |
| 111 DI         | 111 BH     |

The physical addresses of all operands addressed by the BP register are computed using the SS segment register. The physical addresses of the destination operands of the string primitive operations (those addressed by the DI register) are computed using the ES segment, which may not be overridden.

2-80

**68E D** 



### **REVISION HISTORY**

This data sheet replaces the following data sheets:

- 272031-002 80C186XL
- 270975-002 80C188XL
- 272309-001 SB80C186XL
- 272310-001 SB80C188XL

## **ERRATA**

An A or B step 80C186XL/80C188XL has the following errata. The A or B step 80C186XL/80C188XL can be identified by the presence of an "A" or "B" alpha character, respectively, next to the FPO number. The FPO number location is shown in Figure 4.

#### 80C186XL/80C188XL

 An internal condition with the interrupt controller can cause no acknowledge cycle on the INTA1 line in response to INT1. This errata only occurs when Interrupt 1 is configured in cascade mode and a higher priority interrupt exists. This errata will not occur consistently, it is dependent on interrupt timing.

The C step 80C186XL/80C188XL has no known errata. The C step can be identified by the presence of a "C" alpha character next to the FPO number. The FPO number location is shown in Figure 4.

## PRODUCT IDENTIFICATION

Intel 80C186XL devices are marked with a 9-character alphanumeric Intel FPO number underneath the product number. This data sheet (272431-001) is valid for devices with an "A", "B" or "C" as the ninth character in the FPO number, as illustrated in Figure 4.

