

# DAC1408/1508 Series 8-Bit Multiplying D/A Converters

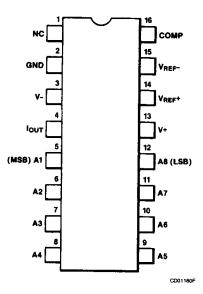
Linear Division Data Acquisition

### Description

The DAC1408/1508 Series are monolithic 8-bit multiplying digital-to-analog converters constructed using the Fairchild Planar Epitaxial process. It is designed for use where the output current is a linear product of an 8-bit digital word and an analog input voltage. The DAC1408/1508 Series are lead-for-lead replacements for the MC 1408 and SSS 1408 devices.

- Relative Accuracy ± 0.19% Error Maximum DAC1408A
- 7 And 6-Bit Accuracy Available DAC1408B, DAC1408C
- Fast Settling Time To 1/2 LSB 85 ns
- Non-inverting Digital Inputs are TTL And CMOS Compatible
- Output Voltage Swing +0.5 V to -5.0 V
- High-speed Multiplying Input Slew Rate 4.0 mA/μs
- Standard Supply Voltages +5.0 V And -5.0 V To -15 V
- ◆ Low Full Scale Current Drift +10 ppm/°C Typically
- Low Power Consumption 33 mW at ±5 V
- Low Cost

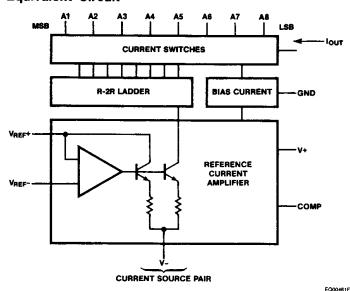
### **Absolute Maximum Ratings**


Storago Tomporaturo Ponco

| Storage Temperature Hange                                       |                 |
|-----------------------------------------------------------------|-----------------|
| Ceramic DIP                                                     | -65°C to +175°C |
| Molded DIP                                                      | -65°C to +150°C |
| Operating Temperature Range                                     |                 |
| Extended (DAC1508M)                                             | -55°C to +125°C |
| Commercial (DAC1408C)                                           | 0°C to +70°C    |
| Lead Temperature                                                |                 |
| Ceramic DIP (soldering, 60 s)                                   | 300°C           |
| Molded DIP (soldering, 10 s)                                    | 265°C           |
| Internal Power Dissipation <sup>1, 2</sup>                      |                 |
| 16L-Ceramic DIP                                                 | 1.50 W          |
| 16L-Molded DIP                                                  | 1.04 W          |
| V+                                                              | 5.5 V           |
| V-                                                              | -16.5 V         |
| Digital Input Voltage (5 V to 12 V)                             | 5.5 V           |
| Applied Output Voltage                                          | 0.5 V to -5.2 V |
| Reference Current (I14)                                         | 5.0 mA          |
| Reference Amplifier Inputs (V <sub>14</sub> , V <sub>15</sub> ) | 5.5 V, -16.5 V  |
|                                                                 |                 |

#### Notes

- 1.  $T_{J~Max} = 150$  °C for the Molded DIP, and 175 °C for the Ceramic DIP.
- Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 16L-Molded DIP at 8.3 mW/°C, the 16L-Ceramic DIP at 10 mw/°C.


### Connection Diagram 16-Lead DIP (Top View)



#### Order Information

| Device Code | Package Code | Package Description |
|-------------|--------------|---------------------|
| DAC1408ADC  | 7B           | Ceramic DIP         |
| DAC1408APC  | 9B           | Molded DIP          |
| DAC1408BDC  | 7B           | Ceramic DIP         |
| DAC1408BPC  | 9B           | Molded DIP          |
| DAC1408CDC  | 7B           | Ceramic DIP         |
| DAC1408CPC  | 9B           | Molded DIP          |
| DAC1508DM   | 7B           | Ceramic DIP         |
|             |              |                     |

#### **Equivalent Circuit**



20040

# **DAC1408/1508 Series**

Electrical Characteristics  $T_A = 0$ °C to 70°C for the DAC1408, -55°C to +125°C for the DAC1508;  $V_+ = +5.0 \text{ V}, V_- = -15 \text{ V}, V_{REF}/R14 = 2.0 \text{ mA}.$  All digital inputs at HIGH logic level.

| Symbol                              | Characteristic                                             | Cor                                                                       | ndition        | Min  | Тур    | Max            | Unit   |
|-------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|----------------|------|--------|----------------|--------|
| E <sub>r</sub>                      | Relative Accuracy (Error Relative                          | DAC1408A/DAC1508  DAC1408B <sup>1</sup> DAC1408C <sup>1</sup>             |                | ·    |        | ± 0.19         | %      |
|                                     | to Full Scale I <sub>O</sub> )                             |                                                                           |                |      |        | ± 0.39         |        |
|                                     |                                                            |                                                                           |                |      |        | ± 0.78         |        |
| t <sub>S</sub>                      | Settling Time to Within ½ LSB (Includes t <sub>PLH</sub> ) | $T_A = 25^{\circ}C^2$                                                     |                |      | 85     | 135            | ns     |
| t <sub>PLH</sub> , t <sub>PHL</sub> | Propagation Delay                                          | T <sub>A</sub> = 25°C                                                     |                |      | 30     | 100            | ns     |
| TCIO                                | Output Full Scale Current Drift                            |                                                                           |                |      | ± 20   |                | ppm/°C |
| V <sub>IH</sub>                     | Logic Input Voltage HIGH                                   |                                                                           |                | 2.0  |        |                | ٧      |
| V <sub>IL</sub>                     | Logic Input Voltage LOW                                    |                                                                           |                |      |        | 0.8            |        |
| I <sub>IH</sub>                     | Logic Input Current HIGH                                   | V <sub>IH</sub> = 5.0 V                                                   |                |      | 0      | 0.04           | mA     |
| l <sub>IL</sub>                     | Logic Input Current LOW                                    | V <sub>IL</sub> = 0.8 V                                                   |                |      | -0.4   | -0.8           |        |
| I <sub>15</sub>                     | Reference Input Bias Current                               |                                                                           |                |      | -1.0   | -5.0           | μΑ     |
| I <sub>OR</sub>                     | Output Current Range                                       | V- = -5.0 V                                                               |                | 0    | 2.0    | 2.1            | mA     |
|                                     |                                                            | $V_{-} = -6.0$ to $-1$                                                    | 5 V            | 0    | 2.0    | 4.2            |        |
| lo                                  | Output Current                                             | $V_{REF} = 2.000 \text{ V}, R14 = 1.0 \text{ k}\Omega$                    |                | 1.9  | 1.99   | 2.1            | mA     |
| lo Min                              | Output Current                                             | All bits LOW                                                              |                |      | 0      | 4.0            | μΑ     |
| V <sub>OC</sub>                     | Output Voltage Compliance                                  | $E_r \le 0.19\%$ at $T_A = 25$ °C                                         | V- = -5.0 V    |      |        | -0.55,<br>+0.4 | ٧      |
|                                     |                                                            | :                                                                         | V- below -10 V |      |        | -5.0,<br>+0.5  |        |
| dl/dt                               | Reference Current Slew Rate                                |                                                                           |                |      | 4.0    |                | mA/μs  |
| PSRR (-)                            | Output Current Supply Sensitivity                          |                                                                           |                |      | 0.5    | 2.7            | μA/V   |
| +                                   | Supply Current                                             | All bits LOW                                                              |                |      | + 13.5 | +22            | mA     |
| 1-                                  |                                                            |                                                                           |                |      | -7.5   | -13            |        |
| V <sub>R</sub> +                    | Power Supply Voltage Range                                 | T <sub>A</sub> = 25°C                                                     |                | +4.5 | +5.0   | +5.5           | V      |
| V <sub>R</sub> -                    | 1                                                          |                                                                           |                | -4.5 | -15    | -16.5          | ]      |
| P <sub>c</sub>                      | Power Consumption                                          | All bits LOW, V- = -5.0 V                                                 |                |      | 105    | 170            | mW     |
| -                                   |                                                            | All bits LOW, $V- = -15 \text{ V}$                                        |                |      | 190    | 305            |        |
|                                     |                                                            | All bits HIGH, $V = -5.0 \text{ V}$<br>All bits HIGH, $V = -15 \text{ V}$ |                |      | 90     |                |        |
|                                     |                                                            |                                                                           |                | 1    | 160    |                |        |


#### Notes

All current switches are tested to guarantee at least 50% of rated output current.

<sup>2.</sup> All bits switched.

#### **Test Circuits**

Figure 1 Notation Definitions



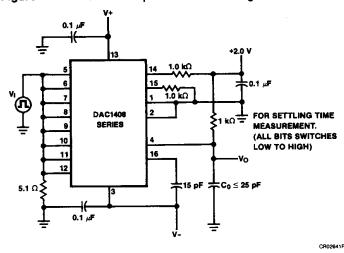
V<sub>1</sub> and I<sub>1</sub> apply to inputs A1 thru A8

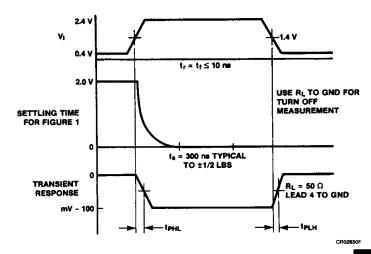
The resistor tied to lead 15 is to temperature compensate the bias current and may not be necessary for all applications.

$$t_0 = K \left[ \frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right]$$

where K  $\approx \frac{V_{REF}}{R14}$ 

CR05531F


Figure 2 Relative Accuracy Test Circuit




CR02631F

### Test Circuits (Cont.)

Figure 3 Transient Response and Settling Time





**Applications** 

- Tracking a/d Converters
- Successive Approximation a/d Converters
- 2 1/2 Digit Panel Meters and DVMs
- Waveform Synthesis
- Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation
- CRT Character Generation
- Audio Digitizing and Decoding
- Programmable Power Supplies
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Analog-Digital Division
- Digital Addition and Subtraction
- Speech Compression and Expansion
- Stepping Motor Drive

# **Applications** (Cont.)

Figure 4 Positive V<sub>REF</sub>

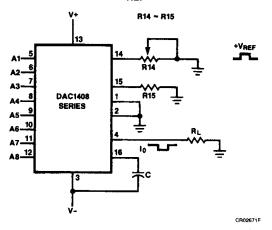



Figure 5 Negative V<sub>REF</sub>

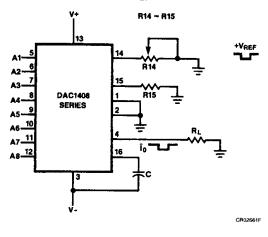
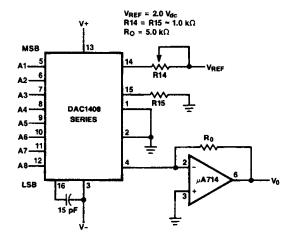




Figure 6 Use with Current-to-Voltage Converting OP AMP



#### Theoretical Vo

$$V_{O} = \frac{V_{REF}}{R14} (R_{O}) \left[ \frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right]$$

Adjust VREF R14 or R0 so that V0 with all digital inputs at HIGH level is equal to 9.961 Volts.

$$V_{O} = \frac{2 \text{ V}}{1 \text{ k}} (5 \text{ k}) \left[ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} \right]$$
$$+ \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256}$$
$$= 10 \text{ V} \frac{255}{256} = 9.961 \text{ V}$$

CR02861F