DATH SHEET

PCF8579
 LCD column driver for dot matrix graphic displays

Product specification
File under Integrated Circuits, IC12

LCD column driver for dot matrix graphic displays			
CON		10	LIMITING VALUES
1	FEATURES	11	HANDLING
2	APPLICATIONS	12	DC CHARACTERISTICS
3	GENERAL DESCRIPTION	13	AC CHARACTERISTICS
4	ORDERING INFORMATION	14	APPLICATION INFORMATION
5	BLOCK DIAGRAM	15	CHIP DIMENSIONS AND BONDING PAD LOCATIONS
6	PINNING	16	CHIP-ON GLASS INFORMATION
7	FUNCTIONAL DESCRIPTION	17	PACKAGE OUTLINES
7.1	Multiplexed LCD bias generation	18	SOLDERING
7.2 7.3	Power-on reset Timing generator	18.1	Introduction
7.4	Column drivers	18.2	Reflow soldering
7.5	Display RAM	18.3	Wave soldering
7.6	Data pointer	18.3.1	LQFP
7.7	Subaddress counter	18.3 .2	VSO
7.8	$1^{2} \mathrm{C}$-bus controller	18.3 .3	Method (LQFP and VSO)
7.9	Input filters	18.4	Repairing soldered joints
7.10	RAM access	19	DEFINITIONS
7.11	Display control	20	LIFE SUPPORT APPLICATIONS
7.12	TEST pin	21	PURCHASE OF PHILIPS ${ }^{2} \mathrm{C}$ COMPONENTS
8	${ }^{2} \mathrm{C}$-BUS PROTOCOL	21	PURCHASE OF PHILIPS İC COMPONENTS
8.1	Command decoder		
9	CHARACTERISTICS OF THE I ${ }^{2} \mathrm{C}$		
9.1	Bit transfer		
9.2	Start and stop conditions		
9.3	System configuration		
9.4	Acknowledge		

LCD column driver for dot matrix graphic displays

1 FEATURES

- LCD column driver
- Used in conjunction with the PCF8578, this device forms part of a chip set capable of driving up to 40960 dots
- 40 column outputs
- Selectable multiplex rates; $1: 8,1: 16,1: 24$ or $1: 32$
- Externally selectable bias configuration, 5 or 6 levels
- Easily cascadable for large applications (up to 32 devices)
- 1280-bit RAM for display data storage
- Display memory bank switching
- Auto-incremented data loading across hardware subaddress boundaries (with PCF8578)
- Power-on reset blanks display
- Logic voltage supply range 2.5 to 6 V
- Maximum LCD supply voltage 9 V
- Low power consumption
- ${ }^{2} \mathrm{C}$-bus interface
- TTL/CMOS compatible
- Compatible with most microcontrollers
- Optimized pinning for single plane wiring in multiple device applications (with PCF8578)
- Space saving 56-lead plastic mini-pack and 64-pin plastic low profile quad flat package
- Compatible with chip-on-glass technology
- ${ }^{2} \mathrm{C}$-bus address: 011110 SAO.

2 APPLICATIONS

- Automotive information systems
- Telecommunication systems
- Point-of-sale terminals
- Computer terminals
- Instrumentation.

3 GENERAL DESCRIPTION

The PCF8579 is a low power CMOS LCD column driver, designed to drive dot matrix graphic displays at multiplex rates of $1: 8,1: 16,1: 24$ or $1: 32$. The device has 40 outputs and can drive 32×40 dots in a 32 row multiplexed LCD. Up to 16 PCF8579s can be cascaded and up to 32 devices may be used on the same $I^{2} \mathrm{C}$-bus (using the two slave addresses). The device is optimized for use with the PCF8578 LCD row/column driver. Together these two devices form a general purpose LCD dot matrix driver chip set, capable of driving displays of up to 40960 dots. The PCF8579 is compatible with most microcontrollers and communicates via a two-line bidirectional bus (${ }^{2} \mathrm{C}$-bus). To allow partial V_{DD} shutdown the ESD protection system of the SCL and SDA pins does not use a diode connected to $V_{D D}$. Communication overheads are minimized by a display RAM with auto-incremented addressing and display bank switching.

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8579T	VSO56	plastic very small outline package; 56 leads	SOT190
PCF8579U7	-	chip with bumps on tape	-
PCF8579H	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4 \mathrm{~mm}$	SOT314-2

LCD column driver for dot matrix graphic displays

PCF8579

5 BLOCK DIAGRAM

(1) Operates at LCD voltage levels, all other blocks operate at logic levels.

The pin numbers given in parenthesis refer to the LQFP64 package.
Fig. 1 Block diagram.

LCD column driver for dot matrix graphic displays

PCF8579

6 PINNING

SYMBOL	PINS		DESCRIPTION
	VSO56	LQFP64	
SDA	1	7	${ }^{2} \mathrm{C}$-bus serial data input/output
SCL	2	8	$1^{2} \mathrm{C}$-bus serial clock input
$\overline{\text { SYNC }}$	3	9	cascade synchronization input
CLK	4	10	external clock input
$\mathrm{V}_{\text {SS }}$	5	11	ground (logic)
TEST	6	12	test pin (connect to V_{SS})
SA0	7	13	$\mathrm{I}^{2} \mathrm{C}$-bus slave address input (bit 0)
A3 to A0	8 to 11	14, 16 to 18	$1^{2} \mathrm{C}$-bus subaddress inputs
V_{DD}	12	20	supply voltage
n.c.	$13^{(1)}$	15, 19, 21,25 to 29, 34	not connected
$\mathrm{V}_{3}, \mathrm{~V}_{4}$	14 and 15	22 and 23	LCD bias voltage inputs
$\mathrm{V}_{\text {LCD }}$	16	24	LCD supply voltage
C39 to C0	17 to 56	30 to 33,35 to 64 and 1 to 6	LCD column driver outputs

Note

1. Do not connect, this pin is reserved.

Fig. 2 Pin configuration (VSO56).

LCD column driver for dot matrix graphic displays

PCF8579

Fig. 3 Pin configuration (LQFP64).

LCD column driver for dot matrix graphic displays

7 FUNCTIONAL DESCRIPTION

The PCF8579 column driver is designed for use with the PCF8578. Together they form a general purpose LCD dot matrix chip set.

Typically up to 16 PCF8579s may be used with one PCF8578. Each of the PCF8579s is identified by a unique 4-bit hardware subaddress, set by pins A0 to A3. The PCF8578 can operate with up to 32 PCF8579s when using two $\mathrm{I}^{2} \mathrm{C}$-bus slave addresses. The two slave addresses are set by the logic level on input SAO.

7.1 Multiplexed LCD bias generation

The bias levels required to produce maximum contrast depend on the multiplex rate and the LCD threshold voltage $\left(\mathrm{V}_{\text {th }}\right)$. $\mathrm{V}_{\text {th }}$ is typically defined as the RMS voltage at which the LCD exhibits 10% contrast. Table 1 shows the optimum voltage bias levels for the PCF8578/PCF8579 chip set as functions of $\mathrm{V}_{\mathrm{op}}\left(\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}\right)$, together with the discrimination ratios (D) for the different multiplex rates. A practical value for V_{op} is obtained by equating $\mathrm{V}_{\text {off(rms) }}$ with $\mathrm{V}_{\text {th }}$. Figure 4 shows the first 4 rows of Table 1 as graphs.

Table 1 Optimum LCD bias voltages

PARAMETER	MULTIPLEX RATE			
	$\mathbf{1 : 8}$	$\mathbf{1 : 1 6}$	$\mathbf{1 : 2 4}$	$\mathbf{1 : 3 2}$
$\frac{V_{2}}{V_{\text {op }}}$	0.739	0.800	0.830	0.850
$\frac{V_{3}}{V_{\text {op }}}$	0.522	0.600	0.661	0.700
V_{4} $V_{\text {op }}$	0.478	0.400	0.339	0.300
V_{5} $V_{\text {op }}$	0.261	0.200	0.170	0.150
$V_{\text {off }(r m s)}$ $V_{\text {op }}$	0.297	0.245	0.214	0.193
$V_{\text {on (rms })}$ $V_{\text {op }}$	0.430	0.316	0.263	0.230
$\frac{V_{\text {on }(r m s)}}{V_{\text {off }(r m s)}}$	1.447	1.291	1.230	1.196
$V_{\text {op }}$ $V_{\text {th }}$	3.370	4.080	4.680	5.190

LCD column driver for dot matrix graphic displays

PCF8579

Fig. 5 LCD row/column waveforms.

LCD column driver for dot matrix graphic displays

PCF8579

Fig. 6 LCD drive mode waveforms for 1:8 multiplex rate.

LCD column driver for dot matrix graphic displays

PCF8579

Fig. 7 LCD drive mode waveforms for 1:16 multiplex rate.sa.

LCD column driver for dot matrix graphic displays

7.3 Timing generator

The timing generator of the PCF8579 organizes the internal data flow from the RAM to the display drivers. An external synchronization pulse $\overline{\text { SYNC }}$ is received from the PCF8578. This signal maintains the correct timing relationship between cascaded devices.

7.4 Column drivers

Outputs C0 to C39 are column drivers which must be connected to the LCD. Unused outputs should be left open-circuit.

7.5 Display RAM

The PCF8579 contains a 32×40-bit static RAM which stores the display data. The RAM is divided into 4 banks of 40 bytes ($4 \times 8 \times 40$ bits). During RAM access, data is transferred to/from the RAM via the $I^{2} \mathrm{C}$-bus.

7.6 Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows an individual data byte or a series of data bytes to be written into, or read from, the display RAM, controlled by commands sent on the $\mathrm{I}^{2} \mathrm{C}$-bus.

7.7 Subaddress counter

The storage and retrieval of display data is dependent on the content of the subaddress counter. Storage and retrieval take place only when the contents of the subaddress counter agree with the hardware subaddress at pins A0, A1, A2 and A3.

$7.8 \quad \mathrm{I}^{2} \mathrm{C}$-bus controller

The $\mathrm{I}^{2} \mathrm{C}$-bus controller detects the $\mathrm{I}^{2} \mathrm{C}$-bus protocol, slave address, commands and display data bytes. It performs the conversion of the data input (serial-to-parallel) and the data output (parallel-to-serial). The PCF8579 acts as an $\mathrm{I}^{2} \mathrm{C}$-bus slave transmitter/receiver. Device selection depends on the $\mathrm{I}^{2} \mathrm{C}$-bus slave address, the hardware subaddress and the commands transmitted.

7.9 Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

7.10 RAM access

There are three RAM ACCESS modes:

- Character
- Half-graphic
- Full-graphic.

These modes are specified by bits G1 and G0 of the RAM ACCESS command. The RAM ACCESS command controls the order in which data is written to or read from the RAM (see Fig.8).

To store RAM data, the user specifies the location into which the first byte will be loaded (see Fig.9):

- Device subaddress (specified by the DEVICE SELECT command)
- RAM X-address (specified by the LOAD X-ADDRESS command)
- RAM bank (specified by bits Y1 and Y0 of the RAM ACCESS command).
Subsequent data bytes will be written or read according to the chosen RAM access mode. Device subaddresses are automatically incremented between devices until the last device is reached. If the last device has subaddress 15, further display data transfers will lead to a wrap-around of the subaddress to 0 .

7.11 Display control

The display is generated by continuously shifting rows of RAM data to the dot matrix LCD via the column outputs. The number of rows scanned depends on the multiplex rate set by bits M1 and M0 of the SET MODE command.

The display status (all dots on/off and normal/inverse video) is set by bits E1 and E0 of the SET MODE command. For bank switching, the RAM bank corresponding to the top of the display is set by bits B1 and B0 of the SET START BANK command. This is shown in Fig. 10 This feature is useful when scrolling in alphanumeric applications.

7.12 TEST pin

The TEST pin must be connected to V_{SS}.

6L98ココd
uo!̣eo!!!əods ןonpord

LCD column driver for dot matrix graphic displays

PCF8579

Fig. 10 Relationship between display and SET START BANK; 1:32 multiplex rate and start bank $=2$.

LCD column driver for dot matrix graphic displays

8 I2C-BUS PROTOCOL

Two 7-bit slave addresses (0111100 and 0111101) are reserved for both the PCF8578 and PCF8579. The least significant bit of the slave address is set by connecting input SA0 to either logic $0\left(\mathrm{~V}_{\mathrm{SS}}\right)$ or logic $1\left(\mathrm{~V}_{\mathrm{DD}}\right)$.
Therefore, two types of PCF8578 or PCF8579 can be distinguished on the same $\mathrm{I}^{2} \mathrm{C}$-bus which allows:

1. One PCF8578 to operate with up to 32 PCF8579s on the same $\mathrm{I}^{2} \mathrm{C}$-bus for very large applications.
2. The use of two types of LCD multiplex schemes on the same $\mathrm{I}^{2} \mathrm{C}$-bus.

In most applications the PCF8578 will have the same slave address as the PCF8579.
The $\mathrm{I}^{2} \mathrm{C}$-bus protocol is shown in Fig. 11 .
All communications are initiated with a start condition (S) from the $\mathrm{I}^{2} \mathrm{C}$-bus master, which is followed by the desired slave address and read/write bit. All devices with this slave address acknowledge in parallel. All other devices ignore the bus transfer.

In WRITE mode (indicated by setting the read/write bit LOW) one or more commands follow the slave address acknowlegement. The commands are also acknowledged by all addressed devices on the bus.
The last command must clear the continuation bit C. After the last command a series of data bytes may follow.
The acknowlegement after each byte is made only by the (A0, A1, A2 and A3) addressed PCF8579 or PCF8578 with its implicit subaddress 0 . After the last data byte has been acknowledged, the $I^{2} \mathrm{C}$-bus master issues a stop condition (P).

In READ mode, indicated by setting the read/write bit HIGH, data bytes may be read from the RAM following the slave address acknowlegement. After this acknowlegement the master transmitter becomes a master receiver and the PCF8579 becomes a slave transmitter. The master receiver must acknowledge the reception of each byte in turn. The master receiver must signal an end of data to the slave transmitter, by not generating an acknowledge on the last byte clocked out of the slave. The slave transmitter then leaves the data line HIGH, enabling the master to generate a stop condition (P).
Display bytes are written into, or read from, the RAM at the address specified by the data pointer and subaddress counter. Both the data pointer and subaddress counter are automatically incremented, enabling a stream of data to be transferred either to, or from, the intended devices.
In multiple device applications, the hardware subaddress pins of the PCF8579s (A0 to A3) are connected to $\mathrm{V}_{\text {SS }}$ or $V_{D D}$ to represent the desired hardware subaddress code. If two or more devices share the same slave address, then each device must be allocated a unique hardware subaddress.

LCD column driver for dot matrix graphic displays

Fig. 11 (a) Master transmits to slave receiver (WRITE mode); (b) Master reads after sending command string (WRITE commands; READ data); (c) Master reads slave immediately after sending slave address (READ mode).

LCD column driver for dot matrix graphic displays

8.1 Command decoder

The command decoder identifies command bytes that arrive on the $\mathrm{I}^{2} \mathrm{C}$-bus. The most significant bit of a command is the continuation bit C (see Fig.12). When this bit is set, it indicates that the next byte to be transferred will also be a command. If the bit is reset, it indicates the conclusion of the command transfer. Further bytes will be regarded as display data. Commands are transferred in WRITE mode only.
The five commands available to the PCF8579 are defined in Tables 2 and 3.

Fig. 12 General format of command byte.

Table 2 Summary of commands

COMMAND	OPCODE $^{(1)}$						DESCRIPTION		
SET MODE	C	1	0	D	D	D	D	D	multiplex rate, display status, system type
SET START BANK	C	1	1	1	1	1	D	D	defines bank at top of LCD
DEVICE SELECT	C	1	1	0	D	D	D	D	defines device subaddress
RAM ACCESS	C	1	1	1	D	D	D	D	graphic mode, bank select (D D D D ≥ 12 is not allowed; see SET START BANK opcode)
LOAD X-ADDRESS	C	0	D	D	D	D	D	D	0 to 39

Note

1. $\mathrm{C}=$ command continuation bit. $\mathrm{D}=$ may be a logic 1 or 0 .

LCD column driver for dot matrix graphic displays

Table 3 Definition of PCF8578/PCF8579 commands

LCD column driver for dot matrix graphic displays

PCF8579

Table 4 Set mode option 1

LCD DRIVE MODE	BITS		
	M1	M0	
$1: 8$	MUX (8 rows)	0	1
$1: 16$	MUX (16 rows)	1	0
$1: 24$	MUX (24 rows)	1	1
$1: 32$	MUX (32 rows)	0	0

Table 5 Set mode option 2

DISPLAY STATUS	BITS	
	E1	E0
Blank	0	0
Normal	0	1
All segments on	1	0
Inverse video	1	1

Table 6 Set mode option 3

SYSTEM TYPE	BIT T
PCF8578 row only	0
PCF8578 mixed mode	1

Table 7 Set start bank option 1

START BANK POINTER	BITS	
	B1	B0
Bank 0	0	0
Bank 1	0	1
Bank 2	1	0
Bank 3	1	1

Table 8 Device select option 1

DESCRIPTION	BITS			
Decimal value of 0 to 15	A3	A2	A1	A0

Table 9 RAM access option 1

RAM ACCESS MODE	BITS	
	G1	G0
Character	0	0
Half-graphic	0	1
Full-graphic	1	0
Not allowed (note 1)	1	1

Note

1. See opcode for SET START BANK in Table 3.

Table 10 RAM access option 2

DESCRIPTION	BITS	
Decimal value of 0 to 3	Y 1	Y 0

Table 11 Load X-address option 1

DESCRIPTION	BITS					
Decimal value of 0 to 39	X5	X4	X3	X2	X1	X0

LCD column driver for dot matrix graphic displays

9 CHARACTERISTICS OF THE I²C-BUS

The $I^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL) which must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

9.1 Bit transfer

One data bit is transferred during each clock pulse.
The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this moment will be interpreted as control signals.

9.2 Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the start condition (S).
A LOW-to-HIGH transition of the data line while the clock is HIGH, is defined as the stop condition (P).

9.4 Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is unlimited. Each data byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter, whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal the end of a data transmission to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

9.3 System configuration

A device transmitting a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message flow is the 'master' and the devices which are controlled by the master are the 'slaves'.

Fig. 13 Bit transfer.

LCD column driver for dot matrix graphic displays

PCF8579

SDA

SCL

Fig. 14 Definition of start and stop condition.

Fig. 15 System configuration

The general characteristics and detailed specification of the $\mathrm{I}^{2} \mathrm{C}$-bus are available on request.
Fig. 16 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

LCD column driver for dot matrix graphic displays

10 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	-0.5	+8.0	V
$\mathrm{~V}_{\mathrm{LCD}}$	LCD supply voltage	$\mathrm{V}_{\mathrm{DD}}-11$	$\mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\mathrm{i} 1}$	input voltage pins SDA, SCL, SYNC, CLK, TEST, SA0, A0, A1, A2 and A 3	$\mathrm{~V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\mathrm{i} 2}$	input voltage pins V_{3} and V_{4}	$\mathrm{~V}_{\mathrm{LCD}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{01}$	output voltage pin SDA	$\mathrm{V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\mathrm{o} 2}$	output voltage pins C0 to C39	$\mathrm{V}_{\mathrm{LCD}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC input current	-10	+10	mA
I_{O}	DC output current	-10	+10	mA
$\mathrm{I}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{SS}}, \mathrm{I}_{\mathrm{LCD}}$	current at pins $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{LCD}}$	-50	+50	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation per package	-	400	mW
P_{o}	power dissipation per output	-	100	mW
$\mathrm{~T}_{\mathrm{stg}}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

11 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe it is desirable to take normal precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12 under "Handling MOS Devices".

LCD column driver for dot matrix graphic displays

PCF8579

12 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
$V_{\text {DD }}$	supply voltage		2.5	-	6.0	V
$V_{\text {LCD }}$	LCD supply voltage		$V_{D D}-9$	-	$V_{D D}-3.5$	V
I_{DD}	supply current	$\mathrm{f}_{\text {cLK }}=2 \mathrm{kHz}$; note 1	-	9	20	$\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	power-on reset level	note 2	-	1.3	1.8	V
Logic						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		$\mathrm{V}_{S S}$	-	$0.3 V_{\text {DD }}$	V
V_{IH}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
$\mathrm{L}_{\text {LI } 1}$	leakage current at pins SDA, SCL, SYNC, CLK, TEST, SA0, A0, A1, A2 and A3	$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	-1	-	+1	$\mu \mathrm{A}$
l_{OL}	LOW level output current at pin SDA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3	-	-	mA
C_{i}	input capacitance	note 3	-	-	5	pF
LCD outputs						
$\mathrm{L}_{\text {LI2 }}$	leakage current at pins V_{3} to V_{4}	$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {LCD }}$	-2	-	+2	$\mu \mathrm{A}$
V_{DC}	DC component of LCD drivers pins C0 to C39		-	± 20	-	mV
$\mathrm{R}_{\mathrm{COL}}$	output resistance at pins C0 to C39	note 4	-	3	6	$\mathrm{k} \Omega$

Notes

1. Outputs are open; inputs at V_{DD} or $\mathrm{V}_{\mathrm{SS}} ; \mathrm{I}^{2} \mathrm{C}$-bus inactive; clock with 50% duty factor.
2. Resets all logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{POR}}$.
3. Periodically sampled; not 100% tested.
4. Resistance measured between output terminal (C 0 to C 39) and bias input $\left(\mathrm{V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{\mathrm{DD}}\right.$ and $\left.\mathrm{V}_{\mathrm{LCD}}\right)$ when the specified current flows through one output under the following conditions (see Table 1):
a) $-\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}=9 \mathrm{~V}$;
b) $-\mathrm{V}_{3}-\mathrm{V}_{\mathrm{LCD}} \geq 4.70 \mathrm{~V} ; \mathrm{V}_{4}-\mathrm{V}_{\mathrm{LCD}} \leq 4.30 \mathrm{~V} ; \mathrm{I}_{\mathrm{LOAD}}=100 \mu \mathrm{~A}$.

LCD column driver for dot matrix graphic displays

PCF8579

13 AC CHARACTERISTICS

All timing values are referred to $\mathrm{V}_{I H}$ and V_{IL} levels with an input voltage swing of $\mathrm{V}_{S S}$ to V_{DD}.
$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{f}_{\text {clk }}$	clock frequency	50\% duty factor	-	note 1	10	kHz
tPLCD	driver delays	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}=9 \mathrm{~V}$; with test loads	-	-	100	$\mu \mathrm{s}$
$\mathrm{I}^{2} \mathrm{C}$-bus						
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency		-	-	100	kHz
tsw	tolerable spike width on bus		-	-	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STA	START condition set-up time	repeated start codes only	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; }}$ STA	START condition hold time		4.0	-	-	$\mu \mathrm{s}$
tLow	SCL LOW time		4.7	-	-	$\mu \mathrm{S}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time		4.0	-	-	$\mu \mathrm{s}$
t_{r}	SCL and SDA rise time		-	-	1.0	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time		-	-	0.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; DAT }}$	data set-up time		250	-	-	ns
$\mathrm{t}_{\text {HD; DAT }}$	data hold time		0	-	-	ns
tsu;STo	STOP condition set-up time		4.0	-	-	$\mu \mathrm{S}$

Note

1. Typically 0.9 to 3.3 kHz .

C 0 to C39
MSA916

Fig. 17 AC test loads.

LCD column driver for dot matrix graphic displays

Fig. 18 Driver timing waveforms.

Fig. $19 \mathrm{I}^{2} \mathrm{C}$-bus timing waveforms.

LCD column driver for dot matrix graphic displays

PCF8579

15 CHIP DIMENSIONS AND BONDING PAD LOCATIONS

Chip area: $14.37 \mathrm{~mm}^{2}$.
Bonding pad dimensions: $120 \mu \mathrm{~m} \times 120 \mu \mathrm{~m}$.
Gold bump dimensions (if ordered): $94 \times 94 \times 25 \mu \mathrm{~m}$.
The numbers given in the square boxes refer to the pad number.
Fig. 24 Bonding pad locations.

LCD column driver for dot matrix graphic displays

PCF8579

Table 12 Bonding pad locations (dimensions in $\mu \mathrm{m}$)
All x / y coordinates are referenced to centre of chip, see Fig.24.

PAD NUMBER	SYMBOL	x	y	PINS	
				VSO56	LQFP64
1	SDA	252	2142	1	7
2	SCL	48	2142	2	8
3	$\overline{\text { SYNC }}$	-156	2142	3	9
4	CLK	-360	2142	4	10
5	$\mathrm{V}_{\text {SS }}$	-564	2142	5	11
6	TEST	-786	2142	6	12
7	SA0	-1032	2142	7	13
8	A3	-1314	2142	8	14
9	A2	-1314	1920	9	16
10	A1	-1314	1716	10	17
11	A0	-1314	1512	11	18
12	V_{DD}	-1314	708	12	20
13	n.c.	-1314	504	13	21
14	V_{3}	-1314	300	14	22
15	V_{4}	-1314	96	15	23
16	$\mathrm{V}_{\text {LCD }}$	-1314	-108	16	24
17	C39	-1314	-1308	17	30
18	C38	-1314	-1512	18	31
19	C37	-1314	-1716	19	32
20	C36	-1314	-1920	20	33
21	C35	-1314	-2142	21	35
22	C34	-1032	-2142	22	36
23	C33	-786	-2142	23	37
24	C32	-564	-2142	24	38
25	C31	-360	-2142	25	39
26	C30	-156	-2142	26	40
27	C29	48	-2142	27	41
28	C28	252	-2142	28	42
29	C27	498	-2142	29	43
30	C26	702	-2142	30	44
31	C25	906	-2142	31	45
32	C24	1110	-2142	32	46
33	C23	1314	-2142	33	47
34	C22	1314	-1830	34	48
35	C21	1314	-1570	35	49
36	C20	1314	-1326	36	50
37	C19	1314	-1122	37	51

LCD column driver for dot matrix graphic displays

PCF8579

PAD NUMBER	SYMBOL	\mathbf{x}	\mathbf{y}	PINS	
				VSO56	LQFP64
38	C18	1314	-918	38	52
39	C17	1314	-714	39	53
40	C16	1314	-510	40	54
41	C15	1314	-306	41	55
42	C14	1314	-102	42	56
43	C13	1314	102	43	57
44	C12	1314	306	44	58
45	C11	1314	510	45	59
46	C10	1314	714	46	60
47	C9	1314	918	47	61
48	C8	1314	1122	48	62
49	C7	1314	1326	49	63
50	C6	1314	1566	50	64
51	C5	1314	1830	51	1
52	C4	1314	2142	52	2
53	C3	1110	2142	53	3
54	C2	906	2142	54	5
55	C1	702	2142	55	4
56	C0	498	2142	-	56
-	n.c.	-			5

LCD column driver for dot matrix graphic displays

PCF8579

17 PACKAGE OUTLINES

VSO56: plastic very small outline package; 56 leads
SOT190-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathbf{Z}^{(1)}$	θ
mm	3.3	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.8 \end{aligned}$	0.25	$\begin{aligned} & 0.42 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.14 \end{aligned}$	$\begin{array}{l\|} \hline 21.65 \\ 21.35 \end{array}$	$\begin{aligned} & 11.1 \\ & 11.0 \end{aligned}$	0.75	$\begin{aligned} & 15.8 \\ & 15.2 \end{aligned}$	2.25	$\begin{aligned} & 1.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.30 \end{aligned}$	0.2	0.1	0.1	$\begin{aligned} & 0.90 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 7^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.13	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.11 \end{aligned}$	0.01	$\begin{aligned} & 0.017 \\ & 0.012 \end{aligned}$	$\left.\begin{array}{\|l\|} 0.0087 \\ 0.0055 \end{array} \right\rvert\,$	$\begin{aligned} & 0.85 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.43 \end{aligned}$	0.0295	$\begin{aligned} & 0.62 \\ & 0.60 \end{aligned}$	0.089	$\begin{array}{\|l\|} \hline 0.063 \\ 0.055 \end{array}$	$\begin{array}{\|l\|} \hline 0.057 \\ 0.051 \end{array}$	0.008	0.004	0.004	$\begin{aligned} & 0.035 \\ & 0.022 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.3 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT190-1				\square ¢	$\begin{aligned} & 96-04-02 \\ & 97-08-11 \end{aligned}$

LCD column driver for dot matrix graphic displays

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{D}	H_{E}	L	L_{p}	v	w	y	$Z_{D}{ }^{(1)}$	$Z_{E}{ }^{(1)}$	θ
mm	1.60	$\begin{aligned} & 0.20 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.35 \end{aligned}$	0.25	$\begin{aligned} & 0.27 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.12 \end{aligned}$	$\begin{gathered} 10.1 \\ 9.9 \end{gathered}$	$\begin{gathered} 10.1 \\ 9.9 \end{gathered}$	0.5	$\begin{aligned} & \hline 12.15 \\ & 11.85 \end{aligned}$	$\begin{aligned} & 12.15 \\ & 11.85 \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & 0.45 \end{aligned}$	0.2	0.12	0.1	$\begin{aligned} & 1.45 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 7^{0} \\ & 0^{\circ} \end{aligned}$

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT314-2					$-95-12-19$	
$97-08-01$						

LCD column driver for dot matrix graphic displays

18 SOLDERING

18.1 Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

18.2 Reflow soldering

Reflow soldering techniques are suitable for all LQFP and VSO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

18.3 Wave soldering

18.3.1 LQFP

Wave soldering is not recommended for LQFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

Even with these conditions, do not consider wave soldering LQFP packages LQFP48 (SOT313-2), LQFP64 (SOT314-2) or LQFP80 (SOT315-1).

18.3.2 VSO

Wave soldering techniques can be used for all VSO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

18.3.3 Method (LQFP and VSO)

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

18.4 Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

LCD column driver for dot matrix graphic displays

19 DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

20 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

21 PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips $I^{2} \mathrm{C}$ components conveys a license under the Philips' ${ }^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$ system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specification defined by Philips. This specification can be ordered using the code 939839340011.

LCD column driver for dot matrix graphic displays

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 160 101, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2689 211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 3288 2636, Fax. +45 31571949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580/xxx
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 224938 541, Fax. +91 224938722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +35317640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050,5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474

Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,

Tel. +48 22612 2831, Fax. +48 226122327

Portugal: see Spain

Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500

Slovakia: see Austria

Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 22134 2870, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1997
Internet: http://www.semiconductors.philips.com

SCA53
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands 417067/1200/03/pp40
Date of release: 1997 Apr 01
Document order number: 939775001757

Philips
 Semiconductors

PHILIPS

