INTEGRATED CIRCUITS

DATA SHEET

74LV4060

14-stage binary ripple counter with oscillator

Product specification

14-stage binary ripple counter with oscillator

74LV4060

FEATURES

- Wide operating voltage: 1.0 to 5.5 V
- Optimized for Low Voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical V_{OLP} (output ground bounce) < 0.8 V at V_{CC} = 3.3 V, T_{amb} = 25 °C.
- Typical V_{OHV} (output V_{OH} undershoot) > 2 V at V_{CC} = 3.3 V, T_{amb} = 25°C.
- All active components on chip
- RC or crystal oscillator configuration
- Output capability: standard (except for R_{TC} and C_{TC})
- I_{CC} category: MSI

APPLICATIONS

- Control Counters
- Timers
- Frequency Dividers
- Time-delay circuits

DESCRIPTION

The 74LV4060 is a low-voltage Si-gate CMOS device and is pin and function compatible with the 74HC/HCT4060.

The 74LV4060 is a 14-stage ripple-carry counter/divider and oscillator with three oscillator terminals (RS, R $_{TC}$ and C $_{TC}$), ten buffered outputs (Q $_3$ to Q $_9$ and Q $_{11}$ to Q $_{13}$) and an overriding asynchronous master reset (MR). The oscillator configuration allows design of either RC or crystal oscillator circuits. The oscillator may be replaced by an external clock signal at input RS. In this case, keep the oscillator pins (R $_{TC}$ and C $_{TC}$) floating.

The counter advances on the negative-going transition of RS. A HIGH level on MR resets the counter (Q_3 to Q_9 and Q_{11} to $Q_{13} = LOW$), independent of the other input conditions.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25$ °C; $t_r = t_f \le 2.5$ ns

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
	Propagation delay	C _L = 15 pF		
	RS to Q ₃	$C_L = 15 \text{ pF}$ $V_{CC} = 3.3 \text{ V}$	29	
t _{PHL} /t _{PLH}	Q _n to Q _{n+1}		6	ns
t _{PHL}	MR to Q _n		16	
f _{max}	Maximum clock frequency]	99	MHz
C ₁	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per package	Notes 1, 2 and 3	40	pF

NOTES:

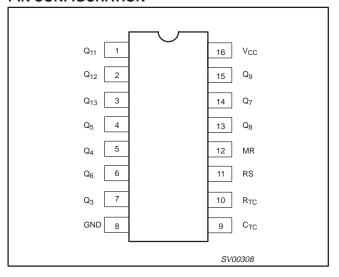
C_{PD} is used to determine the dynamic power dissipation (P_D in μW)
 P_D = C_{PD} x V_{CC}² x f_i + Σ (C_L x V_{CC}² x f_o) where: f_i = input frequency in MHz; C_L = output load capacity in pF; f_o = output frequency in MHz; V_{CC} = supply voltage in V;

 Σ (C_L x V_{CC}² x f₀) = sum of the outputs. 2. The condition is V₁ = GND to V_{CC}

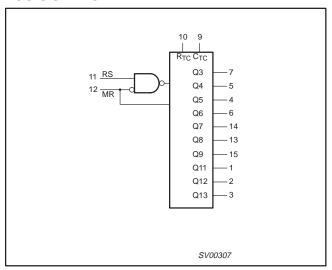
For formula on dynamic power dissipation, see the following pages.

ORDERING INFORMATION

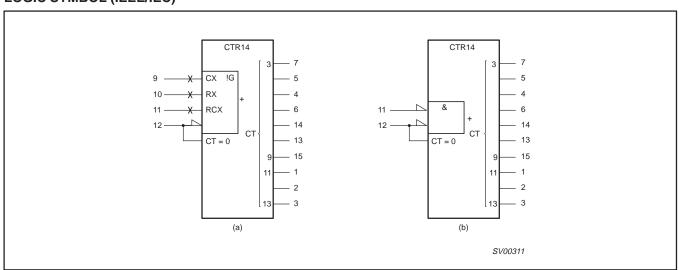
PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
16-Pin Plastic DIL	-40°C to +125°C	74LV4060 N	74LV4060 N	SOT38-4
16-Pin Plastic SO	-40°C to +125°C	74LV4060 D	74LV4060 D	SOT109-1
16-Pin Plastic SSOP Type II	-40°C to +125°C	74LV4060 DB	74LV4060 DB	SOT338-1
16-Pin Plastic TSSOP Type I	-40°C to +125°C	74LV4060 PW	74LV4060PW DH	SOT403-1


14-stage binary ripple counter with oscillator

74LV4060


PIN DESCRIPTION

PIN NO.	SYMBOL	FUNCTION
1, 2, 3	Q ₁₁ to Q13	Counter outputs
7, 5, 4, 6, 15, 13, 15	Q ₃ to Q ₉	Counter outputs
8	GND	Ground (0 V)
9	C _{TC}	External capacitor connection
10	R _{TC}	External resistor connection
11	RS	Clock input/oscillator pin
12	MR	Master reset
16	V _{CC}	Positive supply voltage


PIN CONFIGURATION

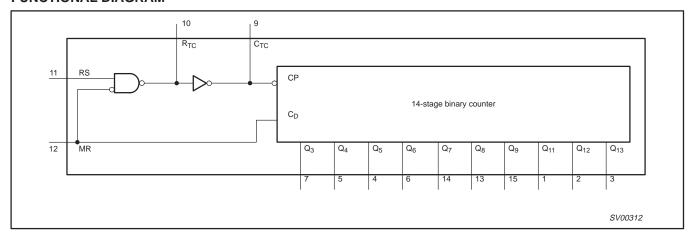
LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

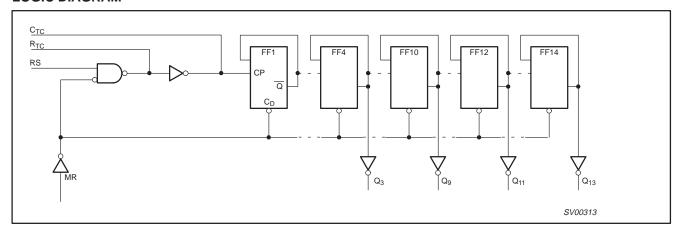
14-stage binary ripple counter with oscillator

74LV4060

DYNAMIC POWER DISSIPATION

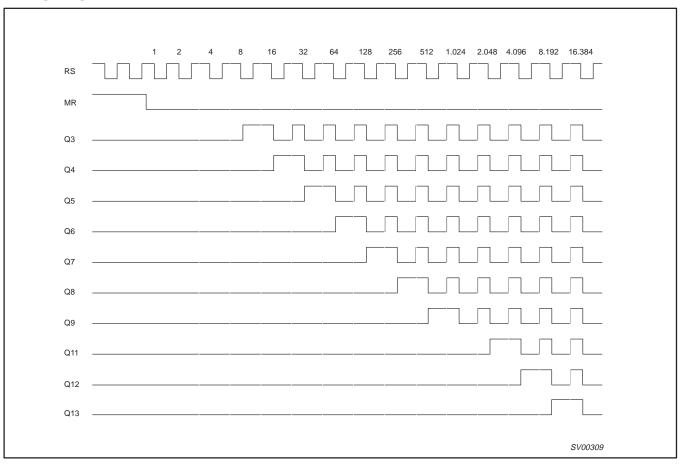

GND = 0 V; T_{amb} = 25 °C

PARAMETER	V _{CC} (V)	TYPICAL FORMULA FOR P _D (μW) ¹
Total dynamic power dissipation when using the on–chip oscillator (P _D)	1.2 2.0 3.0	$\begin{array}{l} C_{PD} \times f_{osc} \times V_{CC}^2 + \Sigma \left(C_L \times V_{CC}^2 \times f_o \right) + 2C_t \times V_{CC}^2 \times f_{osc} + 16 \times V_{CC} \\ C_{PD} \times f_{osc} \times V_{CC}^2 + \Sigma \left(C_L \times V_{CC}^2 \times f_o \right) + 2C_t \times V_{CC}^2 \times f_{osc} + 460 \times V_{CC} \\ C_{PD} \times f_{osc} \times V_{CC}^2 + \Sigma \left(C_L \times V_{CC}^2 \times f_o \right) + 2C_t \times V_{CC}^2 \times f_{osc} + 1000 \times V_{CC} \end{array}$


NOTE:

1. Where: $f_o = \text{output frequency in MHz}$; $f_{osc} = \text{oscillator frequency in MHz}$; $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of the outputs}$; $C_L = \text{output load capacitance in pF}$; $C_t = \text{timing capacitance in pF}$; $V_{CC} = \text{supply voltage in V}$.

FUNCTIONAL DIAGRAM


LOGIC DIAGRAM

14-stage binary ripple counter with oscillator

74LV4060

TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS1, 2

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
±I _{IK}	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5V$	20	mA
±I _{OK}	DC output diode current	$V_{O} < -0.5 \text{ or } V_{O} > V_{CC} + 0.5 V$	50	mA
±ΙΟ	DC output source or sink current – standard outputs	$-0.5V < V_O < V_{CC} + 0.5V$	25	mA
±l _{GND} , ±l _{CC}	DC V _{CC} or GND current for types with –standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
P _{TOT}	Power dissipation per package -plastic DIL -plastic mini-pack (SO) -plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES

5

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

14-stage binary ripple counter with oscillator

74LV4060

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT
V _{CC}	DC supply voltage	See Note ¹	1.0	3.3	5.5	V
VI	Input voltage		0	_	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 1.0V \text{ to } 2.0V$ $V_{CC} = 2.0V \text{ to } 2.7V$ $V_{CC} = 2.7V \text{ to } 3.6V$ $V_{CC} = 3.6V \text{ to } 5.5V$	- - -	- - - -	500 200 100 50	ns/V

NOTES:

DC CHARACTERISTICS

Over operating conditions, voltages are referenced to GND (ground = 0 V)

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-40	°C to +8	5°C	-40°C to	+125°C	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	1
		V _{CC} = 1.2V	0.9	_	-	0.9	_	
V _{IH}	HIGH level Input voltage	V _{CC} = 2.0V	1.4	_	_	1.4	_	$ $ $_{\vee}$ $ $
V IH	MR input	V _{CC} = 2.7 to 3.6V	2.0	_	_	2.0	_	ľ
	·	$V_{CC} = 4.5 \text{ to } 5.5 \text{V}$	0.7 * V _{CC}	_	_	0.7 * V _{CC}	_	
		V _{CC} = 1.2V	_	_	0.3	-	0.3	
V _{IL}	LOW level Input voltage	V _{CC} = 2.0V	_	_	0.6	_	0.6	$\mid \ \ _{ee} \mid$
V IL	MR input	$V_{CC} = 2.7 \text{ to } 3.6 \text{V}$	_	_	0.8	_	0.8	ľ
	·	$V_{CC} = 4.5 \text{ to } 5.5$	_	_	0.3 * V _{CC}	_	0.3 * V _{CC}	
		V _{CC} = 1.2V	1.0	_	_	1.0	_	
	HIGH level Input voltage	$V_{CC} = 2.0V$	1.6	_	_	1.6	_	$\mid \ \ _{ee} \mid$
V IH	RS input	V _{CC} = 2.7 to 3.6V	2.4	_	-	2.4	_	1
		V _{CC} = 4.5 to 5.5V	0.8 * V _{CC}	_	-	0.8 * V _{CC}	_	
		V _{CC} = 1.2V	_	_	0.2	_	0.2	
VIL	LOW level Input voltage	$V_{CC} = 2.0V$	_	_	0.4	_	0.4	$\mid \mid_{\vee} \mid$
V IL	RS input	V _{CC} = 2.7 to 3.6V	_	_	0.5	_	0.5	ľ
		V _{CC} = 4.5 to 5.5	_	_	0.2 * V _{CC}	_	0.2 * V _{CC}	
		V_{CC} = 1.2V; RS = GND and MR = GND; $-I_{O}$ = 3.4mA	_	_	-	-	-	
		V_{CC} = 2.0V; RS = GND and MR = GND; $-I_{O}$ = 3.4mA	-	_	-	-	-	
V _{OH}	HIGH level output voltage; R _{TC} output	V_{CC} = 2.7V; RS = GND and MR = GND; $-I_{O}$ = 3.4mA	-	-	-	-	-	V
	KTC onthat	V_{CC} = 3.0V; RS = GND and MR = GND; $-I_{O}$ = 3.4mA	2.40	2.82	-	2.20	-	
		V_{CC} = 4.5V; RS = GND and MR = GND; $-I_{O}$ = 3.4mA	-	-	-	_	-	

^{1.} The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

74LV4060

CVMPOL PARAMETER				LIMITS					
SYMBOL	PARAMETER	TEST CONDITIONS	-4	0°C to +85	5°C	-40°C to	+125°C	UNIT	
		V_{CC} = 1.2V; RS = V_{CC} and MR = V_{CC} ; - I_{O} = 0.8mA	_	-	-	_	_		
		V_{CC} = 2.0V; RS = V_{CC} and MR = V_{CC} ; $-I_O$ = 0.8mA	-	-	-	-	-	1	
V_{OH}	HIGH level output voltage; R _{TC} output	V_{CC} = 2.7V; RS = V_{CC} and MR = V_{CC} ; $-I_{O}$ = 0.8mA	-	-	-	-	-	V	
	N ₁ C output	V_{CC} = 3.0V; RS = V_{CC} and MR = $V_{CC;}$ $-I_{O}$ = 0.8mA	2.40	2.82	_	2.20	-	1	
		V_{CC} = 4.5V; RS = V_{CC} and MR = V_{CC} ; $-I_{O}$ = 0.8mA	_	-	_	-	_		
		V_{CC} = 1.2V; RS = GND and MR = GND; $-I_{O}$ = 100 μ A	1.0	1.2	_	1.0	_		
	LIIOLLI seed seedseed	V_{CC} = 2.0V; RS = GND and MR = GND; $-I_{O}$ = 100 μ A	1.8	2.0	-	1.8	_		
V_{OH}	HIGH level output voltage; R _{TC} output	V_{CC} = 2.7V; RS = GND and MR = GND; $-I_{O}$ = 100 μ A	_	-	_	-	_	٧	
	Tric output	V_{CC} = 3.0V; RS = GND and MR = GND; $-I_{O}$ = 100 μ A	2.8	3.0	-	2.8	_]	
		V_{CC} = 4.5V; RS = GND and MR = GND; $-I_{O}$ = 100 μ A	_	_	-	_			
		V_{CC} = 1.2V; RS = V_{CC} and MR = V_{CC} ; $-I_{O}$ = 100 μ A	1.0	1.2	_	1.0	-		
		V_{CC} = 2.0V; RS = V_{CC} and MR = V_{CC} ; $-I_{O}$ = 100 μ A	1.8	2.0	_	1.8	-]	
V_{OH}	HIGH level output voltage; R _{TC} output	V_{CC} = 2.7V; RS = V_{CC} and MR = V_{CC} ; $-I_{O}$ = 100 μ A	_	-	_	-	-	٧	
	Tric output	V_{CC} = 3.0V; RS = V_{CC} and MR = V_{CC} ; $-I_{O}$ = 100 μ A	2.8	3.0	_	2.8	-]	
		V_{CC} = 4.5V; RS = V_{CC} and MR = V_{CC} ; $-I_{O}$ = 100 μ A	_	_	-	_	_		
		V_{CC} = 1.2V; RS = V_{IH} and MR = V_{IL} ; $-I_{O}$ = 3.8mA		1.2	-	_	_		
	LIIOLLI seed seedseed	V_{CC} = 2.0V; RS = V_{IH} and MR = V_{IL} ; $-I_{O}$ = 3.8mA	_	-	-	-	_		
V_{OH}	HIGH level output voltage; C _{TC} output	V_{CC} = 2.7V; RS = V_{IH} and MR = V_{IL} ; $-I_{O}$ = 3.8mA	_	_	-	_	_	V	
	O TO output	V_{CC} = 3.0V; RS = V_{IH} and MR = V_{IL} ; $-I_{O}$ = 3.8mA	2.40	2.82	-	2.20	_		
		V_{CC} = 4.5V; RS = V_{IH} and MR = V_{IL} ; $-I_O$ = 3.8mA	_	-	_	-	-]	
		V_{CC} = 1.2V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 100 μ A	1.0	1.2	-	1.0	_		
	LIIOLLI seed seedseed	V_{CC} = 2.0V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 100 μ A	1.8	2.0	_	1.8	_	- V	
V_{OH}	HIGH level output voltage; except R _{TC} output	$\begin{aligned} V_{CC} &= 2.7V; \ V_I = V_{IH} \ \text{and} \ V_I = V_{IL}; \\ -I_O &= 100 \mu A \end{aligned}$	_	_	_	_			
	excebi KLC onibut	V_{CC} = 3.0V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 100 μ A	2.8	3.0	-	2.8	_		
		$V_{CC} = 4.5V$; $V_{I} = V_{IH}$ and $V_{I} = V_{IL}$; $-I_{O} = 100\mu A$	-	-	-	-	_		

1998 Jun 23 7

74LV4060

SYMBOL	PARAMETER	TEST CONDITIONS	-4	0°C to +8	5°C	-40°C to	+125°C	וואט	
		$V_{CC} = 1.2V$; $V_I = V_{IH}$ and $V_I = V_{IL}$; $-I_O = 6mA$	-	_	-	-	-		
	HIGH level output	V_{CC} = 2.0V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 6mA	-	-	-	-	-	1	
V_{OH}	voltage; except R _{TC} and	V_{CC} = 2.7V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 6mA	-	-	-	-	-	\ \	
	C _{TC} outputs	V_{CC} = 3.0V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 6mA	2.40	2.82	-	2.20	-		
		V_{CC} = 4.5V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 6mA	-	-	-	-	-		
		V_{CC} = 1.2V; RS = V_{CC} and MR = GND; $-I_{O}$ = 3.4mA	-	-	-	-	-		
		V_{CC} = 2.0V; RS = V_{CC} and MR = GND; $-I_{O}$ = 3.4mA	-	-	-	-	-	V	
V_{OL}	LOW level output voltage; R _{TC} output	V_{CC} = 2.7V; RS = V_{CC} and MR = GND; $-I_{O}$ = 3.4mA	-	-	-	-	-		
	Kilo odiput	V_{CC} = 3.0V; RS = V_{CC} and MR = GND; $-I_{O}$ = 3.4mA	-	0.25	0.40	-	0.50	٧	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	V						
			-	0	0.2	-	0.2		
		V_{CC} = 2.0V; RS = V_{CC} and MR = GND; $-I_{O}$ = 100 μ A	-	0	0.2	-	0.2		
V_{OL}	LOW level output voltage; R _{TC} output	V_{CC} = 2.7V; RS = V_{CC} and MR = GND; $-I_{O}$ = 100 μ A	-	-	-	-	-	V	
	KIC output	V_{CC} = 3.0V; RS = V_{CC} and MR = GND; $-I_{O}$ = 100 μ A	-	0	0.2	-	0.2		
		V_{CC} = 4.5V; RS = V_{CC} and MR = GND; $-I_{O}$ = 100 μ A	-	_	-	-	-		
		V_{CC} = 1.2V; RS = V_{IH} and MR = V_{IL} ; $-I_O$ = 3.8mA	-	-	-	-	-		
		V_{CC} = 2.0V; RS = V_{IH} and MR = V_{IL} ; $-I_O$ = 3.8mA	-	-	-	-	-		
V_{OL}	LOW level output voltage; C _{TC} output	V_{CC} = 2.7V; RS = V_{IH} and MR = V_{IL} ; $-I_O$ = 3.8mA	-	-	-	-	-	V	
	O TO Output	V_{CC} = 3.0V; RS = V_{IH} and MR = V_{IL} ; $-I_O$ = 3.8mA	-	0.25	0.40	-	0.50	1	
		V_{CC} = 4.5V; RS = V_{IH} and MR = V_{IL} ; $-I_O$ = 3.8mA	-	_	-	-	-	1	
		V_{CC} = 1.2V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 100 μ A	-	0	0.2	-	0.2		
		V_{CC} = 2.0V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 100 μ A	-	0	0.2	-	0.2	V	
V_{OL}	LOW level output voltage; except R _{TC} output	V_{CC} = 2.7V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 100 μ A	-	-	-	-	-		
	except tell output	V_{CC} = 3.0V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 100 μ A	-	0	0.2	-	0.2		
		$V_{CC} = 4.5V$; $V_I = V_{IH}$ and $V_I = V_{IL}$; $-I_O = 100\mu A$	-	-	-	-	-	1	

74LV4060

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-40°C to +85°C			-40°C to	UNIT	
		V_{CC} = 1.2V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 6mA	-	_	-	-	-	
V _{OL}	HIGH level output	V_{CC} = 2.0V; V_{I} = V_{IH} and V_{I} = V_{IL} ; $-I_{O}$ = 6mA	_	-	_	_	_	
	voltage; except R _{TC} and C _{TC} outputs	V_{CC} = 2.7V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 6mA	-	0.25	0.40	-	0.50	٧
		V_{CC} = 3.0V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 6mA	-	-	-	-	-	
		V_{CC} = 4.5V; V_I = V_{IH} and V_I = V_{IL} ; $-I_O$ = 6mA	_	_	-	_	_	
I _I	Input leakage current	$V_{CC} = 5.5V$; $V_I = V_{CC}$ or GND	_	_	1.0	-	1.0	μА
laa	Quiescent supply current	$V_{CC} = 3.6V; V_{I} = V_{CC} \text{ or GND}; I_{O} = 0$	_	_	20	_	160	μА
lcc	Quiescent supply current	$V_{CC} = 5.5V; V_{I} = V_{CC} \text{ or GND}; I_{O} = 0$	_	_	_	_	80] μΛ
Δl _{CC}	Additional quiescent supply current per input pin	$V_{CC} = 2.7V$ to 3.6V; $V_I = V_{CC} - 0.6V$; $I_O = 0$	_	-	500	_	850	μА

NOTE:

AC CHARACTERISTICS

GND = 0V; t_r = t_f = 2.5ns; C_L = 50pF; R_L = 500 Ω

SYMBOL	PARAMETER	WAVEFORM	CONDITION	_	LIMITS 40 to +85 °	С		IITS ⊦125 °C	UNIT
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	
			1.2	_	180	_	_	_	
	Dramanation dalace		2.0	_	52	84	_	105	
t _{PHL} /t _{PLH}	Propagation delay RS to Q ₃	Figures, 6, 8	2.7	_	42	66	_	83	ns
			3.0 to 3.6	_	33 ²	53	_	66	
			4.5 to 5.5	_	24	39	_	49	
Propagation delay			1.2	T -	40	_	_	_	
		2.0	T -	14	23	_	29		
	Propagation delay Q _n to Q _{n+1}	Figures 7, 8	2.7	_	10	16	-	20	ns
	-1[-2 -1] 		3.0 to 3.6	T -	8 ²	13	_	16	
			4.5 to 5.5	T -	6	9	_	11	
		Figures 7, 8	1.2	_	100	_	_	_	ns
	Dona and the state of		2.0	T -	29	46	_	58	
t _{PHL}	Propagation delay MR to Q _n		2.7	T -	24	39	_	49	
			3.0 to 3.6	_	19 ²	31	_	39	
			4.5 to 5.5	_	14	23	_	29	
			2.0	34	9	_	38	_	
t	Clock pulse width	Figure 6	2.7	25	6	_	30	_	ns
t _W	RS; HIGH or LOW	Figure 0	3.0 to 3.6	20	5	_	24	-	115
			4.5 to 5.5	16	4	-	20	-	
			2.0	34	10	-	38	-	
, tu,	Master reset pulse	Figure 7	2.7	25	8	_	30	-	ns
t₩	width MR; HIGH		3.0 to 3.6	20	6	-	24	-	
			4.5 to 5.5	16	4	_	20	_	

^{1.} All typical values are measured at T_{amb} = 25°C.

14-stage binary ripple counter with oscillator

74LV4060

SYMBOL	PARAMETER	WAVEFORM	CONDITION	LIMITS -40 to +85 °C			LIM -40 to -	UNIT	
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	
			2.0	29	18	_	37	_	
t _{rem} Removal time MR to RS	Removal time	Figure /	2.7	26	16	_	32	-	ns
	MR to RS		3.0 to 3.6	18	11	_	23	-	113
			4.5 to 5.5	12	7	_	15	-	
			2.0	14	40	_	9	-	
f f	Maximum clock	Figure 6	2.7	19	70	_	12	-	MHz
f _{max}	pulse frequency	oulse frequency	3.0 to 3.6	24	90	_	15	_	1711 12
			4.5 to 5.5	30	100	_	19	_	

10

NOTE:

Unless otherwise stated, all typical values are at $T_{amb} = 25$ °C. 1. Typical value measured at $V_{CC} = 3.3$ V.

- 2. Typical value measured at $V_{CC} = 5.0V$.

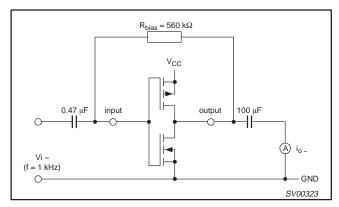


Figure 1.

Test set-up for measuring forward transconductance $g_{fs} = di_o/dv_i$ at v_o is constant (see also graph Figure 2); MR = LOW.

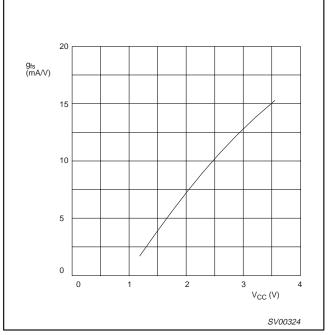


Figure 2.

Typical forward transconductance g_{fs} as a function of the supply voltage V_{CC} at T_{amb} = 25°C.

14-stage binary ripple counter with oscillator

74LV4060

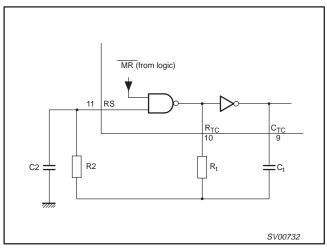


Figure 3.

Example of an RC oscillator. Typical formula for oscillator frequency:

$$f_{OSC} = \frac{1}{2.5 \times R_t \times C_t}$$

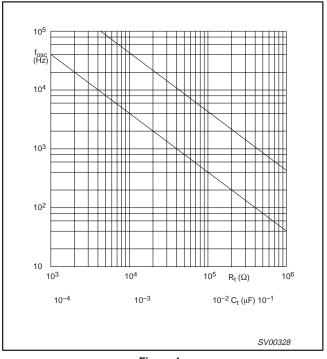


Figure 4.

RC oscillator frequency as a function of R_t and C_t at V_{CC} = 1.2 to 3.6 V; T_{amb} = 25 °C. C_t curve at R_t = 100 k Ω ; R2 = 200 k Ω . R_t curve at C_t = 1 nF; R2 = 2 x R_t.

TIMING COMPONENTS LIMITATIONS

The oscillator frequency is mainly determined by $R_t \cdot C_t$, provided $R2 \approx 2R_t$ and $R2 \cdot C2 \ll R_t \cdot C_t$. The function of R2 is to minimize the influence of the forward voltage across the input protection diodes on the frequency. The stray capacitance C2 should be kept as small as possible. In consideration of accuracy, C_t must be larger than the inherent stray capacitance. R_t must be larger than the 'ON' resistance in series with it, which typically is $280~\Omega$ at $V_{CC} = 1.2~V$, $130~\Omega$ at $V_{CC} = 2.0~V$ and $100~\Omega$ at $V_{CC} = 3.0~V$. The recommended values for these components to maintain agreement with the typical oscillation formula are: $C_t > 50$ pF, up to any practical value, $10~k\Omega < R_t < 1~M\Omega$. In order to avoid start-up problems, $R_t \ge 1~k\Omega$.

14-stage binary ripple counter with oscillator

74LV4060

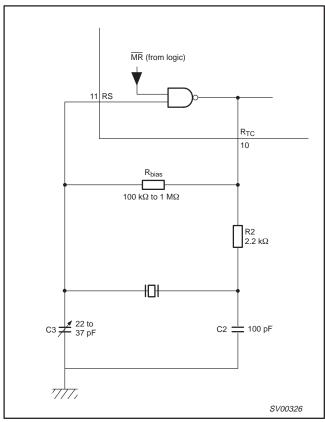


Figure 5. External components connection for a typical crystal oscillator

R2 is the power limiting resistor. For starting and maintaining oscillation, a minimum transconductance is necessary, so R2 should not be too large. A practical value for R2 is 2.2 k Ω .

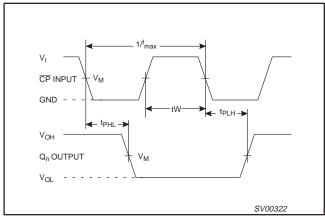


Figure 6.

Waveforms showing the clock (RS) to output (Q3) propagation delays, the clock pulse width, the output transition times and the maximum clock frequency.

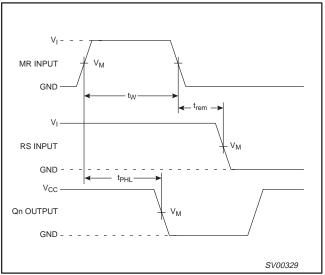


Figure 7.

Waveforms showing the master reset (MR) pulse width, the master reset to output (Qn) propagation delays and the master reset to clock (RS) removal time.

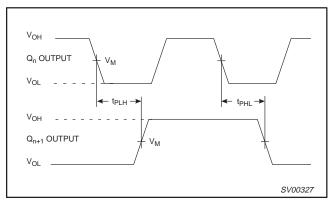


Figure 8.

Waveforms showing the output Q_n to output n+1 propagation delays.

NOTES:

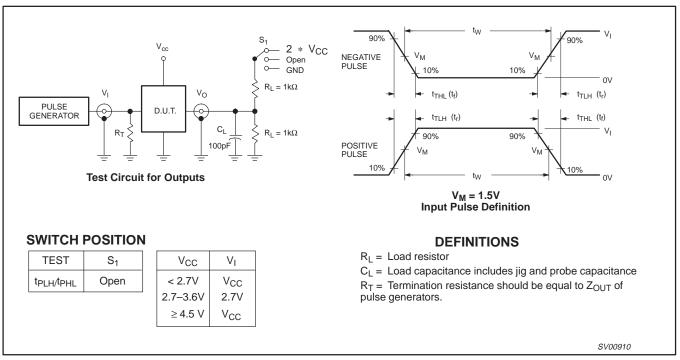
12

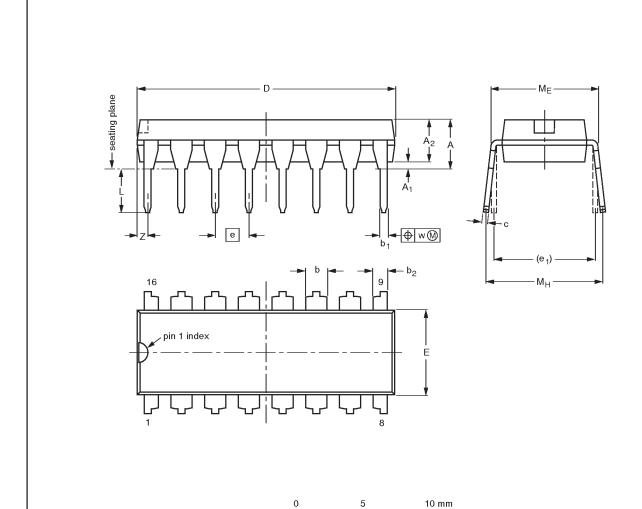
- 1. V_M = 1.5 V at V_{CC} ≥ 2.7 V and ≤ 3.6 V V_M = 0.5 · V_{CC} at V_{CC} < 2.7 V and ≥ 4.5 V.
 2. V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

14-stage binary ripple counter with oscillator

74LV4060

TEST CIRCUIT




Figure 9. Load circuitry for switching times.

1998 Jun 23 13

74LV4060

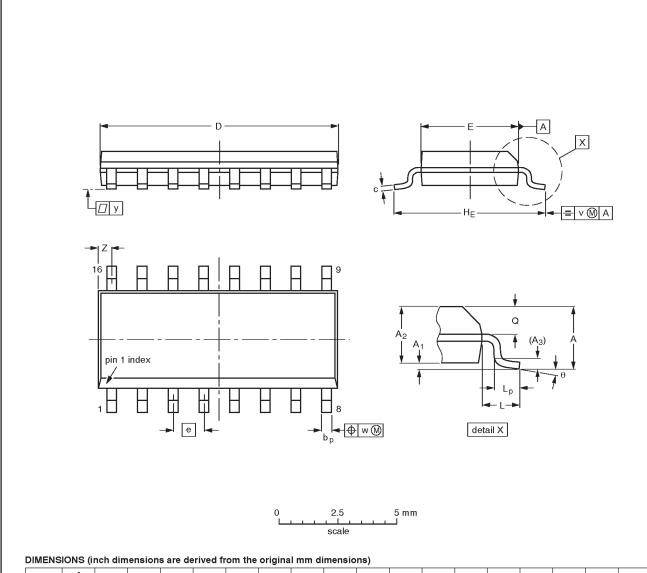
DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.030

Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT38-4					92-11-17 95-01-14

74LV4060

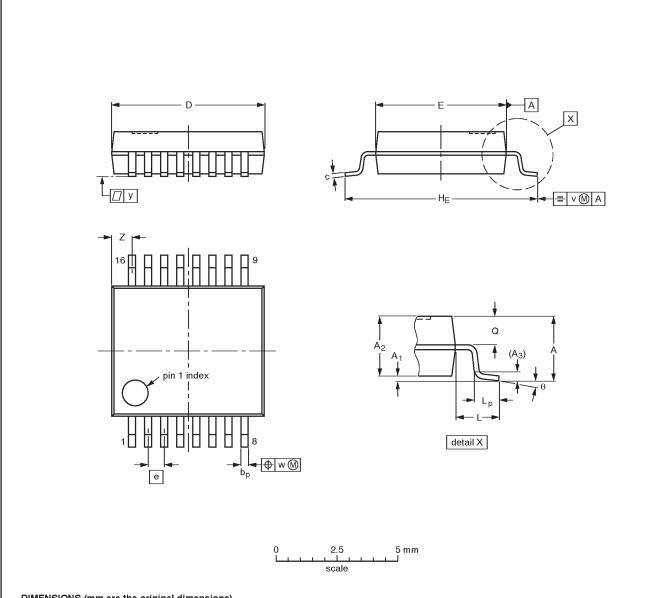
SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	A max.	Α1	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	٦	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.0098 0.0039		0.01	l	0.0098 0.0075	0.39 0.38	0.16 0.15	0.050	0.24 0.23	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT109-1	076E07\$	MS-012AC			91-08-13 95-01-23

1998 Jun 23 15

74LV4060

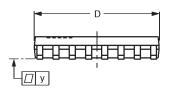
SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

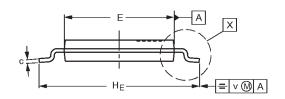
SOT338-1

DIMENSIONS (mm are the original dimensions)

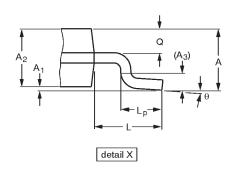
UNIT	A max.	A ₁	A ₂	A ₃	рb	c	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

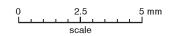
Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT338-1		MO-150AC			94-01-14 95-02-04


74LV4060


TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm


SOT403-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	Α1	A ₂	A ₃	рb	c	D ⁽¹⁾	E ⁽²⁾	Φ	HE	٦	Lp	Ø	v	w	у	Z ⁽¹⁾	θ
mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT403-1		MO-153			-94-07-12 95-04-04

14-stage bunary ripple counter with oscillator

74LV4060

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 08-98

Document order number: 9397-750-04658

Let's make things better.

Philips Semiconductors

