Synchronous UP/Down Decade Counter Synchronous Up/Down 4-bit binary Counter

HITACHI

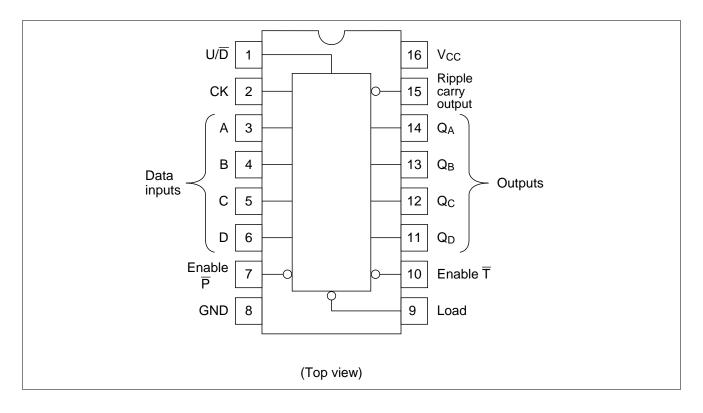
Description

This synchronous presettable decade counter features an internal carry look-ahead for cascading in highspeed counting applications. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the countenable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple-clock) counters.

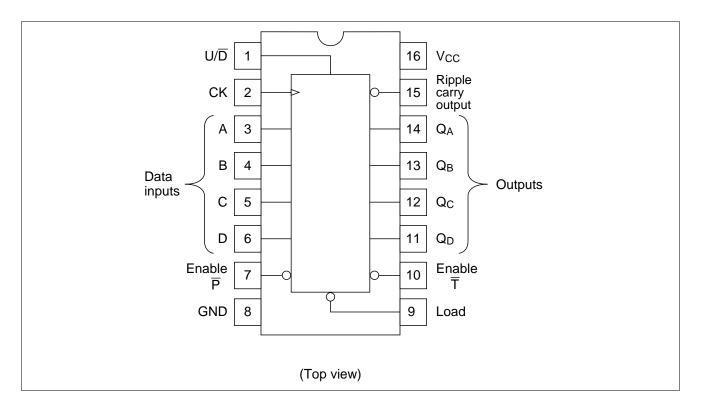
A buffered clock input triggers the four master-slave flip-flops on the rising (positive going) edge of the clock waveform. This counter is fully programmable; that is, the outputs may each be preset to either level. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count enable inputs and a carry output. Both count enable inputs (\overline{P} and \overline{T}) must be low to count. The direction of the count is determined by the level of the up/down input. when the input is high, the counter counts up; when low, it counts down. Input \overline{T} is fed forward to enable the carry output. The carry output thus enabled will produce a low-level output pulse with a duration approximately equal to the high portion of the Q_A output when counting up and approximately equal to the low portion of the Q_A output when counting down. This low level overflow carry pulse can be used to enable successive cascaded stages. Transitions at the enable \overline{P} or \overline{T} inputs are allowed regardless of the level of the clock input. All inputs are diode-clamped to minimize transission-line effects, thereby simplifying system design. This counter features a fully independent clock circuit. Changes at control inputs (enable \overline{P} , Enable \overline{T} , load, up/down) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

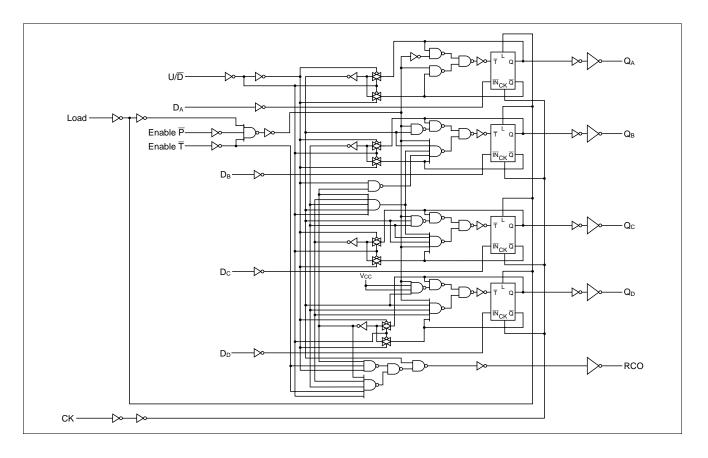
Features


- High Speed Operation
- High Output Current: Fanout of 10 LSTTL Loads
- Wide Operating Voltage: $V_{CC} = 2 \text{ to } 6 \text{ V}$
- Low Input Current: 1 µA max

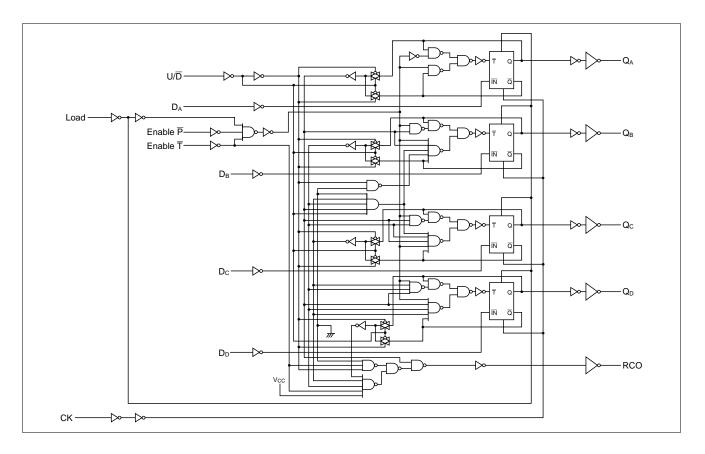
• Low Quiescent Supply Current: I_{CC} (static) = 4 μ A max (Ta = 25°C)


Pin Arrangement

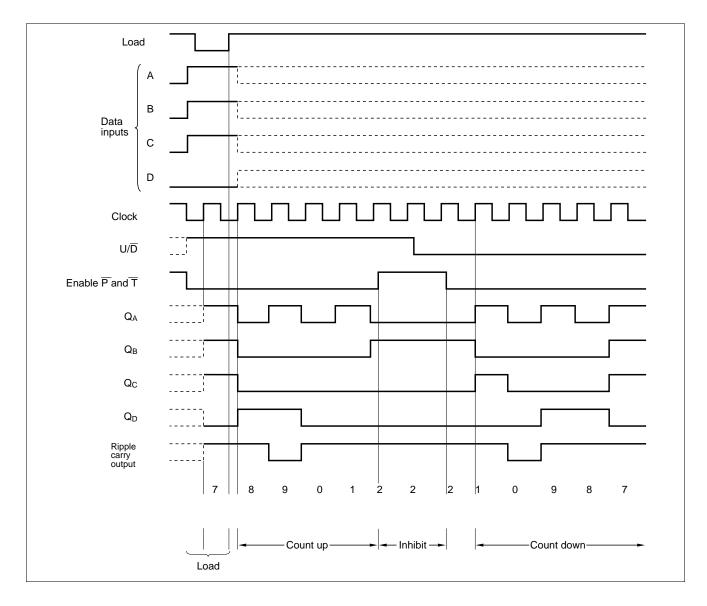
HD74HC668


HITACHI

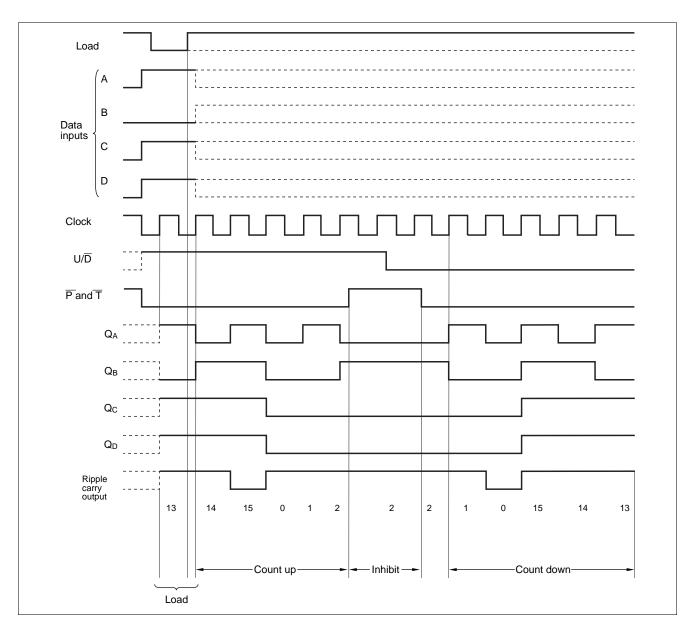
HD74HC669


Logic Diagram

HD74HC668


HITACHI

HD74HC669


Timing Chart

HD74HC668

HITACHI

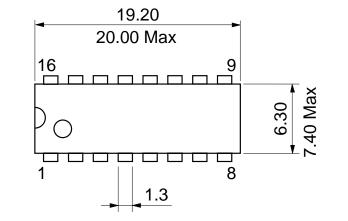
HD74HC669

DC Characteristics

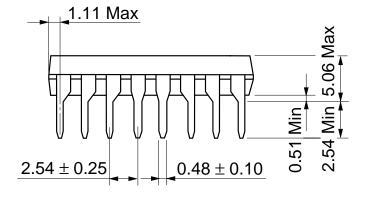
			Ta =	: 25°C		Ta = - +85°C	-40 to C			
ltem	Symbol	V _{cc} (V)	Min	Тур	Мах	Min	Max	Unit	Test Condition	ns
Input voltage	V _{IH}	2.0	1.5	—	—	1.5	_	V		
		4.5	3.15	—	—	3.15	—	_		
		6.0	4.2	—	—	4.2	_	_		
	V _{IL}	2.0		_	0.5	_	0.5	V		
		4.5		_	1.35	_	1.35	_		
		6.0	_	_	1.8	_	1.8	_		
Output voltage	V _{OH}	2.0	1.9	2.0	_	1.9	_	V	$Vin = V_{IH} \text{ or } V_{IL}$	I _{OH} = -20 μA
		4.5	4.4	4.5	_	4.4	_	_		
		6.0	5.9	6.0	—	5.9	_	_		
		4.5	4.18	_	_	4.13	_	_		I _{он} =4 mА
		6.0	5.68	_	_	5.63	_	_		I _{он} = –5.2 mA
	V _{OL}	2.0	—	0.0	0.1	_	0.1	V	$Vin = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 20 \ \mu A$
		4.5		0.0	0.1	_	0.1	_		
		6.0	_	0.0	0.1	_	0.1	_		
		4.5		_	0.26	_	0.33	_		$I_{OL} = 4 \text{ mA}$
		6.0	_	_	0.26	_	0.33	_		I _{oL} = 5.2 mA
Input current	lin	6.0	_	_	±0.1	—	±1.0	μΑ	$Vin = V_{cc} \text{ or } GN$	ND
Quiescent supply current	I _{cc}	6.0		—	4.0	_	40	μΑ	Vin = V _{cc} or G	ND, lout = $0 \mu A$

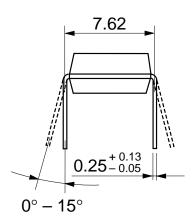
HITACHI

AC Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

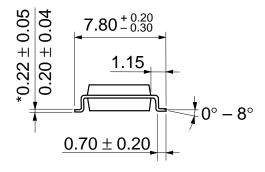

			Ta =	: 25°C	;	Ta = ∙ +85°(–40 to C		
Item	Symbol	V _{cc} (V)	Min	Тур	Мах	Min	Max	Unit	Test Conditions
Maximum clock	f _{max}	2.0	_	_	5	_	4	MHz	
Frequency		4.5		_	27	_	21	_	
		6.0	_	_	32	_	25	_	
Propagation delay	t _{PLH}	2.0		_	200		250	ns	Clock to Ripple carry out
time	t _{PHL}	4.5	_	_	40		50	_	
		6.0	_	_	34	_	43	_	
	t _{PLH}	2.0		_	225		280	ns	Clock to Q
	t _{PHL}	4.5		_	45	_	56	_	
		6.0		_	38		48	_	
	t _{PLH}	2.0		_	150		190	ns	Enable \overline{T} to Ripple carry out
	t _{PHL}	4.5		_	30		38	_	
		6.0	_	_	26	_	33	_	
	t _{PLH}	2.0		_	200	_	250	ns	U/D to Ripple carry out
	t _{PHL}	4.5	_	_	40		50	_	
		6.0	_	_	34	_	43	_	
Pulse width	t _w	2.0	80	_	_	100	_	ns	
		4.5	16	_	_	20	_	_	
		6.0	14	_	_	17	_	_	
Setup time	t _{su}	2.0	100	_	_	125	_	ns	Data to Clock
		4.5	20	_	_	25	_	_	
		6.0	17	_	_	21	_	_	
	t _{su}	2.0	150	_	_	190	_	ns	Enable \overline{P} , \overline{T} to Clock
		4.5	30	_	_	38	_	_	
		6.0	26	_	_	33		_	
	t _{su}	2.0	150	_	_	190	_	ns	Loadk to Clock
		4.5	30	_	_	38	_	-	
		6.0	26	_	_	33	_	-	
	t _{su}	2.0	150	_	_	190	_	ns	U/D to Clock
		4.5	30	_	_	38	_	-	
		6.0	26	_	_	33	_	_	

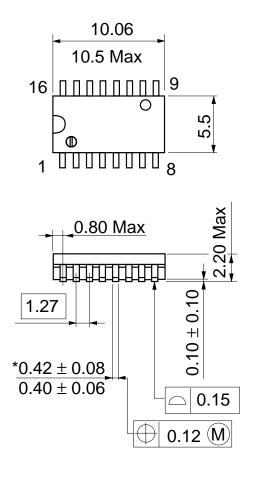
			Ta = −40 to Ta = 25°C +85°C						
ltem	Symbol	V _{cc} (V)	Min	Тур	Мах	Min	Max	Unit	Test Conditions
Hold time	t _h	2.0	5		_	5	_	ns	
		4.5	5	—	—	5	—		
		6.0	5	_		5	—	_	
Output rise/fall	t _{TLH}	2.0	—		75		95	ns	
time	t_{THL}	4.5		5	15		19	_	
		6.0	_	_	13		16	_	
Input capacitance	Cin	_	_	5	10		10	рF	


AC Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$) (cont)

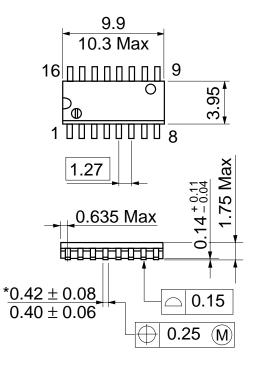

HITACHI

Unit: mm

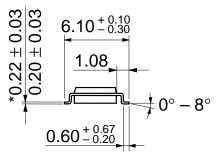



Hitachi Code	DP-16
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	1.07 g

Unit: mm

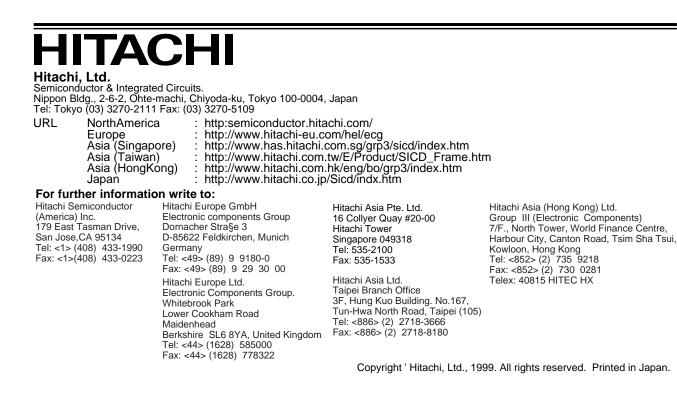


Hitachi Code	FP-16DA
JEDEC	
EIAJ	Conforms
Weight (reference value)	0.24 g


*Dimension including the plating thickness Base material dimension

Unit: mm

*Dimension including the plating thickness Base material dimension



Hitachi Code	FP-16DN
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.15 g

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

