Spread Spectrum M ultiplier C lock

D escription

The M K1714-02 is a low cost, high performance clock synthesizer with selectable multipliers and spread amounts (percentages), designed to generate high frequency clocks with low EM I. U sing analog/digital Phase-Locked Loop (PLL) techniques, the device accepts an inexpensive, fundamental mode, parallel resonant crystal, or a clock input to produce a spread, or dithered, output, thereby reducing the frequency amplitude peaks by several dB . The OE pin puts both outputs into a high impedance state for board level testing. The PD \# pin powers down the entire chip, and the outputs are held low.

Features

- Packaged in 20 pin tiny SSO P (Q SO P)
- O perating VDD of 3.3 V or 5 V
- M ultiplier modes of $x 1, x 2, x 3, x 4, x 5$, and $x 6$
- Inexpensive $10-25 \mathrm{M} \mathrm{H} \mathrm{z} \mathrm{crystal}$,
- O E pin tri-states the outputs for testing
- Power down pin stops the outputs low
- Selectable frequency spread
- Spread can be turned on or off
- Duty cycle of $40 / 60$
- Advanced, low power CM OS process
- Industrial temperature range available

Block D iagram

Pin Assignment

$\times 2 \square 1$	20	- REF
X1/ICLK $\square 2$	19	$\square \mathrm{OE}$
VDD $\square 3$	18	PD
VDD $\square 4$	17	$\square G N D$
S4 - 5	16	- S0
S3 $\square 6$	15	$\square \mathrm{NC}$
GND $\square 7$	14	S1
GND $\square 8$	13	GND
S2 $\square 9$	12	\square LEE
	11	
CLK 10	11	L

20 pin. 150 mil SSO P (Q SO P)

Pin Descriptions

| Pin \# | Name | Type | D escription |
| :---: | :---: | :---: | :--- | :--- |
| 1 | X2 | XO | Crystal connection. Connect to parallel mode crystal. Leave open for clock. |
| 2 | X1/ICLK | XI | Crystal connection. Connect to parallel mode crystal, or clock. |
| 3 | VDD | P | Connect to VDD. M ust be same value as other V VD. |
| 4 | VDD | P | Connect to VDD. M ust be same value as other VDD. D ecouple with pin 7. |
| 5 | S4 | I(D) | Select pin number 4. Determines multiplier and spread amount per table on following page. |
| 6 | S3 | I | Select pin number 3. D etermines multiplier and spread amount per table on following page. |
| 7 | GND | P | Connect to ground. |
| 8 | GND | P | Connect to ground. |
| 9 | S2 | I | Select pin number 2. D etermines multiplier and spread amount per table on following page. |
| 10 | CLK | O | Clock output which depends on the input, multiplier and spread amount per table on page 3. |
| 11 | XSEL | I | Connect to VDD for crystal input, or GND for CLK input. |
| 12 | LEE | I | Low EM I Enable. Turns on the Spread spectrum when high. |
| 13 | GND | P | Connect to ground. |
| 14 | S1 | I | Select pin number 1. D etermines multiplier and spread amount per table on following page. |
| 15 | NC | - | No Connect. |
| 16 | S0 | I | Select pin number 0. D etermines multiplier and spread amount per table on following page. |
| 17 | GND | P | Connect to ground. |
| 18 | $\overline{\text { PD }}$ | I | Power D own. Turns off the chip when low. Outputs stop low. |
| 19 | OE | I | Output Enable. Tri-states all outputs when low. |
| 20 | REF | O | Reference clock output from crystal oscillator. |

K ey: I =Input with internal pull-up; I(D) = Input with internal pull-down; XO/XI = crystal connections; $0=$ output; $\mathrm{P}=$ power supply connection

M K 1714-02 Spread Spectrum M ultiplier C lock

Clock 0 utput Select Table (in MHz)

S4	S3	S2	S1	S0	Input R ange	M ultiplier	O utput R ange	D irection	Amount (\%)	3.3/5V
0	0	0	0	0	40-80	x1	40-80	C	± 0.75	Both
0	0	0	0	1	60-120	X1	60-120	DC	+0.25, -0.75	Both
0	0	0	1	0	40-80	x1	40-80	C	± 1.25	Both
0	0	0	1	1	80-150	x1	80-150	C	± 0.75	Both
0	0	1	0	0	10-30	x2	20-60	C	± 0.75	Both
0	0	1	0	1	20-60	x2	40-120	C	± 0.5	Both
0	0	1	1	0	10-25	X2	20-50	DC	+0.25, -1.5	Both
0	0	1	1	1	20-60	x2	40-120	DC	+0.5, -1.0	Both
0	1	0	0	0	20-30	x3	60-90	C	± 0.5	Both
0	1	0	0	1	40-75	x2	80-150	C	± 0.75	Both
0	1	0	1	0	40-100	x1	40-100	DC	+0.25, -1.5	Both
0	1	0	1	1	40-75	x2	80-150	DC	+0.25, -1.5	Both
0	1	1	0	0	20-40	x1	20-40	DC	+0.5, -2.0	3.3 V
0	1	1	0	1	20-60	x1	20-60	DC	+0.25, -1.5	Both
0	1	1	1	0	10-20	x1	10-20	DC	+0.5, -2.0	Both
0	1	1	1	1	10-30	X1	10-30	DC	+0.25, -1.5	Both
1	0	0	0	0	20-37.5	X4	80-150	DC	+0.25, -1.25	Both
1	0	0	0	1	20-40	x3	60-120	DC	+0.25, -1.5	Both
1	0	0	1	0	10-30	x1	10-30	C	± 0.75	Both
1	0	0	1	1	20-30	x1	20-30	D	-0.5	Both
1	0	1	0	0	5-20	X2	10-40	DC	+0.25, -2.25	3.3 V
1	0	1	0	1	20-50	x3	60-150	D	-0.25, -2.25	Both
1	0	1	1	0	20-37.5	X4	80-150	C	± 0.75	Both
1	0	1	1	1	80-150	X1	80-150	D C	+0.25, -1.25	Both
1	1	0	0	0	10-25	X4	40-100	C	± 0.75	Both
1	1	0	0	1	10-20	x5	50-100	C	± 0.75	Both
1	1	0	1	0	10-20	x6	60-120	C	± 0.75	Both
1	1	0	1	1	20-50	x1	20-50	C	± 0.75	Both
1	1	1	0	0	10-25	X4	40-100	DC	+0.25, -1.5	Both
1	1	1	0	1	10-20	x5	50-100	DC	+0.25, -1.25	Both
1	1	1	1	0	10-20	x6	60-120	D	-1.5	Both
1	1	1	1	1	10-30	x1	10-30	C	± 0.75	Both

For S4:S0, 0 = connect to GND , 1 = connect to VD D.
D irection: $C=C$ enter spread, $D=D$ own spread, $D C=D$ own $+C$ enter spread.
Amount equals the spread amount. So for a 40 M Hz output clock spread down 1%, the lowest frequency is 39.60 M Hz .

C ontact ICS with your exact output frequency for details on spread direction and amount. Spread Spectrum M ultiplier C lock

Electrical Specifications

Parameter	Conditions	M inimum	Typical	M aximum	Units
ABSO LUTE M AXIM U M RATIN GS (note 1)					
Supply voltage, VDD	Referenced to GND			7	V
Inputs and Clock O utputs	R eferenced to GND	-0.5		VDD +0.5	V
Ambient O perating T emperature		0		70	${ }^{\circ} \mathrm{C}$
	M K 1714-02RI only	-40		85	${ }^{\circ} \mathrm{C}$
Soldering Temperature	M ax of 10 seconds			260	${ }^{\circ} \mathrm{C}$
Storage temperature		-65		150	${ }^{\circ} \mathrm{C}$
D C C H ARAC TERISTICS (VD D $=3.3 \mathrm{~V}$ or 5V unless noted)					
O perating Voltage, VDD		3.0		5.5	V
Input High Voltage, VIH, XI/ICLK only	Clock input	VDD/2 +1	VDD/2		V
Input Low Voltage, VIL, X1/ICLK only	Clock input		VDD/2	VDD/2-1	V
Input High Voltage, VIH	Select inputs, OE, PD	2			V
Input Low Voltage, VIL	Select inputs, OE, PD			0.8	V
O utput High Voltage, VOH	VDD $=3.3 \mathrm{~V}, 10 \mathrm{H}=8 \mathrm{~mA}$	2.4			V
O utput Low V oltage, VOL	$\mathrm{VDD}=3.3 \mathrm{~V}, 10 \mathrm{~L}=8 \mathrm{~mA}$			0.4	V
Output High Voltage, VOH , VDD $=3.3$ or 5V	$10 \mathrm{H}=8 \mathrm{~mA}$	VDD-0.4			V
O perating Supply Current, ID , at 5 V	No Load, note 2		40		mA
O perating Supply Current, ID , at 3.3V	No Load, note 2		26		mA
Short C ircuit Current, VDD $=3.3$	Each output		± 50		mA
Input Capacitance	Except X1, X2		7		pF
Internal Pull-up or Pull-down Resistor	Except X1		500		$\mathrm{k} \Omega$
AC CHARACTERISTICS (VDD $=3.3 \mathrm{~V}$ or 5V unless noted)					
Input C rystal Frequency		10		25	M Hz
Input Clock Frequency	See page 3	10		150	M Hz
Output Clock Rise Time	0.8 to 2.0V, no load			1.5	ns
O utput Clock Fall Time	2.0 to 0.8V, no load			1.5	ns
O utput Clock D uty Cycle	At VDD/2	40	50	60	\%
O ne Sigma Jitter, CLK			40		ps
Absolute Jitter, CLK			± 160		ps

N otes: 1. Stresses beyond those listed under Absolute M aximum Ratings could cause permanent damage to the device. Prolonged exposure to levels above the operating limits but below the Absolute M aximums may affect device reliability.
2. Multiplier of xl , all clocks at highest frequencies.

External C omponents

The M K 1714 requires a minimum number of external components for proper operation. D ecoupling capacitors of $0.01 \mu \mathrm{~F}$ should be connected between VDD and GND (on pins 4 and 7), as close to the chip as possible. A series termination resistor of 33Ω may be used for each clock output. The crystal must be connected as close to the chip as possible. The crystal should be a fundamental mode and parallel resonant. If accurate tuning is required, crystal capacitors should be connected from pins X1 to ground and X2 to ground. The value of these capacitors is given by the following equation, where C_{L} is the crystal load capacitance: C rystal caps $(\mathrm{pF})=\left(\mathrm{C}_{\mathrm{L}}-6\right) \times 2$. So for a crystal with 20 pF load capacitance, two 28 pF caps should be used. If a clock input is used, drive it into X1 and leave X2 unconnected.

Package 0 utline and Package D imensions
 (For current dimensional specifications, see JED EC Publication No.95.)

20 pin SSO P

	Inches		M illimeters			
Symbol	M in	M ax	M in	M ax		
A	0.053	0.069	1.35	1.75		
A1	0.004	0.010	0.10	0.25		
b	0.008	0.012	0.20	0.30		
c	0.007	0.010	0.19	0.25		
D	0.337		0.344	8.56		8.74
e	.025 BSC		0.65 BSC			
E	0.228	0.244	5.79	6.20		
E1	0.150	0.157	3.81	3.99		
L	0.016	0.050	0.41	1.27		

0 rdering Information

Part/O rder N umber	M arking	Package	Shipping	Temperature
M K1714-02R	M K1714-02R	20 pin SSO P	Tubes	0 to $70^{\circ} \mathrm{C}$
M K1714-02RTR	M K1714-02R	20 pin SSO P	Tape and Reel	0 to $70^{\circ} \mathrm{C}$
M K1714-02RI	M K1714-02RI	20 pin SSO P	Tubes	-40 to $85^{\circ} \mathrm{C}$
M K1714-02RITR	M K1714-02RI	20 pin SSO P	Tape and Reel	-40 to $85^{\circ} \mathrm{C}$

W hile the information presented herein has been checked for both accuracy and reliability, Integrated C ircuit Systems, Incorporated (IC S) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

