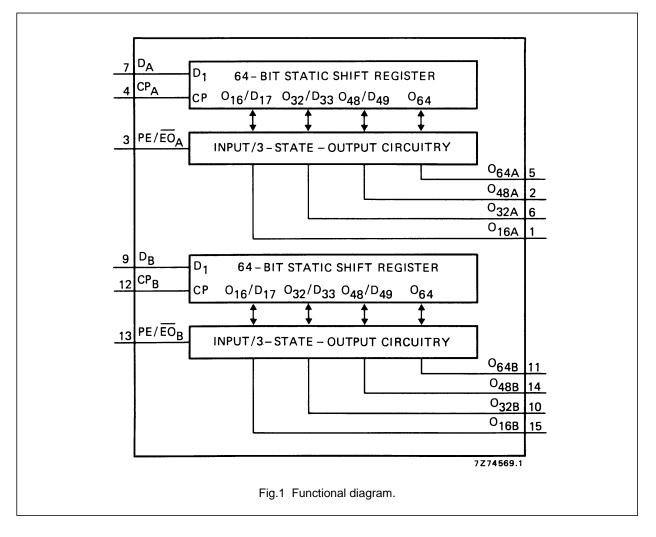

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04

HEF4517B

LSI

Dual 64-bit static shift register

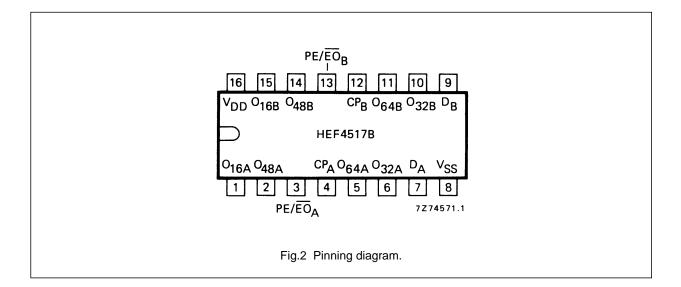

DESCRIPTION

The HEF4517B consists of two identical, independent 64-bit static shift registers. Each register has separate clock (CP), data input (D), parallel

input-enable/output-enable (PE/ \overline{EO}) and four 3-state outputs of the 16th, 32nd, 48th and 64th bit positions (O₁₆ to O₆₄). Data at the D input is entered into the first bit on the LOW to HIGH transition of the clock, regardless of the state of PE/ \overline{EO} .

When PE/\overline{EO} is LOW the outputs are enabled and the device is in the 64-bit serial mode.

When PE/ \overline{EO} is HIGH the outputs are disabled (high impedance OFF-state), the 64-bit shift register is divided into four 16-bit shift registers with D, O₁₆, O₃₂ and O₄₈ as data inputs of the 1st, 17th, 33rd, and 49th bit respectively. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.



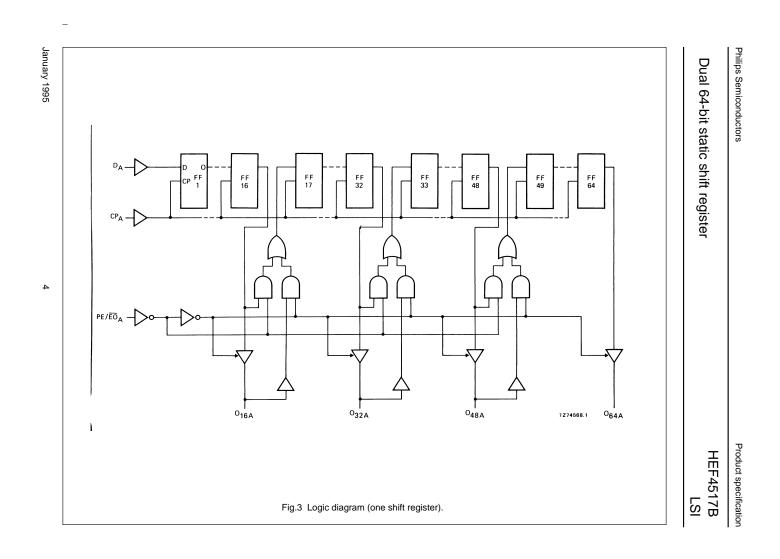
FAMILY DATA, I_{DD} LIMITS category LSI

See Family Specifications

Dual 64-bit static shift register

HEF4517B LSI

HEF4517BF(IN). To-lead DIL, plastic (SO136-1)	HEF4517BP(N):	16-lead DIL; plastic (SOT38-1)
---	---------------	--------------------------------


HEF4517BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4517BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

PINNING

CP _A , CP _B	clock inputs
PE/\overline{EO}_A , PE/\overline{EO}_B	parallel input-enable/output-enable inputs
D _A , D _B	data inputs
O _{16A} , O _{32A} , O _{48A}	3-state outputs/inputs
O _{16B} , O _{32B} , O _{48B}	3-state outputs/inputs
O _{64A} , O _{64B}	3-state outputs

_

FUNCTION TABLE

INPUTS				INPUTS	NODE		
СР	D	PE/EO	O ₁₆	O ₃₂	O ₄₈	O ₆₄	MODE
5	data entered into 1st bit	L	content of 16th bit displayed	content of 32nd bit displayed	content of 48th bit displayed	content of 64th bit displayed	One 64-bit shift register. The content of the shift register is shifted over one stage
5	data entered into 1st bit	Н	data at O ₁₆ entered into 17th bit	data at O ₃₂ entered into 33rd bit	data at O_{48} entered into 49th bit	remains in 'Z' state	Four 16-bit shift register. The content of the shift registers is shifted over one stage.
r	Х	L	no change	no change	no change	no change	no change
٦	Х	Н	Z	Z	Z	Z	no change

Notes

J

- 1. H = HIGH state (the more positive voltage)
 - $\begin{array}{l} \mathsf{H} = \mathsf{HiGH} \text{ state (the more positive voltage} \\ \mathsf{L} = \mathsf{LOW} \text{ state (the less positive voltage}) \\ \mathsf{X} = \mathsf{state is immaterial} \\ \mathsf{Z} = \mathsf{high impedance state} \\ \boldsymbol{f} = \mathsf{positive-going transition} \\ \boldsymbol{\chi} = \mathsf{negative-going transition} \end{array}$

Philips Semiconductors

Dual 64-bit static shift register

Product specification

HEF4517B LSI

Dual 64-bit static shift register

HEF4517B LSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	7 000 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	28 000 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	70 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = sum of outputs$
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS

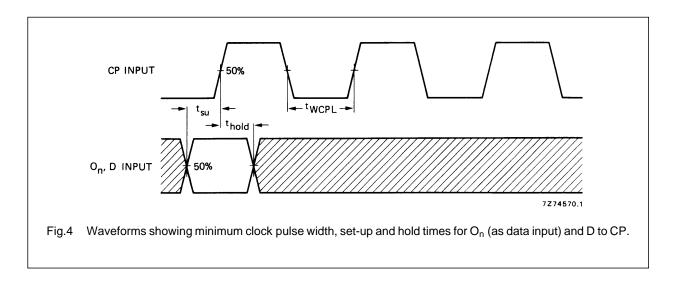
 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \to O_n$	5			220	440	ns	193 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		85	170	ns	74 ns + (0,23 ns/pF) C _L
	15			60	120	ns	52 ns + (0,16 ns/pF) C _L
	5			190	380	ns	163 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		75	150	ns	64 ns + (0,23 ns/pF) C _L
	15			50	100	ns	42 ns + (0,16 ns/pF) C _L
Output transition							
times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

HEF4517B

LSI

Dual 64-bit static shift register


AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		
Minimum clock	5			95	190	ns	
pulse width; LOW	10	t _{WCPL}		40	80	ns	
	15			30	60	ns	
Set-up times	5		30	10		ns	
O_n , $D \rightarrow CP$	10	t _{su}	25	5		ns	see also waveforms Fig.4.
	15		20	5		ns	1 19.4.
Hold time	5		45	15		ns	-
O_n , $D \rightarrow CP$	10	t _{hold}	30	10		ns	
	15		25	10		ns	
3-state propagation							
delays							
Output disable times							
$PE/\overline{EO} \rightarrow O_n$	5			40	80	ns	
HIGH	10	t _{PHZ}		30	60	ns	
	15			25	50	ns	
	5			50	100	ns	
LOW	10	t _{PLZ}		30	60	ns	
	15			25	50	ns	
Output enable times							
$PE/\overline{EO} \rightarrow O_n$	5			45	90	ns	
HIGH	10	t _{PZH}		25	50	ns	
	15			20	40	ns	
	5			60	120	ns	
LOW	10	t _{PZL}		30	60	ns	
	15			25	50	ns	
Maximum clock	5		2	5		MHz	
pulse frequency	10	f _{max}	6	12		MHz	
	15		8	16		MHz	

Dual 64-bit static shift register

HEF4517B LSI

