INTEGRATED CIRCUITS

File under Integrated Circuits, IC04

Semiconductors

Philips

HEF4069UB gates

DESCRIPTION

The HEF4069UB is a general purpose hex inverter. Each of the six inverters is a single stage.

January 1995

HEF4069UBP(N):	14-lead DIL; plastic			
	(SOT27-1)			
HEF4069UBD(F):	14-lead DIL; ceramic (cerdip)			
	(SOT73)			
HEF4069UBT(D):	14-lead SO; plastic			
	(SOT108-1)			
(): Package Designator North America				

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications for $V_{\text{IH}}/V_{\text{IL}}$ unbuffered stages

HEF4069UB gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.	TYPICAL EXT	RAPOLATION FORMULA
Propagation delays	5		45	90 ns	18 ns + (0),55 ns/pF) C _L
$I_n \rightarrow O_n$	10	t _{PHL}	20	40 ns	9 ns + (0),23 ns/pF) C _L
HIGH to LOW	15		15	25 ns	7 ns + (0	0,16 ns/pF) C _L
	5		40	80 ns	13 ns + (0),55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	20	40 ns	9 ns + (0),23 ns/pF) C _L
	15		15	30 ns	7 ns + (0	0,16 ns/pF) C _L
Output transition times	5		60	120 ns	10 ns + (1	1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60 ns	9 ns + (0	0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0	0,28 ns/pF) C _L
	5		60	120 ns	10 ns + (1	1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60 ns	9 ns + (0),42 ns/pF) C _L
	15		20	40 ns	6 ns + (0	0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	$600 \text{ f}_{i} + \sum (f_{o}C_{L}) \times V_{DD}^{2}$	where
dissipation per	10	4 000 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	22 000 f _i + Σ (f _o C _L) × V _{DD} ²	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			Σ (f _o C _L) = sum of outputs
			V _{DD} = supply voltage (V)

HEF4069UB

Hex inverter

HEF4069UB gates

APPLICATION INFORMATION

Some examples of applications for the HEF4069UB are shown below.

In Fig.7 an astable relaxation oscillator is given. The oscillation frequency is mainly determined by R1C1, provided R1 << R2 and R2C2 << R1C1.

HEF4069UB gates

7284257.1

typ

¹⁰ v_{DD} (v) ¹⁵

HEF4069UB gates

Fig.12 Test set-up for measuring forward transconductance $g_{fs} = di_o/dv_i$ at v_o is constant (see also graph Fig.13).

