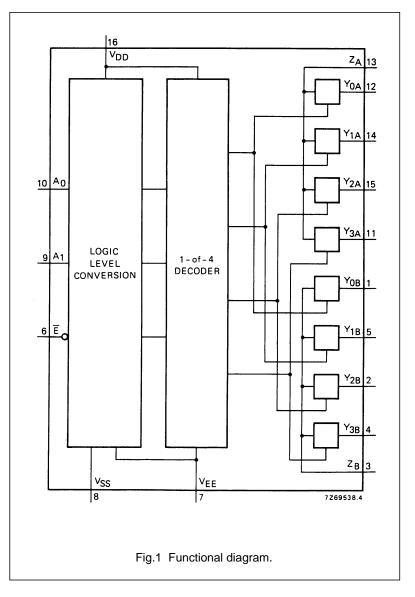

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04

HEF4052B MSI

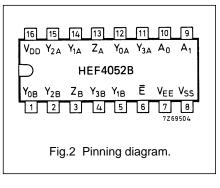

DESCRIPTION

The HEF4052B is a dual 4-channel analogue multiplexer/demultiplexer with common channel select logic. Each multiplexer/demultiplexer has four independent inputs/outputs (Y_0 to Y_3) and a common input/output (Z). The common channel select logic includes two address inputs (A_0 and A_1) and an active LOW enable input (\overline{E}).

Both multiplexers/demultiplexers contain four bidirectional analogue switches, each with one side connected to an independent input/output (Y_0 to Y_3) and the other side connected to a common input/output (Z).

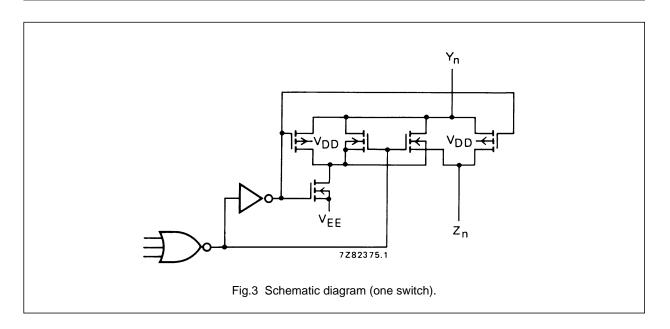
With \overline{E} LOW, one of the four switches is selected (low impedance ON-state) by A₀ and A₁. With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of A₀ and A₁. $\begin{array}{l} V_{DD} \text{ and } V_{SS} \text{ are the supply voltage} \\ \text{connections for the digital control} \\ \text{inputs } (A_0, A_1 \text{ and } \overline{E}). \text{ The } V_{DD} \text{ to} \\ V_{SS} \text{ range is } 3 \text{ to } 15 \text{ V}. \text{ The analogue} \\ \text{inputs/outputs } (Y_0 \text{ to } Y_3, \text{ and } Z) \text{ can} \\ \text{swing between } V_{DD} \text{ as a positive limit} \\ \text{and } V_{EE} \text{ as a negative limit.} \\ V_{DD} - V_{EE} \text{ may not exceed } 15 \text{ V}. \end{array}$

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground).


January 1995

PINNING

Y_{0A} to Y_{3A}	independent inputs/outputs
Y_{0B} to Y_{3B}	independent inputs/outputs
A ₀ , A ₁	address inputs
Ē	enable input (active LOW)
Z _A , Z _B	common inputs/outputs


FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

HEF4052BP(N):	16-lead DIL; plastic				
	(SOT38-1)				
HEF4052BD(F):	16-lead DIL; ceramic (cerdip)				
	(SOT74)				
HEF4052BT(D):	16-lead SO; plastic				
	(SOT109-1)				
(): Package Designator North America					

HEF4052B MSI

FUNCTION TABLE

	INPUTS		CHANNEL
Ē	A ₁	A ₀	ON
L	L	L	Y _{0A} –Z _A ; Y _{0B} –Z _B
L	L	н	Y _{1A} –Z _A ; Y _{1B} –Z _B
L	н	L	Y _{2A} –Z _A ; Y _{2B} –Z _B
L	н	н	Y _{3A} –Z _A ; Y _{3B} –Z _B
Н	X	X	none

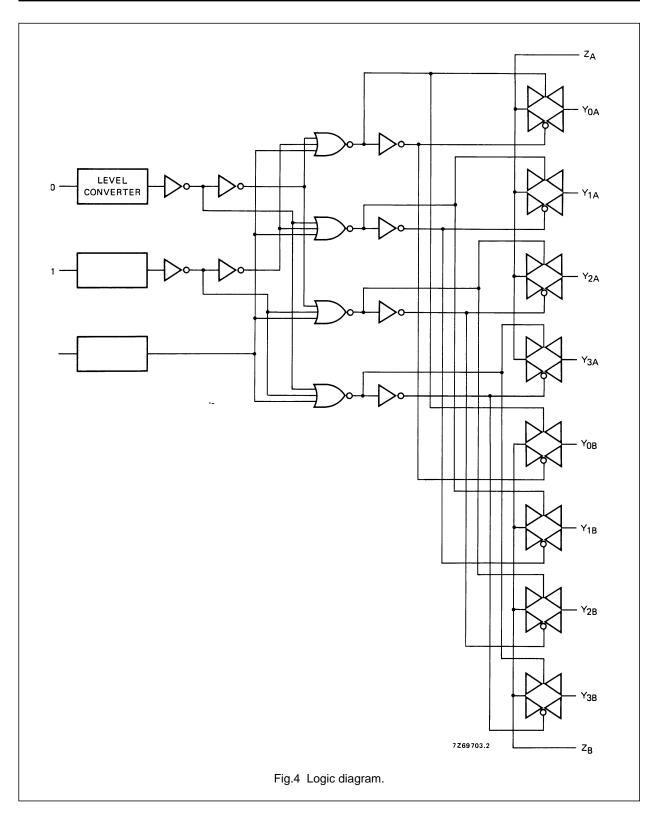
Notes

H = HIGH state (the more positive voltage)
L = LOW state (the less positive voltage)
X = state is immaterial

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (with reference to V_{DD})

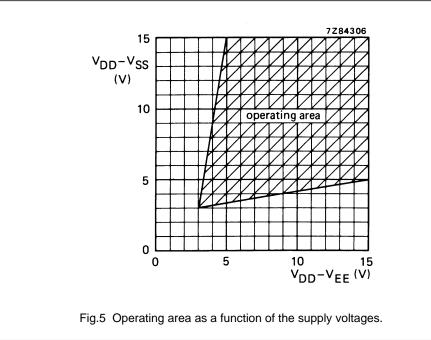

Note

 To avoid drawing V_{DD} current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed 0,4 V. If the switch current flows into terminal Z, no V_{DD} current will flow out of terminals Y, in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed V_{DD} or V_{EE}.

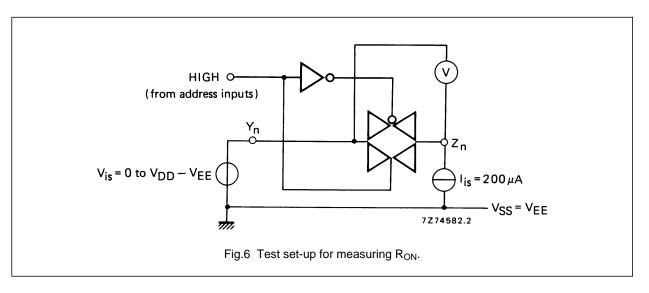
 V_{EE}

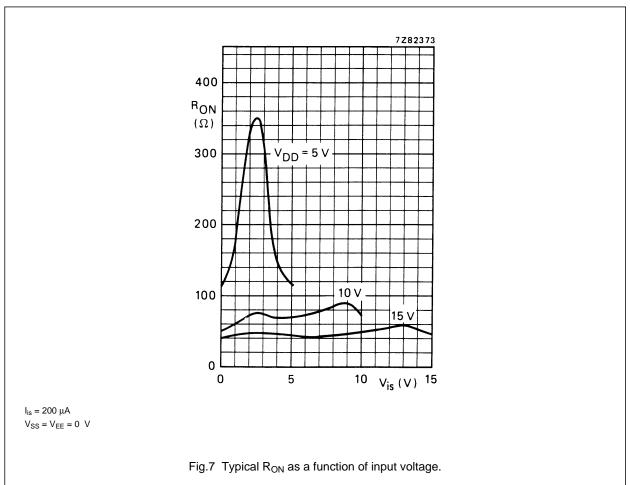
-18 to + 0,5 V

HEF4052B MSI



HEF4052B MSI


DC CHARACTERISTICS


Tamb =	25	°C
--------	----	----

	V _{DD} -V _{EE} V	SYMBOL	TYP.	MAX.		CONDITIONS
	5		350	2500	Ω	
ON resistance	10	R _{ON}	80	245	Ω	V _{is} = 0 to V _{DD} –V _{EE} see Fig.6
	15		60	175	Ω	366 Fig.0
	5		115	340	Ω	
ON resistance	10	R _{ON}	50	160	Ω	V _{is} = 0 see Fig.6
	15		40	115	Ω	366 Fig.0
	5		120	365	Ω	., ., .,
ON resistance	10	R _{ON}	65	200	Ω	V _{is} = V _{DD} -V _{EE} see Fig.6
	15		50	155	Ω	366 Fig.0
'Δ' ON resistance	5		25	_	Ω	
between any two	10	ΔR_{ON}	10	_	Ω	V _{is} = 0 to V _{DD} –V _{EE} see Fig.6
channels	15		5	-	Ω	300 Fig.0
OFF-state leakage	5		-	_	nA	
current, all	10	I _{OZZ}	_	_	nA	\overline{E} at V _{DD}
channels OFF	15		_	1000	nA	
OFF-state leakage	5		_	_	nA	
current, any	10	I _{OZY}	_	_	nA	\overline{E} at V _{SS}
channel	15		_	200	nA	

HEF4052B MSI

HEF4052B MSI

AC CHARACTERISTICS

 V_{EE} = V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	1 300 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	6 100 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	15 600 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\Sigma(f_o C_L) = sum of outputs$
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS

 V_{EE} = V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		
Propagation delays						
$V_{is} \rightarrow V_{os}$	5		10	20	ns	
HIGH to LOW	10	t _{PHL}	5	10	ns	note 1
	15		5	10	ns	
	5		10	20	ns	
LOW to HIGH	10	t _{PLH}	5	10	ns	note 1
	15		5	10	ns	
$A_n \to V_{os}$	5		150	305	ns	
HIGH to LOW	10	t _{PHL}	65	135	ns	note 2
	15		50	100	ns	
	5		150	300	ns	
LOW to HIGH	10	t _{PLH}	75	150	ns	note 2
	15		50	100	ns	
Output disable times						
$\overline{E} \rightarrow V_{os}$	5		95	190	ns	
HIGH	10	t _{PHZ}	90	180	ns	note 3
	15		90	180	ns	
	5		100	205	ns	
LOW	10	t _{PLZ}	90	180	ns	note 3
	15		90	180	ns	
Output enable times						
$\overline{E} \to V_{os}$	5		130	260	ns	
HIGH	10	t _{PZH}	55	115	ns	note 3
	15		45	85	ns	
	5		120	240	ns	
LOW	10	t _{PZL}	50	100	ns	note 3
	15		35	75	ns	

HEF4052B MSI

	V _{DD} V	SYMBOL	TYP.	MAX.		
Distortion, sine-wave	5		0,25	(%	
response	10		0,04	(%	note 4
	15		0,04	(%	
Crosstalk between	5		-	I	MHz	
any two channels	10		1	I	MHz	note 5
	15		-	I	MHz	
Crosstalk; enable	5		-	1	mV	
or address input	10		50	I	mV	note 6
to output	15		-	I	mV	
OFF-state	5		-	I	MHz	
feed-through	10		1	I	MHz	note 7
	15		_	I	MHz	
ON-state frequency	5		13]	MHz	
response	10		40	I	MHz	note 8
	15		70	I	MHz	

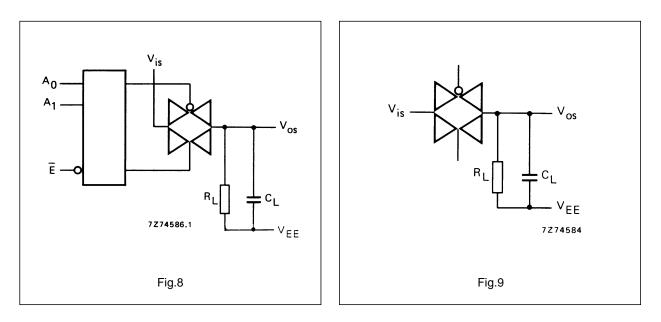
Notes

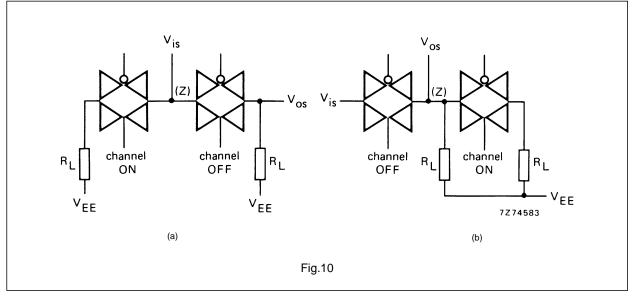
Vis is the input voltage at a Y or Z terminal, whichever is assigned as input.

Vos is the output voltage at a Y or Z terminal, whichever is assigned as output.

- 1. $R_L = 10 \text{ k}\Omega$ to V_{EE} ; $C_L = 50 \text{ pF}$ to V_{EE} ; $\overline{E} = V_{SS}$; $V_{is} = V_{DD}$ (square-wave); see Fig.8.
- R_L = 10 kΩ; C_L = 50 pF to V_{EE}; E = V_{SS}; A_n = V_{DD} (square-wave); V_{is} = V_{DD} and R_L to V_{EE} for t_{PLH}; V_{is} = V_{EE} and R_L to V_{DD} for t_{PHL}; see Fig.8.
- 3. $R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF to } V_{EE}$; $\overline{E} = V_{DD}$ (square-wave); $V_{is} = V_{DD}$ and R_L to V_{EE} for t_{PHZ} and t_{PZH} ; $V_{is} = V_{EE}$ and R_L to V_{DD} for t_{PLZ} and t_{PZL} ; see Fig.8.
- 4. $R_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$; channel ON; $V_{is} = \frac{1}{2} V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$); $f_{is} = 1 \text{ kHz}$; see Fig.9.
- 5. $R_L = 1 k\Omega$; $V_{is} = \frac{1}{2} V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);

20 log
$$\frac{V_{os}}{V_{is}}$$
 = -50 dB; see Fig. 10.


- R_L = 10 kΩ to V_{EE}; C_L = 15 pF to V_{EE}; E or A_n = V_{DD} (square-wave); crosstalk is |V_{os}|(peak value); see Fig.8.
- 7. $R_L = 1 \text{ k}\Omega$; $C_L = 5 \text{ pF}$; channel OFF; $V_{is} = \frac{1}{2} V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);


20 log
$$\frac{V_{os}}{V_{is}}$$
 = -50 dB; see Fig. 9.

8. $R_L = 1 \text{ k}\Omega$; $C_L = 5 \text{ pF}$; channel ON; $V_{is} = \frac{1}{2} V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);

20 log
$$\frac{V_{os}}{V_{is}} = -3$$
 dB; see Fig. 9.

HEF4052B MSI

APPLICATION INFORMATION

Some examples of applications for the HEF4052B are:

- Analogue multiplexing and demultiplexing.
- Digital multiplexing and demultiplexing.
- Signal gating.

NOTE

If break before make is needed, then it is necessary to use the enable input.