
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

Semiconductors

Philips

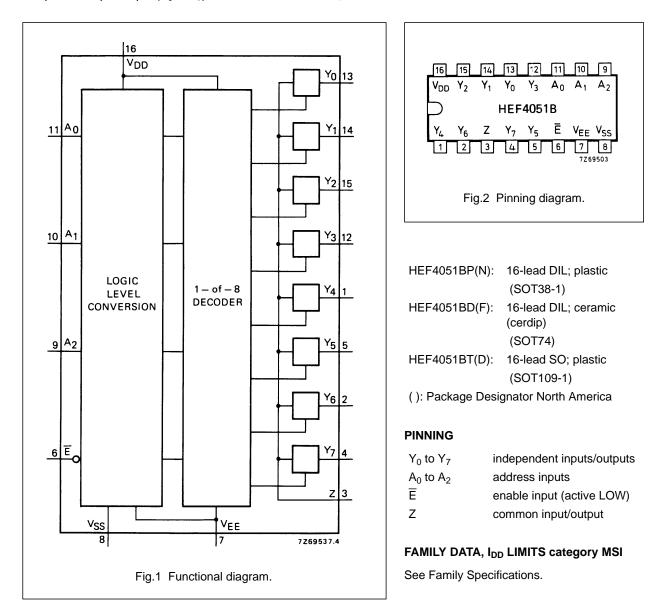
Product specification

8-channel analogue multiplexer/demultiplexer

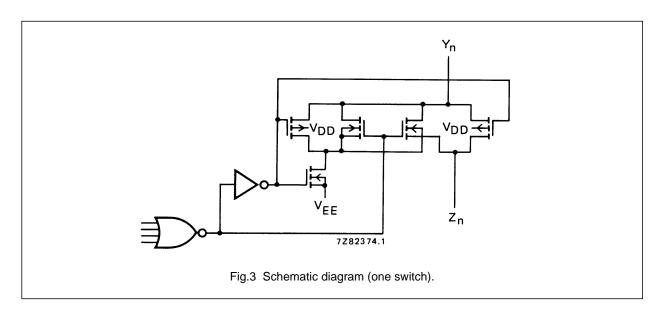
HEF4051B MSI

DESCRIPTION

The HEF4051B is an 8-channel analogue multiplexer/demultiplexer with three address inputs (A_0 to A_2), an active LOW enable input (\overline{E}), eight independent inputs/outputs (Y_0 to Y_7) and a common input/output (Z).


The device contains eight bidirectional analogue switches, each with one side connected to an independent input/output (Y_0 to Y_7)

and the other side connected to a common input/output (Z).


With \overline{E} LOW, one of the eight switches is selected (low impedance ON-state) by A₀ to A₂. With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of A₀ to A₂.

 V_{DD} and V_{SS} are the supply voltage connections for the digital control inputs (A₀ to A₂, and \overline{E}). The V_{DD} to V_{SS} range is 3 to 15 V. The analogue inputs/outputs (Y_0 to Y_7 , and Z) can swing between V_{DD} as a positive limit and V_{EE} as a negative limit. V_{DD} – V_{EE} may not exceed 15 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground).

HEF4051B MSI

FUNCTION TABLE

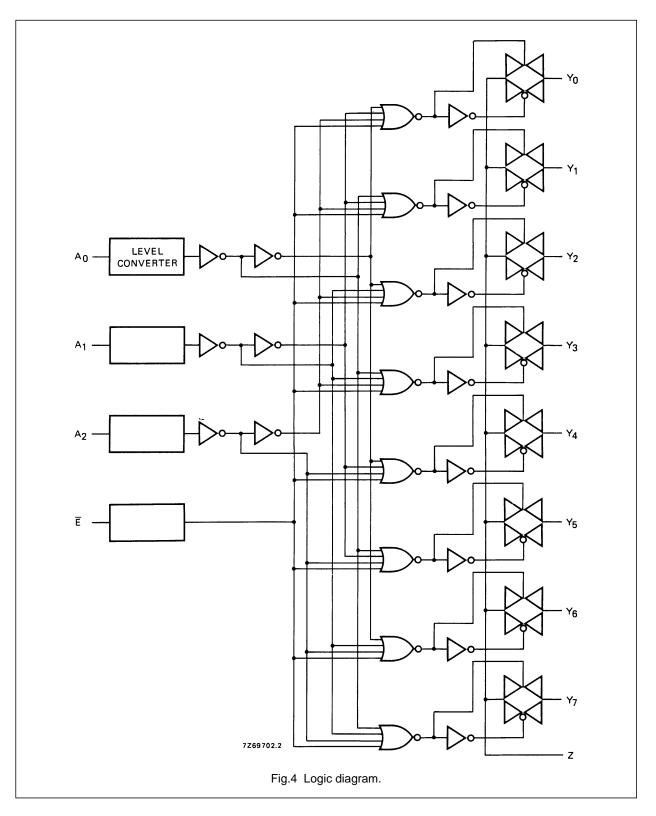
	INPL	CHANNEL		
Ē	A ₂	A ₁	A ₀	ON
L	L	L	L	Y ₀ –Z
L	L	L	н	Y ₀ –Z Y ₁ –Z Y ₂ –Z
L	L	н	L	Y ₂ –Z
L	L	н	н	Y2-7
L	н	L	L	Y ₄ –Z
L	н	L	н	Y ₅ –Z
L	н	н	L	Y ₆ –Z
L	н	н	н	Y ₄ –Z Y ₅ –Z Y ₆ –Z Y ₇ –Z
н	X	x	х	none

Notes

- 1. H = HIGH state (the more positive voltage)
 - L = LOW state (the less positive voltage)
 - X = state is immaterial

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

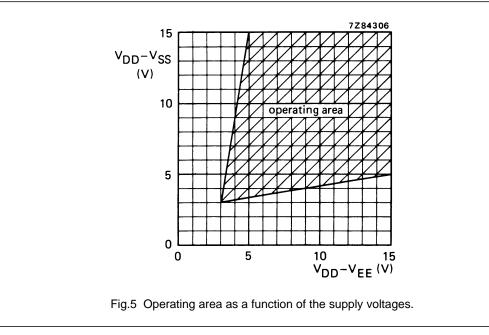

Supply voltage (with reference to V_{DD})

 V_{EE} -18 to + 0,5 V

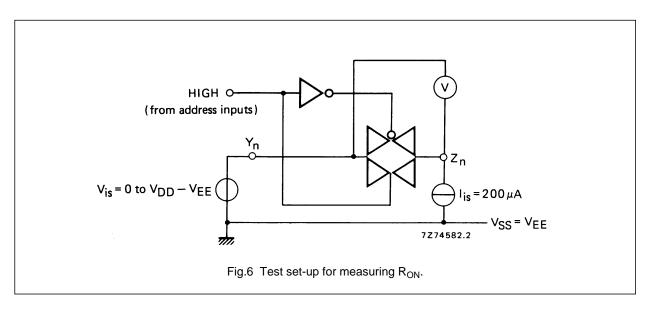
Note

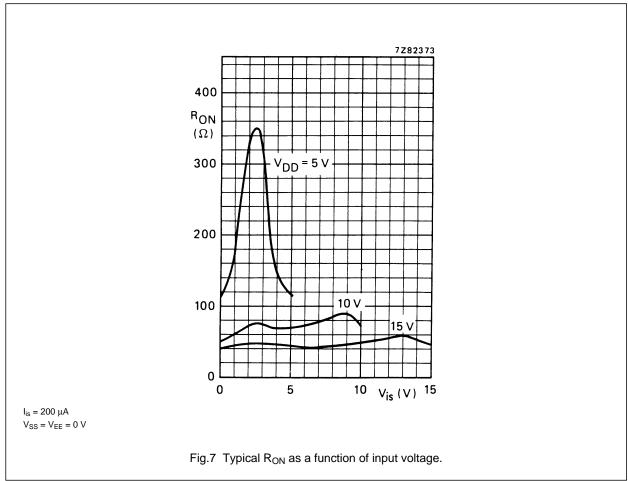
 To avoid drawing V_{DD} current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed 0,4 V. If the switch current flows into terminal Z, no V_{DD} current will flow out of terminals Y, in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed V_{DD} or V_{EE}.

HEF4051B MSI



HEF4051B MSI


DC CHARACTERISTICS


 $T_{amb} = 25 \ ^{\circ}C$

	V _{DD} -V _{EE} V	SYMBOL	TYP.	MAX.		CONDITIONS
	5	R _{ON}	350	2500	Ω	
ON resistance	10		80	245	Ω	V _{is} = 0 to V _{DD} -V _{EE} see Fig.6
	15		60	175	Ω	
	5		115	340	Ω	
ON resistance	10	R _{ON}	50	160	Ω	V _{is} = 0 see Fig.6
	15		40	115	Ω	366 1 19.0
	5	R _{ON}	120	365	Ω	
ON resistance	10		65	200	Ω	V _{is} = V _{DD} -V _{EE} see Fig.6
	15		50	155	Ω	300 i ig.0
'Δ' ON resistance	5		25	_	Ω	
between any two	10	ΔR_{ON}	10	_	Ω	V _{is} = 0 to V _{DD} -V _{EE} see Fig.6
channels	15		5	_	Ω	
OFF-state leakage	5		-	_	nA	E
current, all	10	I _{OZZ}	-	_	nA	Ē at V _{DD} V _{SS} = V _{EE}
channels OFF	15		-	1000	nA	
OFF-state leakage	5		_	_	nA	\overline{E} at V _{SS} V _{SS} = V _{EE}
current, any	10	I _{OZY}	_	_	nA	
channel	15		_	200	nA	

HEF4051B MSI

HEF4051B MSI

AC CHARACTERISTICS

 V_{EE} = V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	1 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	5 500 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	15 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\Sigma(f_oC_L) = sum of outputs$
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS

 V_{EE} = V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

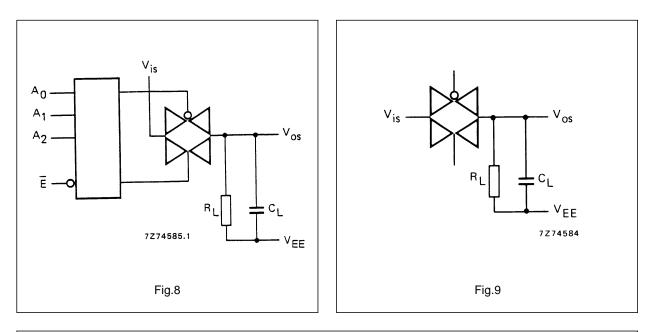
	V _{DD} V	SYMBOL	TYP.	MAX.		
Propagation delays						
$V_{is} \rightarrow V_{os}$	5		15	30	ns	
HIGH to LOW	10	t _{PHL}	5	10	ns	note 1
	15		5	10	ns	
	5		15	30	ns	
LOW to HIGH	10	t _{PLH}	5	10	ns	note 1
	15		5	10	ns	
$A_n \rightarrow V_{os}$	5		150	300	ns	
HIGH to LOW	10	t _{PHL}	60	120	ns	note 2
	15		45	90	ns	
	5		150	300	ns	
LOW to HIGH	10	t _{PLH}	65	130	ns	note 2
	15		45	90	ns	
Output disable times						
$\overline{E} \rightarrow V_{os}$	5		120	240	ns	
HIGH	10	t _{PHZ}	90	180	ns	note 3
	15		85	170	ns	
	5		145	290	ns	
LOW	10	t _{PLZ}	120	240	ns	note 3
	15		115	230	ns	
Output enable times						
$\overline{E} \rightarrow V_{os}$	5		140	280	ns	
HIGH	10	t _{PZH}	55	110	ns	note 3
	15		40	80	ns	
	5		140	280	ns	
LOW	10	t _{PZL}	55	110	ns	note 3
	15		40	80	ns	

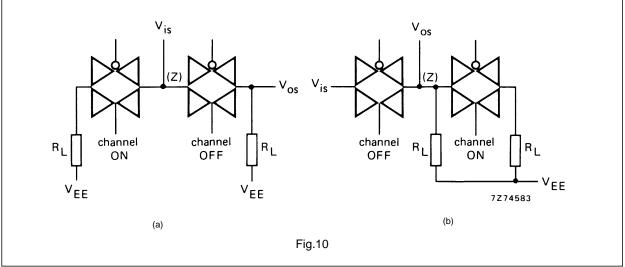
HEF4051B MSI

	V _{DD} V	SYMBOL	TYP.	MAX.	
Distortion, sine-wave	5		0,25	%	
response	10		0,04	%	note 4
	15		0,04	%	
Crosstalk between	5		_	MHz	
any two channels	10		1	MHz	note 5
	15		-	MHz	
Crosstalk; enable	5		-	mV	
or address input	10		50	mV	note 6
to output	15		-	mV	
OFF-state	5		-	MHz	
feed-through	10		1	MHz	note 7
	15		-	MHz	
ON-state frequency	5		13	MHz	
response	10		40	MHz	note 8
	15		70	MHz	

Notes

Vis is the input voltage at a Y or Z terminal, whichever is assigned as input.


Vos is the output voltage at a Y or Z terminal, whichever is assigned as output.


- 1. $R_L = 10 \text{ k}\Omega$ to V_{EE} ; $C_L = 50 \text{ pF}$ to V_{EE} ; $\overline{E} = V_{SS}$; $V_{is} = V_{DD}$ (square-wave); see Fig.8.
- 2. $R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF}$ to V_{EE} ; $\overline{E} = V_{SS}$; $A_n = V_{DD}$ (square-wave); $V_{is} = V_{DD}$ and R_L to V_{EE} for t_{PLH} ; $V_{is} = V_{EE}$ and R_L to V_{DD} for t_{PHL} ; see Fig.8.
- 3. $R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF to } V_{EE}$; $\overline{E} = V_{DD}$ (square-wave); $V_{is} = V_{DD}$ and R_L to V_{EE} for t_{PHZ} and t_{PZH} ; $V_{is} = V_{EE}$ and R_L to V_{DD} for t_{PLZ} and t_{PZL} ; see Fig.8.
- 4. $R_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$; channel ON; $V_{is} = \frac{1}{2} V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$); $f_{is} = 1 \text{ kHz}$; seeFig.9.
- 5. $R_L = 1 \text{ k}\Omega$; $V_{is} = \frac{1}{2} V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$);

20 log
$$\frac{V_{os}}{V_{is}}$$
 = -50 dB; see Fig. 10.

- R_L = 10 kΩ to V_{EE}; C_L = 15 pF to V_{EE}; E or A_n = V_{DD} (square-wave); crosstalk is |V_{os}|(peak value); see Fig.8.
- 7. $R_L = 1 \ k\Omega; \ C_L = 5 \ pF; \ channel \ OFF; \ V_{is} = \frac{1}{2} \ V_{DD}_{(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} \ V_{DD}$); 20 log $\frac{V_{os}}{V_{is}} = -50 \ dB; \ see \ Fig. 9.$
- 8. $R_L = 1 k\Omega$; $C_L = 5 pF$; channel ON; $V_{is} = \frac{1}{2} V_{DD (p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$); 20 log $\frac{V_{os}}{V_{is}} = -3 dB$; see Fig. 9.

HEF4051B MSI

APPLICATION INFORMATION

Some examples of applications for the HEF4051B are:

- Analogue multiplexing and demultiplexing.
- Digital multiplexing and demultiplexing.
- Signal gating.

NOTE

If break before make is needed, then it is necessary to use the enable input.