# INTEGRATED CIRCUITS



Product specification File under Integrated Circuits, IC06 December 1990



Downloaded from Elcodis.com electronic components distributor

**Semiconductors** 

**Philips** 

### 74HC/HCT03

#### FEATURES

- · Level shift capability
- Output capability: standard (open drain)
- I<sub>CC</sub> category: SSI

#### **GENERAL DESCRIPTION**

The 74HC/HCT03 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

#### QUICK REFERENCE DATA

GND = 0 V;  $T_{amb}$  = 25 °C;  $t_r$  =  $t_f$  = 6 ns

The 74HC/HCT03 provide the 2-input NAND function.

The 74HC/HCT03 have open-drain N-transistor outputs, which are not clamped by a diode connected to  $V_{CC}$ . In the OFF-state, i.e. when one input is LOW, the output may be pulled to any voltage between GND and  $V_{Omax}$ . This allows the device to be used as a LOW-to-HIGH or HIGH-to-LOW level shifter. For digital operation and OR-tied output applications, these devices must have a pull-up resistor to establish a logic HIGH level.

| SYMBOL                              |                                        | CONDITIONS                                           | TYP |     |      |
|-------------------------------------|----------------------------------------|------------------------------------------------------|-----|-----|------|
|                                     | PARAMETER                              | CONDITIONS                                           | НС  | нст | UNIT |
| t <sub>PZL</sub> / t <sub>PLZ</sub> | propagation delay                      | $C_L$ = 15 pF; $R_L$ = 1 k $\Omega$ ; $V_{CC}$ = 5 V | 8   | 10  | ns   |
| CI                                  | input capacitance                      |                                                      | 3.5 | 3.5 | pF   |
| C <sub>PD</sub>                     | power dissipation capacitance per gate | notes 1, 2 and 3                                     | 4.0 | 4.0 | pF   |

#### Notes

1.  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o) + \sum (V_O^2/R_L) \times duty factor LOW, where:$ 

$$\begin{split} f_i &= \text{input frequency in MHz} \\ f_o &= \text{output frequency in MHz} \\ V_O &= \text{output voltage in V} \\ C_L &= \text{output load capacitance in pF} \\ V_{CC} &= \text{supply voltage in V} \\ R_L &= \text{pull-up resistor in } M\Omega \\ \Sigma & (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs} \\ \Sigma & (V_O^2/R_L) &= \text{sum of outputs} \end{split}$$

- 2. For HC the condition is  $V_I = GND$  to  $V_{CC}$ For HCT the condition is  $V_I = GND$  to  $V_{CC} - 1.5$  V
- 3. The given value of  $C_{PD}$  is obtained with:  $C_L = 0 \text{ pF}$  and  $R_L = \infty$

#### **ORDERING INFORMATION**

See "74HC/HCT/HCU/HCMOS Logic Package Information".

December 1990

## 74HC/HCT03

#### **PIN DESCRIPTION**

| PIN NO.      | SYMBOL          | NAME AND FUNCTION       |
|--------------|-----------------|-------------------------|
| 1, 4, 9, 12  | 1A to 4A        | data inputs             |
| 2, 5, 10, 13 | 1B to 4B        | data inputs             |
| 3, 6, 8, 11  | 1Y to 4Y        | data outputs            |
| 7            | GND             | ground (0 V)            |
| 14           | V <sub>CC</sub> | positive supply voltage |







#### **FUNCTION TABLE**

| INP | UTS | OUTPUT |  |  |  |  |
|-----|-----|--------|--|--|--|--|
| nA  | nB  | nY     |  |  |  |  |
| L   | L   | Z      |  |  |  |  |
| L   | н   | Z      |  |  |  |  |
| Н   | L   | Z      |  |  |  |  |
| Н   | Н   | L      |  |  |  |  |

#### Note

H = HIGH voltage level
L = LOW voltage level

Z = high impedance OFF-state

December 1990

# 74HC/HCT03

#### RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to GND (ground = 0 V)

| SYMBOL                                  | PARAMETER                     | MIN. | MAX. | UNIT | CONDITIONS                                        |
|-----------------------------------------|-------------------------------|------|------|------|---------------------------------------------------|
| V <sub>CC</sub>                         | DC supply voltage             | -0.5 | +7   | V    |                                                   |
| Vo                                      | DC output voltage             | -0.5 | +7   | V    |                                                   |
| I <sub>IK</sub>                         | DC input diode current        |      | 20   | mA   | for $V_I < -0.5$ V or $V_I > V_{CC}$ + 0.5 V      |
| -I <sub>OK</sub>                        | DC output diode current       |      | 20   | mA   | for $V_O < -0.5 V$                                |
| -l <sub>O</sub>                         | DC output sink current        |      | 25   | mA   | for – 0.5 V < $V_{O}$                             |
| ±I <sub>CC</sub> ;<br>±I <sub>GND</sub> | DC VCC or GND current         |      | 50   | mA   |                                                   |
| T <sub>stg</sub>                        | storage temperature range     | -65  | +150 | °C   |                                                   |
| P <sub>tot</sub>                        | power dissipation per package |      |      |      | for temperature range; –40 to +125 °C<br>74HC/HCT |
|                                         | plastic DIL                   |      | 750  | mW   | above +70 °C: derate linearly with 12 mW/K        |
|                                         | plastic mini-pack (SO)        |      | 500  | mW   | above +70 °C: derate linearly with 8 mW/K         |

### 74HC/HCT03

#### DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications", except that the  $V_{OH}$  values are not valid for open drain. They are replaced by  $I_{OZ}$  as given below.

Output capability: standard (open drain), excepting  $V_{OH}$   $I_{CC}$  category: SSI

#### Voltages are referenced to GND (ground = 0 V)

|                 | PARAMETER                            |      |      | -            | T <sub>amb</sub> (° | C)          |      | TEST CONDITIONS |                 |                  |                 |                                    |
|-----------------|--------------------------------------|------|------|--------------|---------------------|-------------|------|-----------------|-----------------|------------------|-----------------|------------------------------------|
| SYMBOL          |                                      | 74HC |      |              |                     |             |      |                 |                 |                  | v               | OTHER                              |
| STIVIDOL        |                                      | +25  |      | -40 to +85 - |                     | -40 to +125 |      |                 | V <sub>CC</sub> | VI               | OTHER           |                                    |
|                 |                                      | min. | typ. | max.         | min.                | max.        | min. | max.            |                 |                  |                 |                                    |
| I <sub>OZ</sub> | HIGH level output<br>leakage current |      |      | 0.5          |                     | 5.0         |      | 10.0            | μA              | 2.0<br>to<br>6.0 | V <sub>IL</sub> | $V_O = V_{O(max)}^{(1)}$<br>or GND |

#### Note

1. The maximum operating output voltage ( $V_{O(max)}$ ) is 6.0 V.

#### AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ 

|                    |                        |      |      | -    |      | TEST CONDITIONS |           |             |    |                 |           |
|--------------------|------------------------|------|------|------|------|-----------------|-----------|-------------|----|-----------------|-----------|
| SYMBOL             |                        |      |      |      |      |                 | WAVEFORMS |             |    |                 |           |
| STMBOL             | PARAMETER              | +2   |      | +25  |      | -40 to +85      |           | -40 to +125 |    | V <sub>CC</sub> | WAVEFORMS |
|                    |                        | min. | typ. | max. | min. | max.            | min.      | max.        |    |                 |           |
| t <sub>PZL</sub> / | propagation delay      |      | 28   | 95   |      | 120             |           | 145         |    | 2.0             | Fig.6     |
| t <sub>PLZ</sub>   | nA, nB to nY           |      | 10   | 19   |      | 24              |           | 29          | ns | 4.5             |           |
|                    |                        |      | 8    | 16   |      | 20              |           | 25          |    | 6.0             |           |
| t <sub>THL</sub>   | output transition time |      | 19   | 75   |      | 95              |           | 110         | ns | 2.0             |           |
|                    |                        |      | 7    | 15   |      | 19              |           | 22          |    | 4.5             | Fig.6     |
|                    |                        |      | 6    | 13   |      | 16              |           | 19          |    | 6.0             |           |

### 74HC/HCT03

#### DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications", except that the V<sub>OH</sub> values are not valid for open drain. They are replaced by I<sub>OZ</sub> as given below.

Output capability: standard (open drain), excepting  $V_{\text{OH}}$   $I_{\text{CC}}$  category: SSI

#### Voltages are referenced to GND (ground = 0 V)

| SYMBOL          | PARAMETER                            | T <sub>amb</sub> (°C) |       |              |      |             |      |      |                 | TEST CONDITIONS  |                 |                                    |
|-----------------|--------------------------------------|-----------------------|-------|--------------|------|-------------|------|------|-----------------|------------------|-----------------|------------------------------------|
|                 |                                      |                       | 74HCT |              |      |             |      |      |                 |                  |                 |                                    |
|                 |                                      | +25                   |       | -40 to +85 - |      | -40 to +125 |      |      | V <sub>CC</sub> | VI               | OTHER           |                                    |
|                 |                                      | min.                  | typ.  | max.         | min. | max.        | min. | max. |                 |                  |                 |                                    |
| I <sub>OZ</sub> | HIGH level output<br>leakage current |                       |       | 0.5          |      | 5.0         |      | 10.0 | μA              | 4.5<br>to<br>5.5 | V <sub>IL</sub> | $V_O = V_{O(max)}^{(1)}$<br>or GND |

#### Note

1. The maximum operating output voltage ( $V_{O(max)}$ ) is 6.0 V.

#### Note to HCT types

The value of additional quiescent supply current ( $\Delta I_{CC}$ ) for a unit load of 1 is given in the family specifications. To determine  $\Delta I_{CC}$  per input, multiply this value by the unit load coefficient shown in the table below.

| INPUT  | UNIT LOAD COEFFICIENT |
|--------|-----------------------|
| nA, nB | 1.0                   |

#### AC CHARACTERISTICS FOR 74HCT

GND = 0 V;  $t_r = t_f = 6 ns$ ;  $C_L = 50 pF$ 

|                                     | PARAMETER                       |      |      |      | T <sub>amb</sub> (° |      | TEST CONDITIONS |           |    |                 |           |
|-------------------------------------|---------------------------------|------|------|------|---------------------|------|-----------------|-----------|----|-----------------|-----------|
| SYMBOL                              |                                 |      |      |      | 74HC                |      |                 | WAVEFORMO |    |                 |           |
|                                     |                                 | +25  |      |      | -40 to +85          |      | –40 to +125     |           |    | V <sub>CC</sub> | WAVEFORMS |
|                                     |                                 | min. | typ. | max. | min.                | max. | min.            | max.      |    |                 |           |
| t <sub>PZL</sub> / t <sub>PLZ</sub> | propagation delay nA, nB, to nY |      | 12   | 24   |                     | 30   |                 | 36        | ns | 4.5             | Fig.6     |
| t <sub>THL</sub>                    | output transition time          |      | 7    | 15   |                     | 19   |                 | 22        | ns | 4.5             | Fig.6     |

## 74HC/HCT03

#### AC WAVEFORMS



#### TEST CIRCUIT AND WAVEFORMS





Definitions for Figs. 7, 8:

- C<sub>L</sub> = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
- $R_T$  = termination resistance should be equal to the output impedance  $Z_O$  of the pulse generator.
- $t_r = t_f = 6$  ns; when measuring  $f_{max}$ , there is no constraint on  $t_r$ ,  $t_f$  with 50% duty factor.

|        |                 | t <sub>r</sub> ; t | <sup>t</sup> f                       |       |
|--------|-----------------|--------------------|--------------------------------------|-------|
| FAMILY | AMPLITUDE       | V <sub>M</sub>     | f <sub>max</sub> ;<br>PULSE<br>WIDTH | OTHER |
| 74HC   | V <sub>CC</sub> | 50%                | < 2 ns                               | 6 ns  |
| 74HCT  | 3.0 V           | 1.3 V              | < 2 ns                               | 6 ns  |

# 74HC/HCT03

#### **APPLICATION INFORMATION**





#### Notes to Figs 9 and 10

If  $V_P - V_{CC}$  (R) > 0.5 V a positive current will flow into the receiver (as described in the "USER GUIDE"; input/output protection), this will not affect the receiver provided the current does not exceed 20 mA. At  $V_{CC}$  < 4.5 V,  $R_{ON}$  (max) is not guaranteed;  $R_{ON}$ (max) can be estimated using Figs 33 and 34 in the "USER GUIDE".

#### Note to Application information

All values given are typical unless otherwise specified.

#### PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

December 1990

8