FAIRCHILD

SEMICONDUCTOR

February 1990 Revised May 1999

MM74HCT573 • MM74HCT574 Octal D-Type Latch • 3-STATE Octal D-Type Flip-Flop

General Description

The MM74HCT573 octal D-type latches and MM74HCT574 octal D-type flip-flop advanced silicon-gate CMOS technology, which provides the inherent benefits of low power consumption and wide power supply range, but are LS-TTL input and output characteristic and pin-out compatible. The 3-STATE outputs are capable of driving 15 LS-TTL loads. All inputs are protected from damage due to static discharge by internal diodes to V_{CC} and ground.

When the MM74HCT573 Latch Enable input is HIGH, the Q outputs will follow the D inputs. When the Latch Enable goes LOW, data at the D inputs will be retained at the outputs until Latch Enable returns HIGH again. When a high logic level is applied to the Output Control input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

The MM74HCT574 are positive edge triggered flip-flops. Data at the D inputs, meeting the setup and hold time requirements, are transferred to the Q outputs on positive going transitions of the Clock (CK) input. When a high logic level is applied to the Output Control (OC) input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

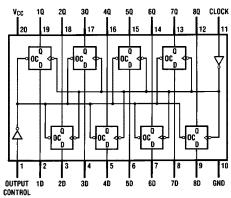
The MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

Features

- TTL input characteristic compatible
- Typical propagation delay: 18 ns
- Low input current: 1 μA maximum
- Low quiescent current: 80 µA maximum
- Compatible with bus-oriented systems
- Output drive capability: 15 LS-TTL loads

Order Number	Package Number	Package Description
MM74HCT573WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
MM74HCT573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wid
MM74HCT573N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
MM74HCT574WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
MM74HCT574SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT574MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wid
MM74HCT574N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Ordering Codes:


Connection Diagrams LATCH Enable 10 60 70 80 111 00_ 10 OUTPUT CONTROL 1D 2D 50 7D 8D GND **Top View** MM74HCT573 70

Truth Tables

MM74HCT573

Output Control	LE	Data	Output
L	Н	Н	Н
L	Н	L	L
L	L	Х	Q ₀
Н	Х	Х	Z

Z = High Impedance State

Top View **MM74HCT574**

MM74HCT574

Output Control	LE	Data	Output
L	↑	Н	Н
L	1	L	L
L	L	Х	Q ₀
Н	Х	Х	Z

 $\label{eq:linear} \begin{array}{c} H = HIGH \mbox{ Level} \\ L = LOW \mbox{ Level} \\ Q_0 = Level \mbox{ of output before steady-state input conditions were established.} \end{array}$ X = Don't Care

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

(Note 2)

Recommended	Operating
Conditions	

· · · ·	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	–1.5 to V_{CC} + 1.5V
DC Output Voltage (V _{OUT})	–0.5 to $V_{CC}{}^+$ 0.5V
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (I _{OUT})	± 35 mA
DC V_{CC} or GND Current, per pin (I _{CC})	\pm 70 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S. O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Conditions					
	Min	Max	Units		
Supply Voltage (V _{CC})	4.5	5.5	V		
DC Input or Output Voltage					
(V _{IN} , V _{OUT})	0	V _{CC}	V		
Operating Temperature Range (T _A)	-40	+85	°C		
Input Rise or Fall Times					
t _r , t _f		500	ns		
Note 1: Absolute Maximum Ratings are those values beyond which dam- age to the device may occur.					
Note 2: Unless otherwise specified all voltages are referenced to ground.					
Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.					

MM74HCT573 • MM74HCT574

DC Electrical Characteristics

Symbol	Parameter	Conditions	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Faidheter	Conditions	Тур		Guaranteed Limits		
V _{IH}	Minimum HIGH Level Input Voltage			2.0	2.0	2.0	V
V _{IL}	Maximum LOW Level Input Voltage			0.8	0.8	0.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Output Voltage	$ I_{OUT} = 20 \ \mu A$	V _{CC}	$V_{CC} - 0.1$	$V_{CC} - 0.1$	V _{CC} - 0.1	V
		$ I_{OUT} = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	v
		$ I_{OUT} = 7.2$ mA, $V_{CC} = 5.5$ V	5.7	4.98	4.84	4.7	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Voltage	$ I_{OUT} = 20 \ \mu A$	0	0.1	0.1	0.1	v
		$ I_{OUT} = 6.0 \text{ mA}, \text{V}_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	0.4	v
		$ I_{OUT} = 7.2 \text{ mA}, \text{V}_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	0.4	
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		+0.1	±1.0	±1.0	μA
	Current	V _{IH} or V _{IL}		±0.1	±1.0	1.0	μι
I _{OZ}	Maximum 3-STATE	$V_{OUT} = V_{CC} \text{ or } GND$					
	Output Leakage	$Enable = V_{IH} \text{ or } V_{IL}$		±0.5	±5.0	±10	μA
	Current						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC} \text{ or } GND$		8.0	80	160	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$		0.0		100	μι
		V _{IN} = 2.4V or 0.5V (Note 4)		1.5	1.8	2.0	mA

Note 4: Measured per pin. All others tied to V_{CC} or ground.

www.fairchildsemi.com

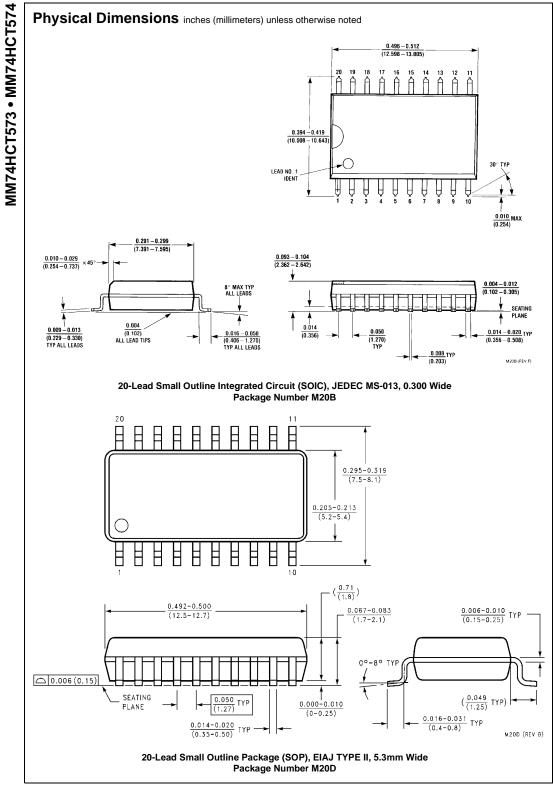
$V_{CC} = 5.0$	V, $t_r = t_f = 6 \text{ ns}$, $T_A = 25^{\circ}C$ (unless otherwise	specified)			
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL}	Maximum Propagation Delay	C _L = 45 pF	47	07	
t _{PLH}	Data to Output		17	27	ns
t _{PHL}	Maximum Propagation Delay	$C_L = 45 \text{ pF}$	16	27	
t _{PLH}	Latch Enable to Output		10	27	ns
t _{PZH}	Maximum Enable Propagation Delay	$C_L = 45 \text{ pF}$	21	30	ns
t _{PZL}	Control to Output	$R_L = 1 \ k\Omega$	21	30	115
t _{PHZ}	Maximum Disable Propagation Delay	$C_L = 5 pF$	14	23	
t _{PLZ}	Control to Output	$R_L = 1 \ k\Omega$	14	23	ns
t _W	Minimum Clock Pulse Width			15	ns
t _S	Minimum Setup Time Data to Clock			5	ns
t _H	Minimum Hold Time Clock to Data			12	ns

AC Electrical Characteristics MM74HCT573

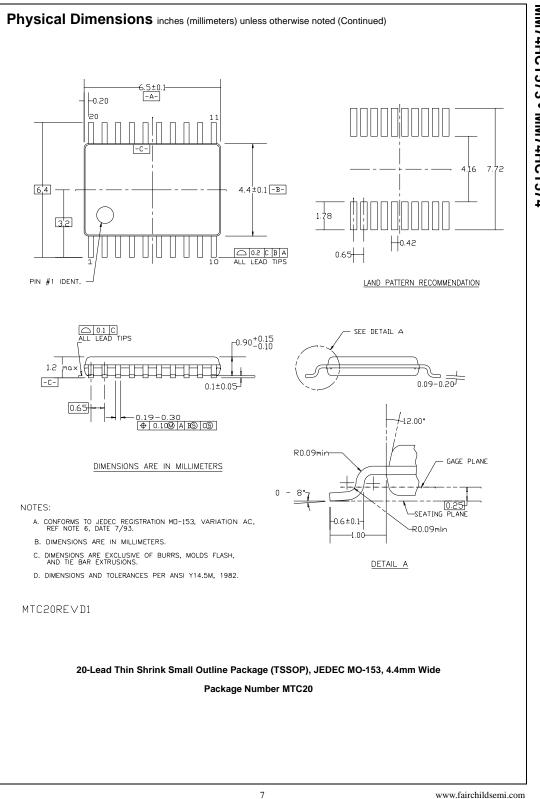
Symbol	Parameter	Conditions	$T_A = 25^{\circ}$		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	i di difettei	Conditions	Тур		Guaranteed Li	mits	Units
t _{PHL}	Maximum Propagation	$C_L = 50 \text{ pF}$	18	30	38	45	ns
t _{PLH}	Delay Data to Output		10	30	30	45	115
t _{PHL}	Maximum Propagation Delay	$C_L = 50 \text{ pF}$	17	17 30	44	53	ns
t _{PLH}	Latch Enable to Output		17		44	53	115
t _{PZH}	Maximum Enable Propagation	$C_L = 50 \text{ pF}$	22	22 30) 38	45	ns
t _{PZL}	Delay Control to Output	$R_L = 1 \ k\Omega$					115
t _{PHZ}	Maximum Disable Propagation	$C_L = 50 \text{ pF}$	15	30	38	45	ns
t _{PLZ}	Delay Control to Output	$R_L = 1 \ k\Omega$	15	30	30	45	115
t _{THL}	Maximum Output	$C_L = 50 \text{ pF}$	6	12	15	18	ns
t _{TLH}	Rise and Fall Time		0	12	15		113
t _W	Minimum Clock Pulse Width			15	20	24	ns
t _S	Minimum Setup Time Data to Clock		-3	5	6	8	ns
t _H	Minimum Hold Time Clock to Data		4	12	15	18	ns
C _{IN}	Maximum Input Capacitance			10	10	10	pF
C _{OUT}	Maximum Output Capacitance			20	20	20	pF
C _{PD}	Power Dissipation Capacitance	$OC = V_{CC}$		5			pF
	(Note 5)	OC = GND	1	52			ρF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC} 2$ fH_{CC} V_{CC}, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} 2$ fH_{CC}.

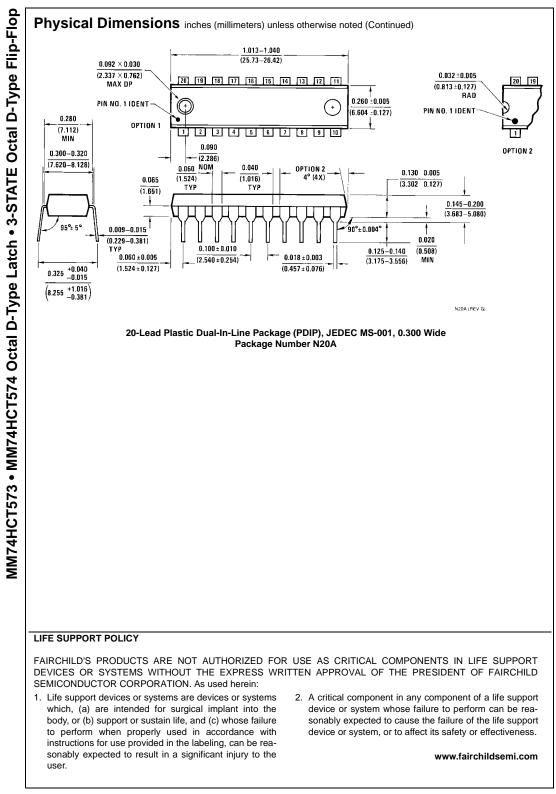
www.fairchildsemi.com


00	$V, t_r = t_f = 6 \text{ ns}, T_A = 25^{\circ}C$				
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Clock Frequency		60	33	MHz
t _{PHL}	Maximum Propagation Delay	C _L = 45 pF	17	27	
t _{PLH}	to Output		17	27	ns
t _{PZH}	Maximum Enable Propagation Delay	C _L = 45 pF	19	28	ns
t _{PZL}	Control to Output	$R_L = 1 \ k\Omega$	19	20	115
t _{PHZ}	Maximum Disable Propagation Delay	C _L = 45 pF	14	25	ns
t _{PLZ}	Control to Output	$R_L = 1 \ k\Omega$	14	25	115
t _W	Minimum Clock Pulse Width			15	ns
t _S	Minimum Setup Time Data to Clock			12	ns
t _H	Minimum Hold Time Clock to Data			5	ns

107573 MM74HCT574


AC Electrical Characteristics MM74HCT574 $V_{CC} = 5.0V \pm 10\%$, $t_r = t_f = 6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	T _A = 2	5°C	$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Falanletel	conditions	Тур		Guaranteed Limits		
f _{MAX}	Maximum Clock Frequency			33	28	23	MHz
t _{PHL}	Maximum Propagation Delay	$C_L = 50 \text{ pF}$	18	30	38	45	ns
t _{PLH}	Clock to Output		10	5 30	50	45	115
t _{PZH}	Maximum Enable Propagation	$C_L = 50 \text{ pF}$	22	22 30	30 38	45	ns
t _{PZL}	Delay Control to Output	$R_L = 1 \ k\Omega$	22				115
t _{PHZ}	Maximum Disable Propagation	$C_L = 50 \text{ pF}$	15	5 30	38	45	ns
t _{PLZ}	Delay Control to Output	$R_L = 1 \ k\Omega$	15		50		115
t _{THL}	Maximum Output	$C_L = 50 \text{ pF}$	6	12	15	18	ns
t _{TLH}	Rise and Fall Time		0	12	15	10	115
t _W	Minimum Clock Pulse Width			15	20	24	ns
t _S	Minimum Setup Time Data to Clock		6	12	15	18	ns
t _H	Minimum Hold Time Clock to Data		-1	5	6	8	ns
C _{IN}	Maximum Input Capacitance			10	10	10	pF
C _{OUT}	Maximum Output Capacitance			20	20	20	pF
C _{PD}	Power Dissipation Capacitance	$OC = V_{CC}$	5				pF
	(Note 6)	OC = GND	58				ρr


Note 6: C_{PD} determines the no load power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

www.fairchildsemi.com

MM74HCT573 • MM74HCT574

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.