

February 1984 Revised July 1999

# MM74HCT240 • MM74HCT244 Inverting Octal 3-STATE Buffer • Octal 3-STATE Buffer

### **General Description**

The MM74HCT240 and MM74HCT244 3-STATE buffers utilize advanced silicon-gate CMOS technology and are general purpose high speed inverting and non-inverting buffers. They possess high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds comparable to low power Schottky devices, while retaining the low power consumption of CMOS. All three devices are TTL input compatible and have a fanout of 15 LS-TTL equivalent inputs.

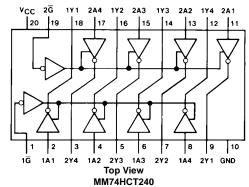
MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

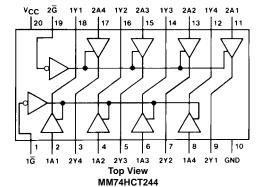
The MM74HCT240 is an inverting buffer and the MM74HCT244 is a non-inverting buffer. Each device has two active low enables (1G and 2G), and each enable independently controls 4 buffers.

All inputs are protected from damage due to static discharge by diodes to  $\rm V_{CC}$  and Ground.

#### **Features**

- TTL input compatible
- Typical propagation delay: 14 ns
- 3-STATE outputs for connection to system buses
- Low quiescent current: 80 μA
- High output drive current: 6 mA (min)


### **Ordering Code:**


| Order Number  | Package Number | Package Description                                                         |
|---------------|----------------|-----------------------------------------------------------------------------|
| MM74HCT240WM  | M20B           | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide  |
| MM74HCT240SJ  | M20D           | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide               |
| MM74HCT240MTC | MTC20          | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide |
| MM74HCT240N   | N20A           | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide      |
| MM74HCT244WM  | M20B           | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide  |
| MM74HCT244SJ  | M20D           | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide               |
| MM74HCT244MTC | MTC20          | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide |
| MM74HCT244N   | N20A           | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide      |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

### **Connection Diagrams**

### Pin Assignments for DIP, SOIC, SOP and TSSOP



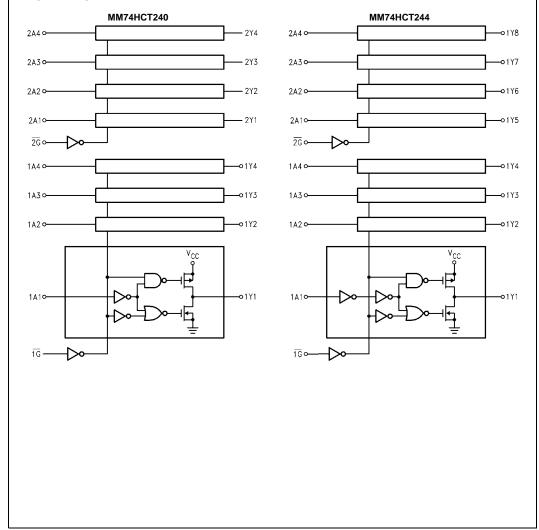


© 1999 Fairchild Semiconductor Corporation

DS005365

### **Truth Tables**

MM74HCT240


| 1G | 1A | 1Y | 2G | 2A | 2Y |
|----|----|----|----|----|----|
| L  | L  | Н  | L  | L  | Н  |
| L  | Н  | L  | L  | Н  | L  |
| Н  | L  | Z  | Н  | L  | Z  |
| Н  | Н  | Z  | Н  | Н  | Z  |

- H = HIGH Level L = LOW Level
- Z = High Impedance

#### MM74HCT244

| 1G | 1A | 1Y | 2G | 2A | 2Y |
|----|----|----|----|----|----|
| L  | L  | L  | L  | L  | L  |
| L  | Н  | Н  | L  | Н  | Н  |
| Н  | L  | Z  | Н  | L  | Z  |
| Н  | Н  | Z  | Н  | Н  | Z  |

### **Logic Diagrams**



### Absolute Maximum Ratings(Note 1)

(Note 2)

| Supply Voltage (V <sub>CC</sub> )                             | -0.5 to +7.0V            |
|---------------------------------------------------------------|--------------------------|
| DC Input Voltage (V <sub>IN</sub> )                           | $-1.5$ to $V_{CC}$ +1.5V |
| DC Output Voltage (V <sub>OUT</sub> )                         | $-0.5$ to $V_{CC}$ +0.5V |
| Clamp Diode Current (I <sub>IK</sub> , I <sub>OK</sub> )      | ±20 mA                   |
| DC Output Current, per pin (I <sub>OUT</sub> )                | ±35 mA                   |
| DC V <sub>CC</sub> or GND Current, per pin (I <sub>CC</sub> ) | ±70 mA                   |
| Storage Temperature Range (T <sub>STG</sub> )                 | -65°C to +150°C          |
| Power Dissipation (P <sub>D</sub> )                           |                          |

(Note 3)

S.O. Package only Lead Temperature (T<sub>L</sub>)

(Soldering 10 seconds)

## Recommended Operating Conditions

|                                               | Min      | Max       | Units    |
|-----------------------------------------------|----------|-----------|----------|
| Supply Voltage (V <sub>CC</sub> )             | 4.5      | 5.5       | V        |
| DC Input or Output Voltage                    | 0        | $V_{CC}$  | V        |
| $(V_{IN}, V_{OUT})$                           |          |           |          |
| Operating Temperature Range (T <sub>A</sub> ) | -40      | +85       | °C       |
| Input Rise or Fall Times                      |          |           |          |
| $(t_r, t_f)$                                  |          | 500       | ns       |
| Note 1: Absolute Maximum Ratings are those    | values b | eyond whi | ich dam- |

age to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: –

12 mW/°C from 65°C to 85°C.

### **DC Electrical Characteristics**

 $V_{CC} = 5V \pm 10\%$  (unless otherwise specified)

| Symbol          | Parameter          | Conditions                                          | Conditions T <sub>A</sub> = |                      | $T_A = -40 \text{ to } 85^{\circ}\text{C}$ | $T_A = -55^\circ$ to 125°C | Units  |
|-----------------|--------------------|-----------------------------------------------------|-----------------------------|----------------------|--------------------------------------------|----------------------------|--------|
| Symbol          |                    | Conditions                                          | Тур                         | Guaranteed Limits    |                                            |                            | Ullits |
| V <sub>IH</sub> | Minimum HIGH Level |                                                     |                             | 2.0                  | 2.0                                        | 2.0                        | V      |
|                 | Input Voltage      |                                                     |                             |                      |                                            |                            |        |
| V <sub>IL</sub> | Maximum LOW Level  |                                                     |                             | 0.8                  | 0.8                                        | 0.8                        | V      |
|                 | Input Voltage      |                                                     |                             |                      |                                            |                            |        |
| V <sub>OH</sub> | Minimum HIGH Level | $V_{IN-EE} = V_{IH}$ or $V_{IL}$                    |                             |                      |                                            |                            |        |
|                 | Output Voltage     | $ I_{OUT}  = 20 \mu A$                              | $V_{CC}$                    | V <sub>CC</sub> -0.1 | V <sub>CC</sub> -0.1                       | V <sub>CC</sub> -0.1       | V      |
|                 |                    | $ I_{OUT}  = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$ | 4.2                         | 3.98                 | 3.84                                       | 3.7                        | V      |
|                 |                    | $ I_{OUT}  = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$ | 5.2                         | 4.98                 | 4.84                                       | 4.7                        | V      |
| V <sub>OL</sub> | Maximum LOW Level  | $V_{IN} = V_{IH}$ or $V_{IL}$                       |                             |                      |                                            |                            |        |
|                 | Voltage            | $ I_{OUT}  = 20 \ \mu A$                            | 0                           | 0.1                  | 0.1                                        | 0.1                        | V      |
|                 |                    | $ I_{OUT}  = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$ | 0.2                         | 0.26                 | 0.33                                       | 0.4                        | V      |
|                 |                    | $ I_{OUT}  = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$ | 0.2                         | 0.26                 | 0.33                                       | 0.4                        | V      |
| I <sub>IN</sub> | Maximum Input      | $V_{IN} = V_{CC}$ or GND,                           |                             | ±0.05                | ±0.5                                       | ±1.0                       | μΑ     |
|                 | Current            | $V_{IH}$ or $V_{IL}$                                |                             |                      |                                            |                            |        |
| loz             | Maximum 3-STATE    | V <sub>OUT</sub> = V <sub>CC</sub> or GND           |                             | ±0.25                | ±2.5                                       | ±10                        | μΑ     |
|                 | Output Leakage     | $\overline{G} = V_{IH}$                             |                             |                      |                                            |                            |        |
|                 | Current            | $G = V_{IL}$                                        |                             |                      |                                            |                            |        |
| Icc             | Maximum Quiescent  | V <sub>IN</sub> = V <sub>CC</sub> or GND            |                             | 4.0                  | 40                                         | 160                        | μΑ     |
|                 | Supply Current     | $I_{OUT} = 0 \mu A$                                 |                             |                      |                                            |                            |        |
|                 |                    | V <sub>IN</sub> = 2.4V or 0.5V (Note 4)             | 0.6                         | 1.0                  | 1.3                                        | 1.5                        | mA     |

600 mW

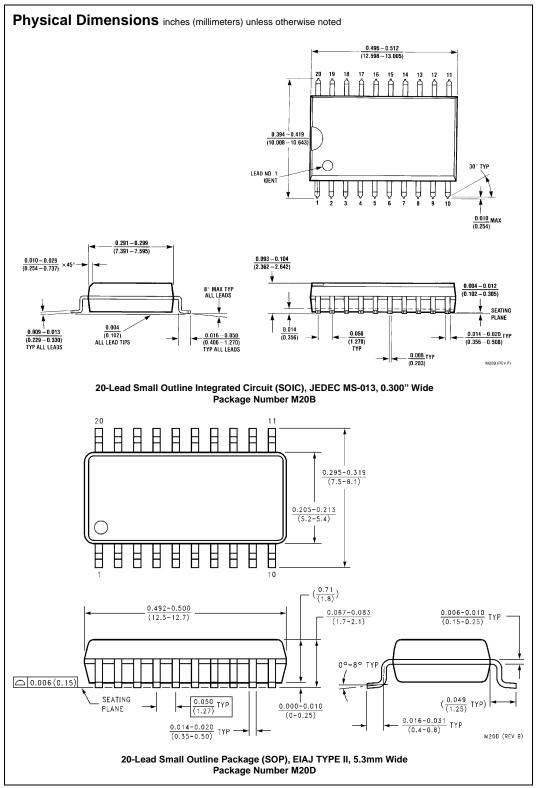
500 mW

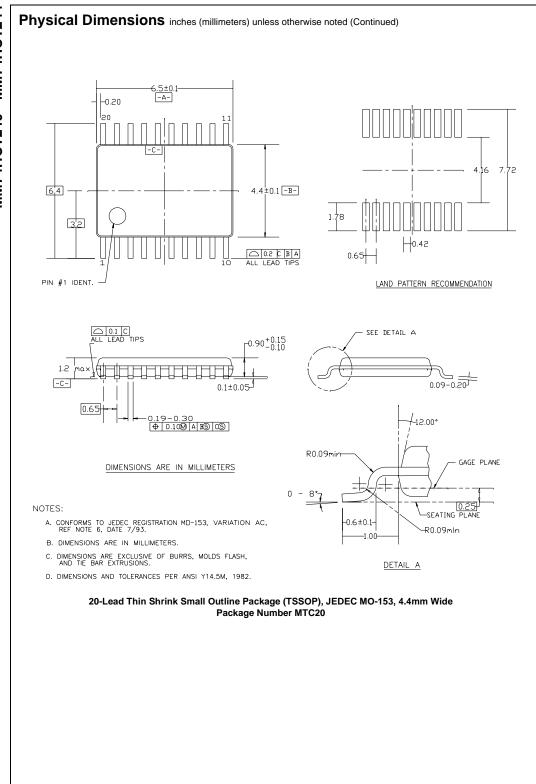
260°C

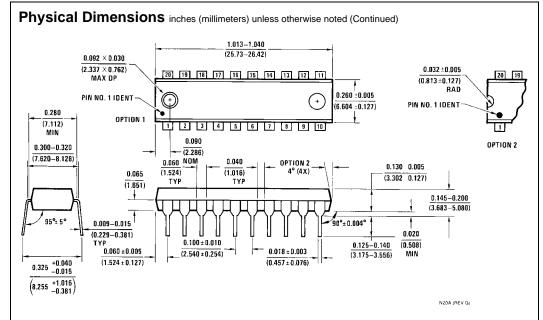
Note 4: Measured per input. All other inputs at V<sub>CC</sub> or GND.

### **AC Electrical Characteristics**

MM74HCT240, MM74HCT244  $V_{CC} = 5.0 V$ ,  $t_{\rm f} = t_{\rm f} = 6$  ns,  $T_{\rm A} = 25^{\circ} C$  (unless otherwise specified)


| Symbol                              | Parameter         | Conditions                | Тур | Guaranteed<br>Limits | Units |
|-------------------------------------|-------------------|---------------------------|-----|----------------------|-------|
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Output    | C <sub>L</sub> = 45 pF    | 14  | 18                   | ns    |
|                                     | Propagation Delay |                           |     |                      |       |
| t <sub>PZL</sub> , t <sub>PZH</sub> | Maximum Output    | C <sub>L</sub> = 45 pF    | 20  | 30                   | ns    |
|                                     | Enable Time       | $R_L = 1 \text{ k}\Omega$ |     |                      |       |
| t <sub>PLZ</sub> , t <sub>PHZ</sub> | Maximum Output    | C <sub>L</sub> = 5 pF     | 16  | 25                   | ns    |
|                                     | Disable Time      | $R_1 = 1 \text{ k}\Omega$ |     |                      |       |


### **AC Electrical Characteristics**


MM74HCT240, MM74HCT244  $\rm V_{CC} = 5.0V \pm 10\%, \, t_r = t_f = 6$  ns (unless otherwise specified)

| Symbol                              | Parameter            | Condi                          | Conditions                       |    | 25°C              | $T_A = -40 \text{ to } 85^{\circ}\text{C}$ $T_A = -55^{\circ} \text{ to } 12^{\circ}$ |       | Units |
|-------------------------------------|----------------------|--------------------------------|----------------------------------|----|-------------------|---------------------------------------------------------------------------------------|-------|-------|
| Cymbol                              |                      | Jona                           |                                  |    | Guaranteed Limits |                                                                                       | imits |       |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Output       | $C_{L} = 50 \text{ pF}$        |                                  | 14 | 20                | 25                                                                                    | 30    | ns    |
|                                     | Propagation Delay    | $C_L = 150 pF$                 |                                  | 20 | 28                | 35                                                                                    | 42    | ns    |
| $t_{PZH}, t_{PZL}$                  | Maximum Output       | $R_L = 1 k\Omega$              | C <sub>L</sub> = 50 pF           | 21 | 30                | 38                                                                                    | 45    | ns    |
|                                     | Enable Time          |                                | C <sub>L</sub> = 150 pF          | 26 | 42                | 53                                                                                    | 63    | ns    |
| $t_{PHZ},t_{PLZ}$                   | Maximum Output       | $R_L = 1 k\Omega$              | •                                | 16 | 25                | 32                                                                                    | 38    | ns    |
|                                     | Disable Time         | $C_L = 50 pF$                  | C <sub>L</sub> = 50 pF           |    |                   |                                                                                       |       |       |
| t <sub>THL</sub> , t <sub>TLH</sub> | Maximum Output       | C <sub>L</sub> = 50 pF         |                                  | 6  | 12                | 15                                                                                    | 18    | ns    |
|                                     | Rise and Fall Time   |                                |                                  |    |                   |                                                                                       |       |       |
| C <sub>IN</sub>                     | Maximum Input        |                                |                                  | 10 | 15                | 15                                                                                    | 15    | pF    |
|                                     | Capacitance          |                                |                                  |    |                   |                                                                                       |       |       |
| C <sub>OUT</sub>                    | Maximum Output       |                                |                                  | 15 | 20                | 20                                                                                    | 20    | pF    |
|                                     | Capacitance          |                                |                                  |    |                   |                                                                                       |       |       |
| C <sub>PD</sub>                     | Power Dissipation    | (per buffer)                   |                                  |    |                   |                                                                                       |       |       |
|                                     | Capacitance (Note 5) | $\overline{G} = V_{CC}, G = G$ | $\overline{G} = V_{CC}, G = GND$ |    |                   |                                                                                       |       | pF    |
|                                     |                      | $\overline{G} = GND, G = V$    | V <sub>CC</sub>                  | 90 |                   |                                                                                       |       | pF    |

Note 5:  $C_{PD}$  determines the no load dynamic power consumption,  $P_D = C_{PD} \ V_{CC} 2 \ f + I_{CC} \ V_{CC}$ , and the no load dynamic current consumption,  $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$ .







20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com