FAIRCHILD

SEMICONDUCTOR

MM74HC14 Hex Inverting Schmitt Trigger

General Description

The MM74HC14 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as well as the capability to drive 10 LS-TTL loads.

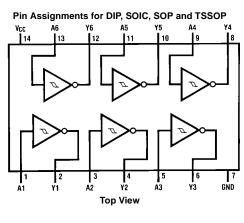
The 74HC logic family is functionally and pinout compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

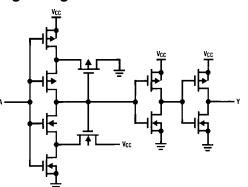
- Typical propagation delay: 13 ns
- Wide power supply range: 2–6V
- \blacksquare Low quiescent current: 20 μA maximum (74HC Series)

September 1983

Revised February 1999


- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads
- Typical hysteresis voltage: 0.9V at V_{CC} = 4.5V

Ordering Code:


Order Number	Package Number	Package Description
MM74HC14M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74HC14SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC14MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC14N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Logic Diagram

© 1999 Fairchild Semiconductor Corporation DS005105.prf

MM74HC14

Absolute Maximum Ratings(Note 1)

	-
(Note 2)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC}{+}1.5V$
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V _{CC} or GND Current, per pin	
(I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units	
Supply Voltage (V _{CC})	2	6	V	
DC Input or Output Voltage	0	V_{CC}	V	
(V _{IN} , V _{OUT})				
Operating Temperature Range (T _A)	-40	+85	°C	

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

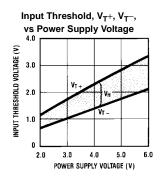
Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

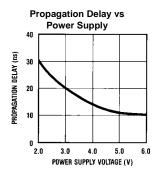
DC Electrical Characteristics (Note 4)

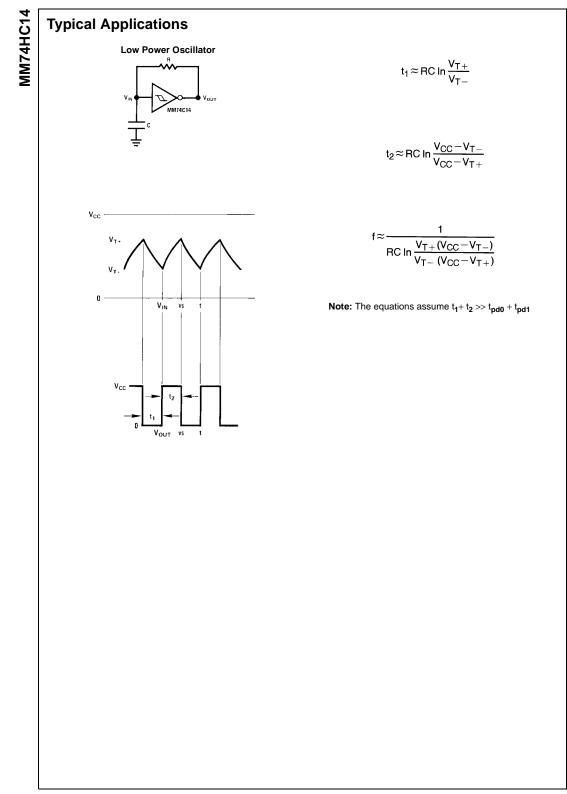
Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Falameter		*cc	Тур		Guaranteed Limits		Units
V _{T+}	Positive Going	Minimum	2.0V	1.2	1.0	1.0	1.0	V
	Threshold Voltage		4.5V	2.7	2.0	2.0	2.0	V
			6.0V	3.2	3.0	3.0	3.0	V
		Maximum	2.0V	1.2	1.5	1.5	1.5	V
			4.5V	2.7	3.15	3.15	3.15	V
			6.0V	3.2	4.2	4.2	4.2	V
V _{T-}	Negative Going	Minimum	2.0V	0.7	0.3	0.3	0.3	V
	Threshold Voltage		4.5V	1.8	0.9	0.9	0.9	V
			6.0V	2.2	1.2	1.2	1.2	V
		Maximum	2.0V	0.7	1.0	1.0	1.0	V
			4.5V	1.8	2.2	2.2	2.2	V
			6.0V	2.2	3.0	3.0	3.0	V
V _H	Hysteresis Voltage	Minimum	2.0V	0.5	0.2	0.2	0.2	V
			4.5V	0.9	0.4	0.4	0.4	V
			6.0V	1.0	0.5	0.5	0.5	V
		Maximum	2.0V	0.5	1.0	1.0	1.0	V
			4.5V	0.9	1.4	1.4	1.4	V
			6.0V	1.0	1.5	1.5	1.5	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IL}$	2.0V	2.0	1.9	1.9	1.9	V
	Output Voltage	I _{OUT} = 20 μA	4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IL}$						
		I _{OUT} = 4.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} = 5.2 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$	2.0V	0	0.1	0.1	0.1	V
	Output Voltage	I _{OUT} = 20 μA	4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$				T		
		I _{OUT} = 4.0 mA	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} = 5.2 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μA
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND	6.0V		2.0	20	40	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$						

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics							
$V_{CC} = 5V, T_{\mu}$ Symbol	$A_{\rm A} = 25^{\circ}\text{C}, \ C_{\rm L} = 15 \text{ pF}, \ t_{\rm r} = t_{\rm f} = 6 \text{ ns}$ Parameter	Conditions	Тур	Guaranteed Limit	Units		
t _{PHL} , t _{PLH}	Maximum Propagation Delay		12	22	ns		

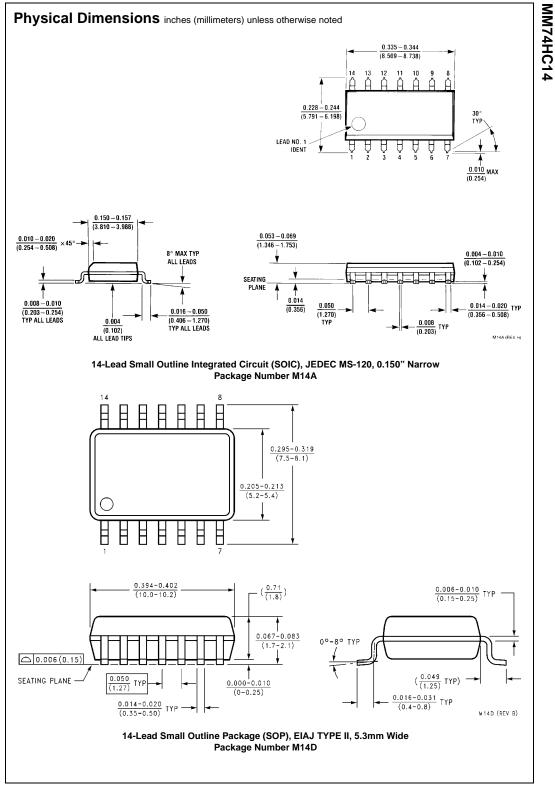

AC Electrical Characteristics

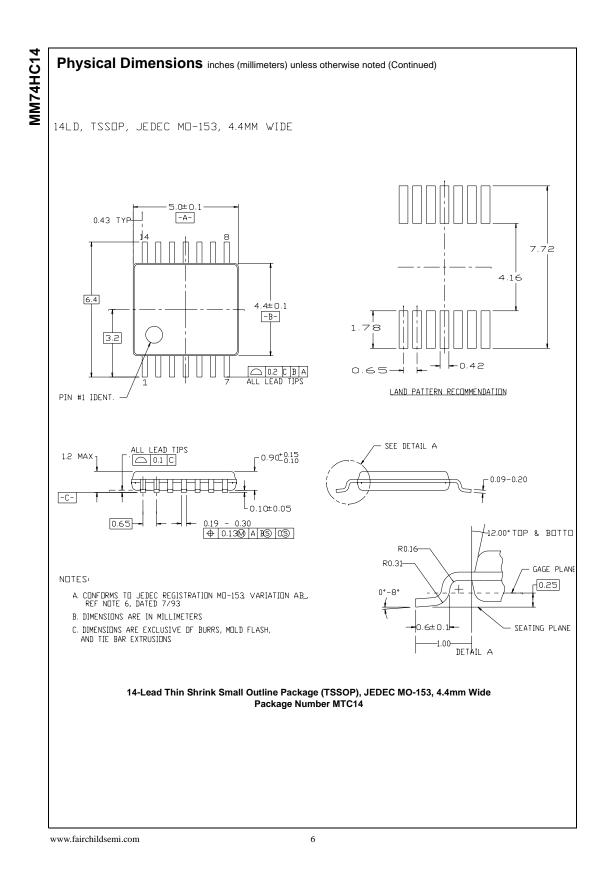

 V_{CC} = 2.0V to 6.0V, C_L = 50 pF, t_r = t_f = 6 ns (unless otherwise specified)


Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units	
Gymbol	rarameter			Typ Guaranteed Limits			onita		
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	60	125	156	188	ns	
	Delay		4.5V	13	25	31	38	ns	
			6.0V	11	21	26	32	ns	
t _{TLH} , t _{THL}	Maximum Output Rise		2.0V	30	75	95	110	ns	
	and Fall Time		4.5V	8	15	19	22	ns	
			6.0V	7	13	16	19	ns	
C _{PD}	Power Dissipation	(per gate)		27				pF	
	Capacitance (Note 5)								
CIN	Maximum Input Capacitance			5	10	10	10	pF	

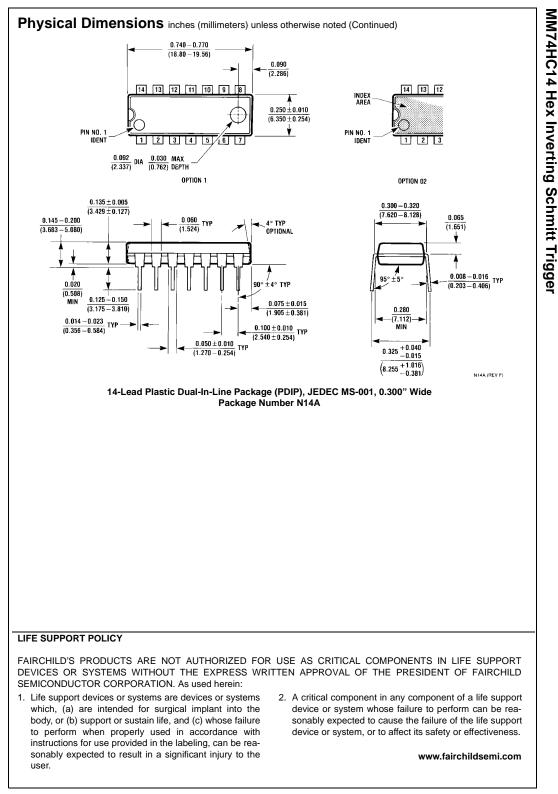
Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC} 2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \; V_{CC} \; f + I_{CC}. \label{eq:ls}$

Typical Performance Characteristics





www.fairchildsemi.com


4

5

Downloaded from Elcodis.com electronic components distributor

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.