FEATURES

AC and DC Characterized and Specified (K, B, T Grades)
 128k Conversions per Second
 1 MHz Full Power Bandwidth
 500 kHz Full Linear Bandwidth
 80 dB S/N+D (K, B, T Grades)
 Twos Complement Data Format (Bipolar Mode)
 Straight Binary Data Format (Unipolar Mode)
 $10 \mathrm{M} \Omega$ Input Impedance
 16-Bit Bus Interface (See AD679 for 8-Bit Interface)
 Onboard Reference and Clock
 10 V Unipolar or Bipolar Input Range
 MIL-STD-883 Compliant Versions Available

PRODUCT DESCRIPTION

The AD 779 is a complete, multipurpose 14-bit monolithic analog-to-digital converter, consisting of a sample-hold amplifier (SH A), a microprocessor compatible bus interface, a voltage reference and clock generation circuitry.
The AD 779 is specified for ac (or "dynamic") parameters such as $\mathrm{S} / \mathrm{N}+\mathrm{D}$ ratio, THD and IM D which are important in signal processing applications. In addition, the AD 779K, B and T grades are fully specified for dc parameters which are important in measurement applications.
T he 14 data bits are accessed by a 16-bit bus in a single read operation. D ata format is straight binary for unipolar mode and twos complement binary for bipolar mode. The input has a fullscale range of 10 V with a full power bandwidth of 1 M Hz and a full linear bandwidth of 500 kHz . High input impedance ($10 \mathrm{M} \Omega$) allows direct connection to unbuffered sources without signal degradation.
This product is fabricated on A nalog D evices' BiM OS process, combining low power CM OS logic with high precision, low noise bipolar circuits; laser-trimmed thin-film resistors provide high accuracy. The converter utilizes a recursive subranging algorithm which includes error correction and flash converter circuitry to achieve high speed and resolution.

The AD 779 operates from +5 V and $\pm 12 \mathrm{~V}$ supplies and dissipates 560 mW (typ). T wenty-eight-pin plastic DIP and ceramic DIP packages are available.
*Protected by U.S. Patent Numbers 4,804,960; 4,814,767; 4,833,345; 4,250,445; 4,808,908; RE 30,586.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

I. COM PLETE INTEGRATION : The AD 779 minimizes external component requirements by combining a high speed sample-hold amplifier (SH A), AD C , 5 V reference, clock and digital interface on a single chip. T his provides a fully specified sampling A/D function unattainable with discrete designs.
2. SPECIFICATIONS: The AD $779 \mathrm{~K}, \mathrm{~B}$ and T grades provide fully specified and tested ac and dc parameters. The AD 779, A and S grades are specified and tested for ac parameters; dc accuracy specifications are shown as typicals. DC specifications (such as INL, gain and offset) are important in control and measurement applications. AC specifications (such as $S / N+D$ ratio, THD and IM D) are of value in signal processing applications.
3. EASE OF USE: The pinout is designed for easy board layout, and the single cycle read output provides compatibility with 16-bit buses. F actory trimming eliminates the need for calibration modes or external trimming to achieve rated performance.
4. RELIABILITY: T he AD 779 utilizes Analog D evices' monolithic BiM OS technology. This ensures long term reliability compared to multichip and hybrid designs.
5. The AD 779 is available in versions compliant with M ILST D-883. Refer to the Analog D evices M ilitary Products D atabook or current AD 779/883B data sheet for detailed specifications.

REV. B

[^0]One Technology Way, P.O. Box 9106, Nonwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

AD779- SPECIFICATIONS

AC SPECIFICATIONS ${ }_{f}^{\left(T_{M I N} \text { to } T_{M A X}, ~\right.} \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{f}_{\mathrm{SAMPLE}}=128 \mathrm{kSPS}$, $\mathrm{f}_{\text {IN }}=10.009 \mathrm{kHz}$ unless otherwise noted) ${ }^{1}$

Parameter	AD779/A/S			AD779K/B/T			Units
	Min	Typ	Max	Min	Typ	Max	
```SIGNAL-TO-NOISE AND DISTORTION (S/N +D) RATIO -0.5 dB Input (Referred to 0 dB Input) -20 dB Input (Referred to -20 dB Input) -60 dB Input (Referred to -60 dB Input)```	$\begin{aligned} & 78 \\ & 58 \\ & 18 \end{aligned}$	$\begin{aligned} & 79 \\ & 59 \\ & 19 \end{aligned}$		$\begin{aligned} & 80 \\ & 60 \\ & 20 \end{aligned}$	$\begin{aligned} & 81 \\ & 61 \\ & 21 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
```TOTAL HARM ONIC DISTORTION (THD) @ +25`` T```		$\begin{aligned} & -90 \\ & 0.003 \\ & -88 \\ & 0.004 \\ & \hline \end{aligned}$	$\begin{aligned} & -84 \\ & 0.006 \\ & -82 \\ & 0.008 \\ & \hline \end{aligned}$		$\begin{aligned} & -90 \\ & 0.003 \\ & -88 \\ & 0.004 \\ & \hline \end{aligned}$	$\begin{aligned} & -84 \\ & 0.006 \\ & -82 \\ & 0.008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { dB } \\ & \% \\ & \text { dB } \\ & \% \end{aligned}$
PEAK SPURIOUS OR PEAK HARMONIC COMPONENT		-90	-84		-90	-84	dB
FULL POWER BANDWIDTH		1			1		M Hz
FULL LINEAR BANDWIDTH	500			500			kHz
INTERMODULATION DISTORTION (IMD) ${ }^{2}$ 2nd Order Products 3rd Order Products		$\begin{aligned} & -90 \\ & -90 \end{aligned}$	$\begin{aligned} & -84 \\ & -84 \end{aligned}$		$\begin{aligned} & -90 \\ & -90 \end{aligned}$	$\begin{aligned} & -84 \\ & -84 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$

DIGITAL SPECIFICATIONS (All device types $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAx, }}, \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$)

Parameter	Test Conditions	Min	Max	Units
LOGIC IN PUTS				
$\mathrm{V}_{\text {IH }} \quad$ High Level Input Voltage		2.0	$V_{D D}$	V
VIL Low Level Input Voltage		0	0.8	V
$\mathrm{I}_{\mathrm{IH}} \quad$ High Level Input Current	$V_{\text {IN }}=V_{\text {D }}$	-10	+10	$\mu \mathrm{A}$
IIL Low Level Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-10	+10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }} \quad$ Input Capacitance			10	pF
LOGIC OUTPUTS				
$\mathrm{V}_{\text {OH }} \quad$ High Level Output Voltage	$\mathrm{I}_{\text {OH }}=0.1 \mathrm{~mA}$	4.0		v
	$\mathrm{I}_{\text {OH }}=0.5 \mathrm{~mA}$	2.4		V
Vol Low Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		0.4	V
loz High Z L eakage Current	$V_{\text {IN }}=\mathrm{V}_{\text {D }}$	-10	+10	$\mu \mathrm{A}$
$\mathrm{C}_{0 z} \quad$ High Z Output Capacitance			10	pF

NOTES
${ }^{1} f_{I N}$ amplitude $=-0.5 \mathrm{~dB}(9.44 \mathrm{~V} p-p$) bipolar mode full scale unless otherwise indicated. All measurements referred to a $-0 \mathrm{~dB}(9.997 \mathrm{~V} p-\mathrm{p})$ input signal unless otherwise noted.
${ }^{2} \mathrm{f}_{\mathrm{A}}=9.08 \mathrm{kHz}, \mathrm{f}_{\mathrm{B}}=9.58 \mathrm{kHz}$, with $\mathrm{f}_{\text {SAMPLE }}=128 \mathrm{kSPS}$.
Specifications subject to change without notice.

DC SPECIFICATIONS (TMnH to $T_{\text {TMx }} V_{C c}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{00}=+5 \mathrm{~V} \pm 10 \%$ unless otherwise noted)

Parameter	AD779/A/S			AD779K/B/T			Units	
	Min	Typ	Max	Min	Typ	Max		
TEM PERATURE RANGE								
J, K Grades	0		+70	0		+70	${ }^{\circ} \mathrm{C}$	
A, B Grades	-40		+85	-40		+85	${ }^{\circ} \mathrm{C}$	
S, T Grades	-55		+125	-55		+125	${ }^{\circ} \mathrm{C}$	
ACCURACY								
Resolution	14			14			Bits	
Integral N onlinearity (INL)		± 2			± 1	± 2	LSB	
Differential N onlinearity (DNL)	14			14			Bits	
Unipolar Zero Error ${ }^{1}$ (@ +25 ${ }^{\circ} \mathrm{C}$)		0.08			0.05	0.07	\% FSR*	
Bipolar Zero Error ${ }^{1}$ ($@+25^{\circ} \mathrm{C}$)		0.08			0.05	0.07	\% FSR	
Gain Error ${ }^{1,2}$ (@ $+25^{\circ} \mathrm{C}$)		0.12			0.09	0.11	\% FSR	
Temperature D rift								
Unipolar Zero ${ }^{3}$								
J, K Grades		0.04			0.04	0.05	\% FSR	
A, B Grades		0.05			0.05	0.07	\% FSR	
S, T Grades		0.09			0.09	0.10	\% FSR	
Bipolar Zero ${ }^{3}$								
J, K Grades		0.02			0.02	004	\% FSR	
A, B Grades		0.04			0.04	0.06	\% FSR	
S, T Grades		0.08			0.08	0.09	\% FSR	
Gain ${ }^{3}$								
J, K Grades		0.09			0.09	0.11	\% FSR	
A, B Grades		0.10			0.10	0.16	\% FSR	
J, K Grades		0.04			0.04	0.05	\% F SR	
A, B Grades		0.05			0.05	0.07	\% FSR	
S, T Grades		0.09			0.09	0.10	\% FSR	
ANALOG INPUT								
Input Ranges								
Unipolar M ode	0		+10	0		+10	V	
Bipolar M ode	-5		+5	-5		+5		
Input Resistance		10			10		M Ω	
Input C apacitance		10			10		pF	
Input Settling Time			1.5			1.5	$\mu \mathrm{s}$	
A perture Delay		10			10		ns	
A perture Jitter		150			150		ps	
INTERNAL VOLTAGE REFERENCE								
Output Voltage ${ }^{5}$	4.98		5.02	4.98		5.02	V	
External L oad								
Unipolar M ode			+1.5			+1.5	mA	
Bipolar M ode			+0.5			+0.5	mA	
POWER SUPPLIES								
Power Supply Rejection								
$V_{\text {cc }}=+12 \mathrm{~V} \pm 5 \%$		± 6				± 6	LSB	
$\mathrm{V}_{\text {EE }}=-12 \mathrm{~V} \pm 5 \%$		± 6				± 6	LSB	
$\mathrm{V}_{\text {D }}=+5 \mathrm{~V} \pm 10 \%$		± 6				± 6	LSB	
Operating C urrent								
$I_{\text {cc }}$		18	20		18	20	mA	
$\mathrm{I}_{\text {ex }}$		25	34		25	34	mA	
ID		8	12		8	12	mA	
Power Consumption		560	745		560	745	mW	

NOTES

${ }^{1}$ Adjustable to zero. See Figures 5 and 6 .
${ }^{2}$ Includes internal voltage reference error.
${ }^{3}$ Includes internal voltage reference drift.
${ }^{4}$ Excludes internal voltage reference drift.
${ }^{5}$ With maximum external load applied.
*\% FSR = percent of full-scale range.
Specifications subject to change without notice.

TIMING SPECIFICATIONS

(All device types $\mathrm{T}_{\text {MI }}$ to $\mathrm{T}_{\text {MAX, }} \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}$ $\pm 5 \%, V_{D D}=+5 \mathrm{~V} \pm 10 \%$)

Parameter	Symbol	Min	Max	Units
Conversion Rate ${ }^{1}$	t_{CR}		7.8	$\mu \mathrm{S}$
Convert Pulse Width	$\mathrm{t}_{\text {cp }}$	0.097	3.0	$\mu \mathrm{s}$
A perture D elay	t_{AD}	5	20	ns
C onversion Time	t_{c}		6.3	$\mu \mathrm{S}$
Status Delay	$\mathrm{t}_{\text {S }}$	0	400	ns
Access Time ${ }^{2,3}$	$\mathrm{t}_{\text {BA }}$	10	100	ns
		10	57^{4}	ns
F loat D elay ${ }^{5}$	$\mathrm{t}_{\text {F }}$	10	80	ns
Output D elay	$\mathrm{t}_{0 \mathrm{D}}$		0	ns
OE D elay	$\mathrm{t}_{\text {OE }}$	20		ns
Read Pulse Width	t_{RP}	100		ns
Conversion Delay	$\mathrm{t}_{\text {CD }}$	400		ns

NOTES
${ }^{1}$ Includes Acquisition T ime.
${ }^{2} \mathrm{M}$ easured from the falling edge of $\overline{\mathrm{OE}} / \overline{\mathrm{EOCEN}}(0.8 \mathrm{~V})$ to the time at which the data lines/EOC cross 2.0 V or 0.8 V . See Figure 4.
${ }^{3} \mathrm{C}_{\text {OUt }}=100 \mathrm{pF}$.
${ }^{4} \mathrm{C}_{\text {OUT }}=50 \mathrm{pF}$.
 output voltage changes by 0.5 V . See Figure $4 ; \mathrm{C}_{\text {out }}=10 \mathrm{pF}$.
Specifications subject to change without notice.

Figure 1. Conversion Timing

Figure 2. Output Timing

Figure 3. EOC Timing

Figure 4. Load Circuit for Bus Timing Specifications

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Specification	With Respect To	Min	Max	Units
$V_{\text {CC }}$	AGND	-0.3	+18	V
$V_{\text {be }}$	AGND	-18	+0.3	V
$\mathrm{V}_{\mathrm{CC}}{ }^{2}$	$V_{\text {EE }}$	-0.3	+26.4	V
VDD	DGND	0	+7	V
AGND	DGND	-1	+1	V
AIN, REF ${ }_{\text {IN }}$	AGND	V_{EE}	V_{CC}	V
Digital Inputs	DGND	-0.5	+7	V
Digital Outputs	DGND	-0.5	$V_{D D}+0.3$	V
M ax Junction Temperature			175	${ }^{\circ} \mathrm{C}$
Operating T emperature J and K Grades		0	+70	${ }^{\circ} \mathrm{C}$
A and B Grades		-40	+85	${ }^{\circ} \mathrm{C}$
S and T Grades		-55	+125	${ }^{\circ} \mathrm{C}$
Storage T emperature		-65	+150	${ }^{\circ} \mathrm{C}$
Lead T emperature (10 sec max)			+300	${ }^{\circ} \mathrm{C}$

NOTES
${ }^{1}$ Stresses above those listed under "Absolute M aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ The AD 779 is not designed to operate from $\pm 15 \mathrm{~V}$ supplies.

ESD SENSITIVITY

The AD 779 features input protection circuitry consisting of large "distributed" diodes and polysilicon series resistors to dissipate both high energy discharges (Human Body M odel) and fast, low energy pulses (Charged D evice M odel). Per M ethod 3015.2 of M IL-STD-883C, the AD 779 has been classified as a C ategory 1 device.
Proper ESD precautions are strongly recommended to avoid functional damage or performance degradation. Charges as high as 4000 volts readily accumulate on the human body and test equipment and discharge without detection. U nused devices must be stored in conductive foam or
 shunts, and the foam should be discharged to the destination socket before devices are removed. F or further information on ESD precautions, refer to Analog D evices' ESD Prevention M anual.

ORDERING GUIDE ${ }^{\mathbf{1}}$

Model 2	Temperature Range	Tested and Specified	Package Description	Package Option ${ }^{3}$
AD 779JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AC	28-Pin Plastic DIP	N-28
AD 779 K	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$A C+D C$	28-Pin Plastic DIP	N-28
AD 779JD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	AC	28-Pin Ceramic DIP	D-28
AD 779K D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$A C+D C$	28-Pin Ceramic DIP	D-28
AD 779AD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	AC	28-Pin Ceramic DIP	D-28
AD 779BD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$A C+D C$	28-Pin Ceramic DIP	D-28
AD779SD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	AC	28-Pin Ceramic DIP	D-28
AD779T D	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$A C+D C$	28-Pin Ceramic DIP	D-28

NOTES

${ }^{1}$ F or two cycle read ($8+16$ bits) interface to 8 -bit buses, see AD 679.
${ }^{2}$ For details on grade and package offerings screened in accordance with M IL-ST D-883, refer to the Analog Devices M ilitary Products D atabook or current AD 779/883B data sheet.
${ }^{3} \mathrm{D}=$ Ceramic DIP; $\mathrm{N}=$ Plastic DIP.

PIN DESCRIPTION

Symbol	28-Pin DIP Pin No.	Type	Name and Function
AGND	7	P	Analog Ground. This is the ground return for AIN only.
AIN	6	AI	Analog Signal Input.
BIPOFF	10	AI	Bipolar Offset. Connect to AGND for +10 V input unipolar mode and straight binary output coding. Connect to REF out for $\pm 5 \mathrm{~V}$ input bipolar mode and twos-complement binary output coding.
$\overline{\mathrm{CS}}$	12	DI	Chip Select. Active LOW.
DGND	14	P	Digital Ground.
DB13-DB0	28-15	DO	D ata Bits. These pins provide all 14 bits in one 14 bit parallel output. Active HIGH.
EOC	2	D 0	End-of-C onvert. EOC goes LOW when a conversion starts and goes HIGH when the conversion is finished. EOC is a three-state output. See EOCEN pin for information on EOC gating.
EOCEN	13	DI	End-of-C onvert Enable. Enables EOC pin. Active LOW.
$\overline{\mathrm{OE}}$	3	DI	Output Enable. A down-going transition on $\overline{\mathrm{OE}}$ enables data bits. Active LOW.
REF ${ }_{\text {IN }}$	9	AI	R eference Input. +5 V input gives 10 V full scale range.
REF out	8	AO	+5 V Reference Output. T ied to REF ${ }_{\text {IN }}$ for normal operation.
$\overline{\mathrm{SC}}$	4	DI	Start C onvert. Active LOW.
$\mathrm{V}_{\text {c }}$	11	P	+12 V A nalog Power.
$V_{\text {EE }}$	5	P	-12 V Analog Power.
$V_{\text {DD }}$	1	P	+5 V Digital Power.
```Type: AI = Analog Input. AO = Analog Output. DI = Digital Input. DO = Digital Output. All DO pins are three-state drivers. P = Power.```			

## PIN CONFIGURATION

## DIP Package



## DEFINITION OF SPECIFICATIONS NYQUIST FREQUENCY

An implication of the $N$ yquist sampling theorem, the " $N$ yquist Frequency" of a converter is that input frequency which is onehalf the sampling frequency of the converter.

## SIGNAL-TO-NOISE AND DISTORTION (S/N+D) RATIO

$S / N+D$ is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the $N$ yquist frequency, including harmonics but excluding dc.

## TOTAL HARMONIC DISTORTION (THD)

THD is the ratio of the rms sum of the first six harmonic components to the rms value of a full-scale input signal and is expressed as a percentage or in decibels. F or input signals or harmonics that are above the $N$ yquist frequency, the aliased component is used.

## PEAK SPURIOUS OR PEAK HARMONIC COMPONENT

The peak spurious or peak harmonic component is the largest spectral component excluding the input signal and dc. This value is expressed in decibels relative to the rms value of a fullscale input signal.

## INTERMODULATION DISTORTION (IMD)

With inputs consisting of sine waves at two frequencies, fa and fb , any device with nonlinearities will create distortion products, of order $(m+n)$, at sum and difference frequencies of $\mathrm{mfa} \pm$ nfb , where $\mathrm{m}, \mathrm{n}=0,1,2,3 \ldots$. Intermodulation terms are those for which m or n is not equal to zero. For example, the second order terms are ( $\mathrm{fa}+\mathrm{fb}$ ) and ( $\mathrm{fa}-\mathrm{fb}$ ) and the third order terms are ( $2 \mathrm{fa}+\mathrm{fb}$ ), ( $2 \mathrm{fa}-\mathrm{fb}$ ), ( $\mathrm{fa}+2 \mathrm{fb}$ ) and ( $\mathrm{fa}-2 \mathrm{fb}$ ). The IM D products are expressed as the decibel ratio of the rms sum of the measured input signals to the rms sum of the distortion terms. The two signals applied to the converter are of equal amplitude and the peak value of their sum is -0.5 dB from full scale ( $9.44 \mathrm{~V} p-\mathrm{p}$ ). The IM D products are normalized to a $0-\mathrm{dB}$ input signal.

## BANDWIDTH

The full-power bandwidth is that input frequency at which the amplitude of the reconstructed fundamental is reduced by 3 dB for a full-scale input.
The full-linear bandwidth is the input frequency at which the slew rate limit of the sample-hold-amplifier (SHA) is reached. At this point, the amplitude of the reconstructed fundamental has degraded by less than -0.1 dB . Beyond this frequency, distortion of the sampled input signal increases significantly.
The AD 779 has been designed to optimize input bandwidth, allowing it to undersample input signals with frequencies significantly above the converter's N yquist frequency.

## APERTURE DELAY

Aperture delay is a measure of the SHA's performance and is measured from the falling edge of Start C onvert ( $\overline{\mathrm{SC}}$ ) to when the input signal is held for conversion.

## APERTURE JITTER

Aperture jitter is the variation in aperture delay for successive samples and is manifested as noise on the input to the A/D.

## INPUT SETTLING TIME

Settling time is a function of the SHA's ability to track fast slewing signals. This is specified as the maximum time required in track mode after a full-scale step input to guarantee rated conversion accuracy.

## DIFFERENTIAL NONLINEARITY (DNL)

In an ideal ADC, code transitions are 1 LSB apart. D ifferential linearity is the deviation from this ideal value. It is often specified in terms of resolution for which no missing codes ( NMC ) are guaranteed.

## INTEGRAL NONLINEARITY (INL)

The ideal transfer function for a linear ADC is a straight line drawn between "zero" and "full scale." The point used as "zero" occurs $1 / 2$ LSB before the first code transition. "Full scale" is defined as a level $11 / 2$ LSB beyond the last code transition. Integral nonlinearity error is the worst case deviation of a code from the straight line. The deviation of each code is measured from the middle of that code.
$N$ ote that the linearity error is not user adjustable.

## POWER SUPPLY REJECTION

Variations in power supply will affect the full-scale transition, but not the converter's linearity. Power Supply Rejection is the maximum change in the full-scale transition point due to a change in power supply voltage from the nominal value.

## TEMPERATURE DRIFT

This is the maximum change in the parameter from the initial value ( $@+25^{\circ} \mathrm{C}$ ) to the value at $\mathrm{T}_{\text {min }}$ or $\mathrm{T}_{\text {max }}$.

## UNIPOLAR ZERO ERROR

In unipolar mode, the first transition should occur at a level $1 / 2$ LSB above analog ground. Unipolar zero error is the deviation of the actual transition from that point. This error can be adjusted as discussed in the Input Connections and Calibration section.

## BIPOLAR ZERO ERROR

In the bipolar mode, the major carry transition (11 11111111 1111 to 00000000000000 ) should occur at an analog value $1 / 2$ LSB below analog ground. Bipolar zero error is the deviation of the actual transition from that point. This error can be adjusted as discussed in the Input C onnections and C alibration section.

## GAIN ERROR

The last transition should occur at an analog value 1 1/2 LSB below the nominal full scale ( 9.9991 volts for a $0 \mathrm{~V}-10 \mathrm{~V}$ range, 4.9991 volts for $\mathrm{a} \pm 5 \mathrm{~V}$ range). The gain error is the deviation of the actual level at the last transition from the ideal level with the zero error trimmed out. T his error can be adjusted as shown in the Input C onnections and Calibration section.

## CONVERSION TRUTH TABLE

Mode	INPUTS				OUTPUTS		Status
	$\overline{\mathbf{S C}}$	EOCEN	$\overline{\mathrm{CS}}$	$\overline{\mathrm{OE}}$	EOC	DB13... DB0	
Start Conversion	1	X	X	X			No Conversion
	$\underline{1}$	X	X	X			Start C onversion
	0	X	$X$	X			Continuous Conversion (N ot Recommended)
Conversion Status	X	0	X	X	0		C onverting
	X	0	$X$	$X$	1		$N$ ot Converting
	X	1	$X$	X	High Z		Either
D ata Access	X	X	X	1		High Z	T hree-State
	X	X	1	X		High Z	T hree-State
	X	X	0	0		M SB . . . LSB	D ata Out

## NOTES

$1=$ HIGH voltage level.
0 = LOW voltage level.
X = Don't care
$z=$ HIGH to LOW transition. M ust stay LOW for $t=t_{\text {cp }}$.

## CONVERSION CONTROL

Before a conversion is started, End-of-C onvert (EOC) is HIGH and the sample-hold is in track mode. A conversion is started by bringing $\overline{S C} L O W$, regardless of the state of $\overline{C S}$.
After a conversion is started, the sample-hold goes into hold mode and EOC goes LOW, signifying that a conversion is in progress. During the conversion, the sample-hold will go back into track mode and start acquiring the next sample.

In track mode, the sample-hold will settle to $\pm 0.003 \%$ (14 bits) in $1.5 \mu \mathrm{~s}$ maximum. T he acquisition time does not affect the throughput rate as the AD 779 goes back into track mode more than $2 \mu$ s before the next conversion. In multichannel systems, the input channel can be switched as soon as EOC goes LOW if the maximum throughput rate is needed.
When EOC goes HIGH, the conversion is completed and the output data may be read. Bringing $\overline{\mathrm{OE}} \mathrm{LOW}$ makes the output register contents available on the output data bits (D B 13-D B0), A period of time $\mathrm{t}_{\mathrm{CD}}$ is required after $\overline{\mathrm{OE}}$ is brought HIGH before the next $\overline{\mathrm{SC}}$ instruction is issued.

If $\overline{S C}$ is held LOW, conversion accuracy may deteriorate. For this reason, $\overline{\mathrm{SC}}$ should not be held low in any attempt to operate in a continuously converting mode.

## END-OF-CONVERT

End-of-C onvert (EOC) is a three-state output which is enabled by End-of-C onvert Enable EOCEN.

## OUTPUT ENABLE OPERATION

The data bits (D B 13-D B0) are three-state outputs that are enabled by Chip Select ( $\overline{\mathrm{CS}}$ ) and Output Enable ( $\overline{\mathrm{OE}}$ ). $\overline{\mathrm{CS}}$ should be LOW $\mathrm{t}_{\text {OE }}$ before $\overline{\mathrm{OE}}$ is brought LOW. The output is read in a single cycle as a 14-bit word.
In unipolar mode (BIPOFF tied to AGND), the output coding is straight binary. In bipolar mode (BIPOFF tied to REF ${ }_{\text {OUt }}$ ), output coding is twos complement binary.

## POWER-UP

The AD 779 typically requires $10 \mu$ s after power-up to reset internal logic

Unipolar Coding (Straight Binary)		Bipolar Coding (Twos Complement)	
$\mathbf{V I N}_{\text {IN }}$	Output Code	$V_{\text {IN }}$	Output Code
0.00000 V	000... 0	-5.00000 V	100... 0
5.00000 V	100... 0	-0.00061 V	111... 1
9.99939 V	111... 1	0.00000 V	000... 0
		+2.50000 V	010... 0
		+4.99939 V	011... 1

## Application Information

## INPUT CONNECTIONS AND CALIBRATION

The high ( $10 \mathrm{M} \Omega$ ) input impedance of the AD 779 eases the task of interfacing to high source impedances or multiplexer channel-to-channel mismatches of up to $300 \Omega$. The $10 \mathrm{~V} p-\mathrm{p}$ full-scale input range accepts the majority of signal voltages without the need for voltage divider networks which could deteriorate the accuracy of the ADC.

The AD 779 is factory trimmed to minimize offset, gain and linearity errors. In unipolar mode, the only external component that is required is a $50 \Omega \pm 1 \%$ resistor. Two resistors are required in bipolar mode. If offset and gain are not critical, even these components can be eliminated.
In some applications, offset and gain errors need to be more precisely trimmed. T he following sections describe the correct procedure for these various situations.

## BIPOLAR RANGE INPUTS

The connections for the bipolar mode are shown in Figure 5. In this mode, data output coding will be twos complement binary. This circuit will allow approximately $\pm 25 \mathrm{mV}$ of offset trim range ( $\pm 40 \mathrm{LSB}$ ) and $\pm 0.5 \%$ of gain trim range ( $\pm 80 \mathrm{LSB}$ ).


Figure 5. Bipolar Input Connections with Gain and Offset Trims
Either or both of the trim pots can be replaced with $50 \Omega \pm 1 \%$ fixed resistors if the AD 779 accuracy limits are sufficient for the application. If the pins are shorted together, the additional offset and gain errors will be approximately 80 LSB.
T o trim bipolar zero to its nominal value, apply a signal $1 / 2$ LSB below midrange ( -0.305 mV for $\mathrm{a} \pm 5 \mathrm{~V}$ range) and adjust R 1 until the major carry transition is located (11 111111111111 to 0000000000 0000). T o trim the gain, apply a signal 1 1/2 LSB below full scale ( +4.9991 V for $\mathrm{a} \pm 5 \mathrm{~V}$ range) and adjust R 2 to give the last positive transition (01 111111111110 to 011111 1111 1111). These trims are interactive so several iterations may be necessary for convergence.
A single pass calibration can be done by substituting a bipolar offset trim (error at minus full scale) for the bipolar zero trim (error at midscale), using the same circuit. First, apply a signal $1 / 2 \mathrm{LSB}$ above minus full scale ( -4.9997 V for $\mathrm{a} \pm 5 \mathrm{~V}$ range) and adjust R1 until the minus full-scale transition is located (10 000000000000 to 10000000 0001). Then perform the gain error trim as outlined above.

## UNIPOLAR RANGE INPUTS

Offset and gain errors can be trimmed out by using the configuration shown in Figure 6. This circuit allows approximately $\pm 25 \mathrm{mV}$ of offset trim range ( $\pm 40 \mathrm{LSB}$ ) and $\pm 0.5 \%$ of gain trim range ( $\pm 80$ LSB).


Figure 6. Unipolar Input Connections with Gain and Offset Trims

The first transition (from 00000000000000 to 0000000000 0001) should nominally occur for an input level of $+1 / 2$ LSB ( 0.305 mV above ground for a 10 V range). T o trim unipolar zero to this nominal value, apply a 0.305 mV signal to AIN and adjust R1 until the first transition is located.
The gain trim is done by adjusting R2. If the nominal value is required, apply a signal $11 / 2$ LSB below full scale ( 9.9997 V for a 10 V range) and adjust R 2 until the last transition is located (11 111111111110 to 1111111111 1111).
If offset adjustment is not required, BIPOFF should be connected directly to AGND. If gain adjustment is not required, R2 should be replaced with a fixed $50 \Omega \pm 1 \%$ metal film resistor. If REF OUT is connected directly to $\mathrm{REF}_{\text {IN }}$, the additional gain error will be approximately $1 \%$.

## REFERENCE DECOUPLING

It is recommended that a $10 \mu \mathrm{~F}$ tantalum capacitor be connected between REF $_{\text {IN }}$ (Pin 9) and ground. T his has the effect of improving the $S / N+D$ ratio through filtering possible broadband noise contributions from the voltage reference.

## BOARD LAYOUT

Designing with high resolution data converters requires careful attention to board layout. T race impedance is a significant issue. A 1.22 mA current through a $0.5 \Omega$ trace will develop a voltage drop of 0.6 mV , which is 1 LSB at the 14-bit level for a 10 V full-scale span. In addition to ground drops, inductive and capacitive coupling need to be considered, especially when high accuracy analog signals share the same board with digital signals. Finally, power supplies need to be decoupled in order to filter out ac noise.
Analog and digital signals should not share a common path. E ach signal should have an appropriate analog or digital return routed close to it. U sing this approach, signal loops enclose a small area, minimizing the inductive coupling of noise. Wide PC tracks, large gauge wire, and ground planes are highly recommended to provide low impedance signal paths. Separate analog and digital ground planes are also desirable, with a single interconnection point to minimize ground loops. A nalog signals should be routed as far as possible from digital signals and should cross them at right angles.
The AD 779 incorporates several features to help the user's layout. Analog pins ( $\mathrm{V}_{\text {BE }}$ ) AIN, AGND, REF OUT, REF ${ }_{\text {IN }}$, BIPOFF, $\mathrm{V}_{\mathrm{cc}}$ ) are adjacent to help isolate analog from digital signals. In addition, the $10 \mathrm{M} \Omega$ input impedance of AIN minimizes input trace impedance errors. Finally, ground currents have been minimized by careful circuit design. Current through AGND is $200 \mu \mathrm{~A}$, with no code dependent variation. T he current through DGND is dominated by the return current for DB13-DB0 and EOC.

## SUPPLY DECOUPLING

The AD 779 power supplies should be well filtered, well regulated, and free from high frequency noise. Switching power supplies are not recommended due to their tendency to generate spikes which can induce noise in the analog system.
D ecoupling capacitors should be used as close as possible to all power supply pins. A $10 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor provides adequate decoupling.

An effort should be made to minimize the trace length between the capacitor leads and the respective converter power supply and common pins. The circuit layout should attempt to locate the AD 779, associated analog input circuitry and interconnections as far as possible from logic circuitry. A solid analog ground plane around the AD 779 will isolate large switching ground currents. F or these reasons, the use of wire wrap circuit construction is not recommended; careful printed circuit construction is preferred.

## GROUNDING

If a single AD 779 is used with separate analog and digital ground planes, connect the analog ground plane to AGND and the digital ground plane to DGND keeping lead lengths as short as possible. Then connect AGND and DGND together at the AD 779. If multiple AD 779s are used or the AD 779 shares analog supplies with other components, connect the analog and digital returns together once at the power supplies rather than at each chip. T his prevents large ground loops which inductively couple noise and allow digital currents to flow through the analog system.

## USE OF EXTERNAL VOLTAGE REFERENCE

The AD 779 features an on-chip voltage reference. F or improved gain accuracy over temperature, a high performance external voltage reference may be used in place of the on-chip reference.
The AD 586 and AD 588 are popular references appropriate for use with high resolution converters. The AD 586 is a low cost reference which utilizes a buried Zener architecture to provide low noise and drift. T he AD 588 is a higher performance reference which uses a proprietary ion-implanted buried Zener diode in conjunction with laser-trimmed thin-film resistors for low offset and low drift.
Figure 7 shows the use of the AD 586 with the AD 779 in a bipolar input mode. Over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range, the AD 586 L -grade exhibits less than a 2.25 mV output change from its initial value at $25^{\circ} \mathrm{C}$. REF ${ }_{\text {IN }}$, (Pin 9) scales its input by a factor of two; thus, this change becomes effectively 4.5 mV . When applied to the AD 779, this results in a total gain drift of $0.09 \%$ FSR which is an improvement over the on-chip reference performance of $0.11 \%$ FSR. A noise-reduction capacitor, $\mathrm{C}_{\mathrm{N}}$, has been shown. This capacitor reduces the broadband noise of the AD 586 output, thereby optimizing the overall ac and dc performance of the AD 779.


Figure 7. Bipolar Input with Gain and Offset Trims Figure 8 shows the AD 779 in unipolar input mode with the AD 588 reference. The AD 588 output is accurate to 0.65 mV
from its value at $25^{\circ} \mathrm{C}$ over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ range. This results in a $0.06 \%$ F SR total gain drift for the AD 779, which is a substantial improvement over the on-chip reference performance of $0.11 \%$ FSR. A noise-reduction network on Pins 4,6 and 7 has been shown. The $1 \mu \mathrm{~F}$ capacitors form low pass filters with the internal resistance of the AD 588 Zener and amplifier cells and external resistance. This reduces the high frequency noise of the AD 588, providing optimum ac and dc performance of the AD 779.


Figure 8. Unipolar Input with Gain and Offset Trims

## INTERFACING THE ADT79TO MICROPROCESSORS

The I/O capabilities of the AD 779 allow direct interfacing to general purpose and DSP microprocessor buses. The asynchronous conversion control feature allows complete flexibility and control with minimal external hardware.
The following examples illustrate typical AD 779 interface configurations.

## AD779TO TMS320C25

In Figure 9 the AD 779 is mapped into the T M S320C 25 I/O space. AD 779 conversions are initiated by issuing an OUT instruction to Port 1. EOC status and the conversion result are read in with an IN instruction to Port 1. A single wait state is inserted by generating the processor READY input from $\overline{\mathrm{IS}}$, Port 1 and $\overline{M S C}$. This configuration supports processor clock speeds of 20 M Hz and is capable of supporting processor clock speeds of 40 M Hz if a N OP instruction follows each AD 779 read instruction.


Figure 9. AD779 to TMS320C25 Interface

## ADT79TO 80186

Figure 10 shows the AD 779 interfaced to the 80186 microprocessor. This interface allows the 80186 's built-in DM A controller to transfer the AD 779 output into a RAM based FIFO buffer of any length, with no microprocessor intervention.


Figure 10. AD779 to 80186 DMA Interface

## ADT79TO $\mathbf{z 8 0}$

The AD779 can be interfaced to the Z80 processor in an I/O or memory mapped configuration. Figure 11 illustrates an I/O configuration, where the AD 779 occupies several port addresses to allow separate polling of the EOC status and reading of the data.


Figure 11. AD779 to Z80 Interface
A useful feature of the $Z 80$ is that a single wait state is automatically inserted during I/O operations, allowing the AD 779 to be used with Z 80 processors having clock speeds up to 8 M Hz .
The AD 779 is asynchronous which allows conversions to be initiated by an external trigger source independent of the microprocessor clock. After each conversion, the AD 779 EOC signal generates a DM A request to Channel 1 (DRQ1). The subsequent DMA READ resets the interrupt latch. The system designer must assign a sufficient priority to the DM A channel to ensure that the DM A request will be serviced before the completion of the next conversion. This configuration can be used with 6 MHz and 8 MHz 80186 processors.

## AD779TO ANALOG DEVICES ADSP-2100A

Figure 12 demonstrates the AD 779 interfaced to an ADSP2100 A . With a clock frequency of 12.5 M Hz , and instruction
execution in one 80 ns cycle, the digital signal processor will support the AD 779 data memory interface with two wait states.
The converter runs asychronously using a sampling clock. The EOC output to the AD 779 gets asserted at the end of each conversion and causes an interrupt. U pon interrupt, the ADSP2100A starts a data memory read by providing an address on the $D$ M A bus. The decoded address generates $\overline{\mathrm{OE}}$ for the converter. $\overline{\mathrm{OE}}$, together with logic and latch, is used to force the ADSP-2100A into a one cycle wait state by generating DM ACK. The read operation is thus started and completed within two processor cycles ( 160 ns ).


Figure 12. AD779 to ADSP-2100A Interface


Figure 13. Harmonic Distortion vs. Input Frequency (0.5 dB Input)


Figure 14. Total Harmonic Distortion vs. Input Frequency and Amplitude


Figure 15. $S /(N+D)$ vs. Input Frequency and Amplitude

Figure 17. Nonaveraged IMD Plot for $f_{I N}=9.08 \mathrm{kHz}\left(f_{a}\right)$, $9.58 \mathrm{kHz}\left(f_{b}\right)$ at 128 kSPS


Figure 16. 5-Plot Averaged 2048-Point FFT at 128 kSPS, $f_{I N}=10.009 \mathrm{kHz}$


Figure 18. Power Supply Rejection ( $f_{I N}=10 \mathrm{kHz}$, $f_{\text {SAMPLE }}=128 \mathrm{kSPS}, V_{\text {RIPPLE }}=0.1 \mathrm{Vp-p)}$

## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

## 28-Lead Plastic DIP Package (N-28)



28-Lead Ceramic DIP Package (D-28)



[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

