CY7C1021

64K x 16 Static RAM

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
- 1320 mW (max.)
- Automatic power-down when deselected
- Independent Control of Upper and Lower bits
- Available in 44-pin TSOP II and 400 -mil SOJ

Functional Description

The CY7C1021 is a high-performance CMOS static RAM organized as 65,536 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.
Writing to the device is accomplished by taking Chip Enable ($\overline{\mathrm{CE}}$) and Write Enable ($\overline{\mathrm{WE}}$) inputs LOW. If Byte Low Enable
$(\overline{\mathrm{BLE}})$ is LOW, then data from I / O pins $\left(\mathrm{I} / \mathrm{O}_{1}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{8}\right)$, is written into the location specified on the address pins (A_{0} through A_{15}). If Byte High Enable ($\left.\overline{\mathrm{BHE}}\right)$ is LOW, then data from I / O pins $\left(\mathrm{I} / \mathrm{O}_{9}\right.$ through $\mathrm{I} / \mathrm{O}_{16}$) is written into the location specified on the address pins (A_{0} through A_{15}).
Reading from the device is accomplished by taking Chip Enable ($\overline{\mathrm{CE}}$) and Output Enable ($\overline{\mathrm{OE}}$) LOW while forcing the write enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on $\mathrm{I} / \mathrm{O}_{1}$ to $\mathrm{I} / \mathrm{O}_{8}$. If Byte High Enable ($\overline{\mathrm{BHE})}$ is LOW, then data from memory will appear on $\mathrm{I} / \mathrm{O}_{9}$ to $\mathrm{I} / \mathrm{O}_{16}$. See the truth table at the back of this data sheet for a complete description of read and write modes.
The input/output pins ($1 / \mathrm{O}_{1}$ through $\mathrm{I} / \mathrm{O}_{16}$) are placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}}$ HIGH), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), the $\overline{\mathrm{BHE}}$ and $\overline{\mathrm{BLE}}$ are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).
The CY7C1021 is available in standard 44-pin TSOP Type II and 400-mil-wide SOJ packages.

Selection Guide

		7C1021-10	7C1021-12	7C1021-15	7C1021-20
Maximum Access Time (ns)	10	12	15	20	
Maximum Operating Current (mA)	Commercial	220	220	220	220
Maximum CMOS Standby Current (mA)	Commercial	5	5	5	5
	L	0.5	0.5	0.5	0.5

Shaded areas contain preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Supply Voltage on V_{CC} to Relative $\mathrm{GND}^{[1]} \ldots . .-0.5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs in High Z State ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$ \qquad .0 .5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
\qquad
Current into Outputs (LOW) 20 mA Static Discharge Voltage $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015) Latch-Up Current \qquad >200 mA

Operating Range

Range	Ambient Temperature ${ }^{[2]}$	V_{cc}
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		7C1021-10		7C1021-12		7C1021-15		7C1021-20		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \\ & \hline \end{aligned}$		2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$			0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	6.0	2.2	6.0	2.2	6.0	2.2	6.0	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$			-0.5	0.8	-0.5	0.8	-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-1	+1	-1	+1	-5	+5	-5	+5	$\mu \mathrm{A}$
l OS	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max.} \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$			-300		-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{l}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$			220		220		220		200	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current -TTL Inputs	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}} \\ & \frac{\mathrm{CE}}{} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}, f=f_{\mathrm{MAX}} \end{aligned}$			40		40		40		40	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current -CMOS Inputs	$\begin{aligned} & \frac{\text { Max. }}{} \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CE} \geq \mathrm{V}_{C C}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{I N} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$			5		5		5		5	mA
			L		0.5		0.5		0.5		0.5	mA

Shaded areas contain preliminary information.
Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathbb{I}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

Notes:

1. V_{IL} (min.) $=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the case temperature.
3. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

CY7C1021

AC Test Loads and Waveforms

Switching Characteristics ${ }^{[5]}$ Over the Operating Range

Parameter	Description	7C1021-10		7C1021-12		7C1021-15		7C1021-20		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	10		12		15		20		ns
t_{AA}	Address to Data Valid		10		12		15		20	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		10		12		15		20	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		5		6		7		9	ns
tlizoe	$\overline{\mathrm{OE}}$ LOW to Low ${ }^{[6]}$	0		0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		5		6		7		9	ns
tlZCE	$\overline{\mathrm{CE}}$ LOW to Low ${ }^{[6]}$	3		3		3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		5		6		7		9	ns
t_{PU}	$\overline{\overline{C E}}$ LOW to Power-Up	0		0		0		0		ns
t_{PD}	$\overline{\mathrm{CE}}$ HIGH to Power-Down		10		12		15		20	ns
$\mathrm{t}_{\text {DBE }}$	Byte Enable to Data Valid		5		6		7		9	ns
t LZBE	Byte Enable to Low Z	0		0		0		0		ns
$\mathrm{t}_{\text {HZBE }}$	Byte Disable to High Z		5		6		7		9	ns
WRITE CYCLE ${ }^{[8]}$										
$\mathrm{t}_{\text {Wc }}$	Write Cycle Time	10		12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	8		9		10		12		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	7		8		10		12		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	7		8		10		12		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	5		6		8		10		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$	3		3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$		5		6		7		9	ns
t_{BW}	Byte Enable to End of Write	7		8		9		12		ns

Shaded areas contain preliminary information.
Notes:
5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}, t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
7. $t_{\text {HZOE }}, t_{\text {HZBE }}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
8. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW, $\overline{\mathrm{WE}} \mathrm{LOW}$ and $\overline{\mathrm{BHE}} / \overline{\mathrm{BLE}} \mathrm{LOW}$. $\overline{\mathrm{CE}}, \overline{\mathrm{WE}}$ and $\overline{\mathrm{BHE}} / \overline{\mathrm{BLE}}$ must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

CY7C1021

Switching Waveforms
Read Cycle No. $1^{[9,10]}$

Read Cycle No. 2 ($\overline{\text { OE Controlled) })^{[10, ~ 11] ~}}$

Notes:

9. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}, \overline{\mathrm{BHE}}$ and/or $\overline{\mathrm{BHE}}=\mathrm{V}_{\mathrm{IL}}$.
10. WE is HIGH for read cycle.
11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

CY7C1021

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\text { CE }}$ Controlled) ${ }^{[12,13]}$

Write Cycle No. 2 ($\overline{\text { BLE }}$ or $\overline{\text { BHE }}$ Controlled)

Notes:

12. Data I / O is high impedance if $\overline{\mathrm{OE}}$ or $\overline{\mathrm{BHE}}$ and/or $\overline{\mathrm{BLE}}=\mathrm{V}_{\mathbb{I}}$.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, LOW)

Truth Table

CE	OE	WE	BLE	BHE	$\mathrm{I} / \mathrm{O}_{1}-\mathrm{l} / \mathrm{O}_{8}$	$\mathrm{I} / \mathrm{O}_{9}-\mathrm{I} / \mathrm{O}_{16}$	Mode	Power
H	X	X	X	X	High Z	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	L	H	L	L	Data Out	Data Out	Read - All bits	Active (I_{CC})
			L	H	Data Out	High Z	Read - Lower bits only	Active (I_{CC})
			H	L	High Z	Data Out	Read - Upper bits only	Active (I_{CC})
L	X	L	L	L	Data In	Data In	Write - All bits	Active (I_{CC})
			L	H	Data In	High Z	Write - Lower bits only	Active (I_{CC})
			H	L	High Z	Data In	Write - Upper bits only	Active (I_{CC})
L	H	H	X	X	High Z	High Z	Selected, Outputs Disabled	Active (I_{CC})
L	X	X	H	H	High Z	High Z	Selected, Outputs Disabled	Active (I_{CC})

CY7C1021

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C1021-10VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1021-10ZC	Z44	44-Lead TSOP Type II	Commercial
	CY7C1021L-10ZC	Z44	44-Lead TSOP Type II	Commercial
12	CY7C1021-12VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1021-12VI	V34	44-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1021-12ZC	Z44	44-Lead TSOP Type II	Commercial
15	CY7C1021-15VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1021-15VI	V34	44-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1021-15ZC	Z44	44-Lead TSOP Type II	Commercial Industrial Commercial
	CY7C1021-15ZI	Z44	44-Lead TSOP Type II	
	CY7C1021L-15ZC	Z44	44-Lead TSOP Type II	
20	CY7C1021-20VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1021-20ZC	Z44	44-Lead TSOP Type II	Commercial

Shaded areas contain preliminary information.

Package Diagrams

44-Lead (400-Mil) Molded SOJ V34

DIMENSIDNS IN INCHES MIN.

CY7C1021

Package Diagrams (continued)

44-Pin TSOP II Z44

DIMENSIDN IN MM ([NCH)
$\frac{\text { MAX }}{\text { MIN }}$

CY7C1021

Document Title: CY7C1021 64K x 16 Static RAM				
Document Number: 38-05054				

