FEATURES

Four 8-Bit DACs with Output Amplifiers Separate Reference Input for Each DAC μ P Compatible with Double-Buffered Inputs Simultaneous Update of All Four Outputs Operates with Single or Dual Supplies Extended Temperature Range Operation No User Trims Required Skinny 24-Pin DIP, SOIC and 28-Terminal Surface Mount Packages

GENERAL DESCRIPTION

The AD 7225 contains four 8-bit voltage output digital-toanalog converters, with output buffer amplifiers and interface logic on a single monolithic chip. Each D/A converter has a separate reference input terminal. N o external trims are required to achieve full specified performance for the part.
The double-buffered interface logic consists of two 8-bit registers per channel-an input register and a DAC register. C ontrol inputs A0 and A1 determine which input register is loaded when $\overline{\mathrm{WR}}$ goes low. Only the data held in the DAC registers determines the analog outputs of the converters. The doublebuffering allows simultaneous update of all four outputs under control of LDAC. All logic inputs are T T L and CM OS (5 V) level compatible and the control logic is speed compatible with most 8-bit microprocessors.
Specified performance is guaranteed for input reference voltages from +2 V to +12.5 V when using dual supplies. The part is also specified for single supply operation using a reference of +10 V . E ach output buffer amplifier is capable of developing +10 V across a $2 \mathrm{k} \Omega$ load.

The AD 7225 is fabricated on an all ion-implanted high-speed Linear Compatible CM OS (LC²M OS) process which has been specifically developed to integrate high speed digital logic circuits and precision analog circuitry on the same chip.

REV. B

[^0]FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. DAC s and Amplifiers on CM OS Chip

The single-chip design of four 8-bit DACs and amplifiers allows a dramatic reduction in board space requirements and offers increased reliability in systems using multiple converters. Its pinout is aimed at optimizing board layout with all analog inputs and outputs at one end of the package and all digital inputs at the other.
2. Single or D ual Supply Operation

The voltage-mode configuration of the AD 7225 allows single supply operation. T he part can also be operated with dual supplies giving enhanced performance for some parameters.
3. Versatile Interface Logic

The AD 7225 has a common 8-bit data bus with individual DAC latches, providing a versatile control architecture for simple interface to microprocessors. The double-buffered interface allows simultaneous update of the four outputs.
4. Separate R eference Input for Each D AC The AD 7225 offers great flexibility in dealing with input signals with a separate reference input provided for each DAC and each reference having variable input voltage capability.

One Technology Way, P.O. Box 9106, Nonwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

AD7225- SPECIFICATIONS

DUAL SUPPLY $\quad\left(V_{D D}=11.4 \mathrm{~V}\right.$ to $16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V} \pm 10 \%$; AGND $=\mathrm{DGND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=+2 \mathrm{~V}$ to $\left(\mathrm{V}_{D D}-4 \mathrm{~V}\right)^{1}$ unless otherwise noted. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {Max }}$ unless otherwise noted.)

Parameter	$\begin{aligned} & \text { K, B } \\ & \text { Versions }{ }^{2} \end{aligned}$	L, C Versions ${ }^{2}$	T Version	U Version	Units	Conditions/Comments
STATIC PERFORMANCE Resolution T otal U nadjusted Error Relative Accuracy Differential Nonlinearity Full-Scale Error Full-Scale Temp. C oeff. Zero Code Error @ $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ Zero C ode Error T emp C oeff.	$\begin{aligned} & 8 \\ & \pm 2 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 5 \\ & \pm 25 \\ & \pm 30 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & 8 \\ & \pm 1 \\ & \pm 1 / 2 \\ & \pm 1 \\ & \pm 1 / 2 \\ & \pm 5 \\ & \pm 15 \\ & \pm 20 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & 8 \\ & \pm 2 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 5 \\ & \pm 25 \\ & \pm 30 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & 8 \\ & \pm 1 \\ & \pm 1 / 2 \\ & \pm 1 \\ & \pm 1 / 2 \\ & \pm 5 \\ & \pm 15 \\ & \pm 20 \\ & \pm 30 \end{aligned}$	Bits LSB max LSB max LSB max LSB max ppm $/{ }^{\circ} \mathrm{C}$ typ mV max $m V \max$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ typ	$V_{D D}=+15 \mathrm{~V} \pm 5 \%, V_{\text {REF }}=+10 \mathrm{~V}$ Guaranteed M onotonic $\mathrm{V}_{\mathrm{DD}}=14 \mathrm{~V} \text { to } 16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}$
REFERENCE INPUT Voltage Range Input Resistance Input C apacitance ${ }^{3}$ Channel-to-C hannel Isolation ${ }^{3}$ AC Feedthrough ${ }^{3}$	$\begin{aligned} & 2 \text { to }\left(V_{D D}-4\right) \\ & 11 \\ & 100 \\ & 60 \\ & -70 \end{aligned}$	$\begin{aligned} & 2 \text { to }\left(V_{D D}-4\right) \\ & 11 \\ & 100 \\ & 60 \\ & -70 \end{aligned}$	$\begin{aligned} & 2 \text { to }\left(V_{D D}-4\right) \\ & 11 \\ & 100 \\ & 60 \\ & -70 \end{aligned}$	$\begin{aligned} & 2 \text { to }\left(V_{D D}-4\right) \\ & 11 \\ & 100 \\ & 60 \\ & -70 \end{aligned}$	V min to V max $k \Omega$ min pF max dB min dB max	Occurs when each DAC is loaded with all 1 s . $\mathrm{V}_{\text {Ref }}=10 \mathrm{~V}$ p-p Sine Wave @ 10 kHz $\mathrm{V}_{\text {Ref }}=10 \mathrm{~V}$ p-p Sine Wave @ 10 kHz
DIGITAL IN PUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input L eakage C urrent Input C apacitance ${ }^{3}$ Input Coding	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \\ & 8 \\ & \text { Binary } \end{aligned}$	$\begin{array}{\|l\|} \hline 2.4 \\ 0.8 \\ \pm 1 \\ 8 \\ \text { Binary } \end{array}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \\ & 8 \\ & \text { Binary } \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \\ & 8 \\ & \text { Binary } \end{aligned}$	V min V max $\mu \mathrm{A}$ max pF max	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {D }}$
DYNAMIC PERFORMANCE Voltage Output Slew Rate ${ }^{3}$ Voltage Output Settling Time ${ }^{3}$ Positive Full-Scale C hange Negative Full-Scale C hange Digital F eedthrough ${ }^{3}$ Digital Crosstalk ${ }^{3}$ M inimum Load Resistance	$\begin{aligned} & 2.5 \\ & 5 \\ & 5 \\ & 50 \\ & 50 \\ & 2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5 \\ & 5 \\ & 50 \\ & 50 \\ & 2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5 \\ & 5 \\ & 50 \\ & 50 \\ & 2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5 \\ & 5 \\ & 50 \\ & 50 \\ & 2 \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}$ min $\mu \mathrm{s} \max$ $\mu \mathrm{s}$ max nV secs typ nV secs typ $k \Omega$ min	$\mathrm{V}_{\text {Ref }}=+10 \mathrm{~V}$; Settling T ime to $\pm 1 / 2$ LSB $\mathrm{V}_{\text {REF }}=+10 \mathrm{~V}$; Settling T ime to $\pm 1 / 2 \mathrm{LSB}$ Code transition all 0s to all 1 s . Code transition all 0s to all 1 s . $\mathrm{V}_{\text {OUT }}=+10 \mathrm{~V}$
POWER SUPPLIES $V_{D D}$ Range $I_{D D}$ I_{s}	$\begin{aligned} & 11.4 / 16.5 \\ & 10 \\ & 9 \end{aligned}$	$\begin{aligned} & 11.4 / 16.5 \\ & 10 \\ & 9 \end{aligned}$	$\begin{aligned} & 11.4 / 16.5 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 11.4 / 16.5 \\ & 12 \\ & 10 \end{aligned}$	V min to V max mA max mA max	F or Specified Performance O utputs U nloaded; $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ Outputs U nloaded; $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
SWITCHING CHARACTERISTICS ${ }^{3,4}$						
$\begin{aligned} & \mathrm{t}_{1} @ 25^{\circ} \mathrm{C} \\ & \quad \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{aligned} & 95 \\ & 120 \end{aligned}$	$\begin{array}{\|l\|} 95 \\ 120 \end{array}$	$\begin{array}{\|l\|} 95 \\ 150 \end{array}$	$\begin{aligned} & 95 \\ & 150 \end{aligned}$	ns min ns min	W rite Pulse Width
$\begin{aligned} & \mathrm{t}_{2} @ 25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	ns min ns min	Address to Write Setup T ime			
t_{3} $\begin{aligned} & @ 25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	0 0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	ns min ns min	Address to W rite H old T ime
$\begin{aligned} & \mathrm{t}_{4} @ 25^{\circ} \mathrm{C} \\ & \\ & \quad \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	70 90	70 90	$\begin{aligned} & 70 \\ & 90 \end{aligned}$	$\begin{aligned} & 70 \\ & 90 \end{aligned}$	ns min ns min	D ata Valid to W rite Setup Time
t_{5} $\begin{aligned} & @ 25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	10 10	10 10	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	ns min ns min	D ata Valid to W rite H old Time
t_{6} @ $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	95 120	95 120	95 150	$\begin{aligned} & 95 \\ & 150 \end{aligned}$	ns min ns min	Load DAC Pulse Width

NOTES

${ }^{1} \mathrm{M}$ aximum possible reference voltage.
${ }^{2} T$ emperature ranges are as follows:
K, L Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
B, C Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
T, U Versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
${ }^{3}$ Sample T ested at $25^{\circ} \mathrm{C}$ to ensure compliance.
${ }^{4}$ Switching characteristics apply for single and dual supply operation.
Specifications subject to change without notice.

Parameter	K, B Versions ${ }^{2}$	L, C Versions ${ }^{2}$	T Version	U Version	Units	Conditions/Comments
STATIC PERFORMANCE Resolution T otal U nadjusted Error ${ }^{3}$ D ifferential N onlinearity ${ }^{3}$	$\begin{aligned} & 8 \\ & \pm 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & 8 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & 8 \\ & \pm 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & 8 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	Bits LSB max LSB max	Guaranteed M onotonic
REFERENCE INPUT Input Resistance Input C apacitance ${ }^{4}$ C hannel-to-C hannel Isolation ${ }^{3,4}$ AC Feedthrough ${ }^{3,4,5}$	$\begin{aligned} & 11 \\ & 100 \\ & 60 \\ & -70 \end{aligned}$	$\begin{aligned} & 11 \\ & 100 \\ & 60 \\ & -70 \end{aligned}$	$\begin{aligned} & 11 \\ & 100 \\ & 60 \\ & -70 \end{aligned}$	$\begin{aligned} & 11 \\ & 100 \\ & 60 \\ & -70 \end{aligned}$	$k \Omega$ min pF max dB min dB max	Occurs when each DAC is loaded with all 1 s . $V_{\text {REF }}=10 \mathrm{~V}$ p-p Sine W ave @ 10 kHz $V_{\text {Ref }}=10 \mathrm{~V}$ p-p Sine W ave @ 10 kHz
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Leakage C urrent Input C apacitance ${ }^{4}$ Input Coding	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \\ & 8 \\ & \text { Binary } \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \\ & 8 \\ & \text { Binary } \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \\ & 8 \\ & \text { Binary } \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \\ & 8 \\ & \text { Binary } \end{aligned}$	V min V max $\mu \mathrm{A}$ max pF max	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{DD}
DYNAMIC PERFORMANCE Voltage Output Slew Rate ${ }^{4}$ Voltage Output Settling Time ${ }^{4}$ Positive Full-Scale Change N egative Full-Scale C hange Digital Feedthrough ${ }^{3,4}$ Digital C rosstalk ${ }^{3,4}$ M inimum Load Resistance	$\begin{aligned} & 2 \\ & \\ & 5 \\ & 7 \\ & 50 \\ & 50 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & \\ & 5 \\ & 7 \\ & 50 \\ & 50 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & \\ & 5 \\ & 7 \\ & 50 \\ & 50 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & \\ & 5 \\ & 7 \\ & 50 \\ & 50 \\ & 2 \end{aligned}$	$\mathrm{V} / \mathrm{\mu s} \min$ $\mu \mathrm{s}$ max $\mu \mathrm{s}$ max nV secs typ nV secs typ $k \Omega$ min	Settling T ime to $\pm 1 / 2$ LSB Settling Time to $\pm 1 / 2$ LSB Code transition all 0 s to all 1 s . Code transition all 0 s to all 1 s . $\mathrm{V}_{\text {OUT }}=+10 \mathrm{~V}$
POWER SUPPLIES $V_{D D}$ Range IDD	$\begin{aligned} & 14.25 / 15.75 \\ & 10 \end{aligned}$	$\begin{aligned} & 14.25 / 15.75 \\ & 10 \end{aligned}$	$\begin{aligned} & 14.25 / 15.75 \\ & 12 \end{aligned}$	$\begin{aligned} & 14.25 / 15.75 \\ & 12 \end{aligned}$	V min to V max mA max	F or Specified Performance Outputs U nloaded; $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
SWITCHING CHARACTERISTIC t_{1} @ $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ t_{2} @ $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ t_{3} @ $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ t_{4} @ $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ t_{5} @ $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ t_{6} @ $25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	4 95 120 0 0 0 0 0 70 90 10 10 95 120	$\begin{aligned} & 95 \\ & 120 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 70 \\ & 90 \\ & 10 \\ & 10 \\ & 95 \\ & 120 \end{aligned}$	$\begin{aligned} & 95 \\ & 150 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 70 \\ & 90 \\ & 10 \\ & 10 \\ & 95 \\ & 150 \end{aligned}$	$\begin{aligned} & 95 \\ & 150 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 70 \\ & 90 \\ & 10 \\ & 10 \\ & 95 \\ & 150 \end{aligned}$	ns min ns min ns min ns min	W rite Pulse Width Address to Write Setup T ime Address to Write H old T ime D ata Valid to Write Setup Time D ata Valid to Write H old T ime L oad DAC Pulse Width

NOTES
${ }^{1} \mathrm{M}$ aximum possible reference voltage. ${ }^{3}$ Sample T ested at $25^{\circ} \mathrm{C}$ to ensure compliance
${ }^{2}$ T emperature ranges are as follows: $\quad{ }^{4}$ Switching characteristics apply for single and dual supply operation.
K, L Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \quad$ Specifications subject to change without notice.
B, C Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
T, U Versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ORDERING GUIDE

Model ${ }^{\mathbf{1}}$	Temperature Range	Total Unadjusted Error	Package Option
AD 7225K N	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\mathrm{N}-24$
AD 7225L N	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\mathrm{N}-24$
AD 7225K P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\mathrm{P}-28 \mathrm{~A}$
AD 7225LP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\mathrm{P}-28 \mathrm{~A}$
AD 7225K R	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\mathrm{R}-24$
AD 7225LR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\mathrm{R}-24$
AD7225BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	$\mathrm{Q}-24$
AD 7225CQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 \mathrm{LSB}$	$\mathrm{Q}-24$

Model ${ }^{1}$	Temperature Range	Total Unadjusted Error	Package Option ${ }^{2}$
AD 7225T Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	± 2 LSB	Q-24
AD 7225U Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	± 1 LSB	Q-24
AD 7225TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 2 \mathrm{LSB}$	E-28A
AD 7225UE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	± 1 LSB	E-28A
NOTES ${ }^{1}$ To order M IL-ST D -883 processed parts, add /883B to part number. C ontact your local sales office for military data sheet. ${ }^{2} E=$ Leadless C eramic Chip C arrier; $N=$ Plastic DIP; $\mathrm{P}=$ Plastic Leaded Chip Carrier; $\mathrm{Q}=$ Cerdip; $\mathrm{R}=$ SOIC.			

REV. B

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

$V_{\text {DD }}$ to AGND	-0.3 V, +17 V
$V_{D D}$ to DGND	-0.3 V, +17 V
$V_{\text {DD }}$ to $\mathrm{V}_{S S}$	-0.3 V, +24 V
AGND to DGND	-0.3V, V_{DD}
Digital Input Voltage to DGND	-0.3 V, V $\mathrm{V}_{\text {D }}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {REF }}$ to AGND	-0.3 V, $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$V_{\text {OUT }}$ to AGND ${ }^{2}$	$\mathrm{V}_{\text {SS }}, \mathrm{V}_{\mathrm{DD}}$
Power Dissipation (Any Package) to $+75^{\circ} \mathrm{C}$	500 mW
Derates above $75^{\circ} \mathrm{C}$ by	2.0 mW/ ${ }^{\circ} \mathrm{C}$
Operating Temperature	
Commercial (K, L Versions)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

B, C Versions)	\% ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T, U Versions)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
torage T emperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ead T emperature (Soldering	+300

NOTES
${ }^{1}$ Stresses above those listed under "Absolute M aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ O utputs may be shorted to any voltage in the range $\mathrm{V}_{S S}$ to $\mathrm{V}_{D D}$ provided that the power dissipation of the package is not exceeded. T ypical short circuit current for a short to AGND or V_{Ss} is 50 mA .

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 7225 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TERMINOLOGY

TOTAL UNADJUSTED ERROR

T otal U nadjusted Error is a comprehensive specification which includes full-scale error, relative accuracy, and zero code error. M aximum output voltage is $\mathrm{V}_{\text {REF }}-1 \mathrm{LSB}$ (ideal), where 1 LSB (ideal) is $\mathrm{V}_{\text {Ref }} / 256$. The $L S B$ size will vary over the $\mathrm{V}_{\text {REF }}$ range. H ence the zero code error will, relative to the LSB size, increase as $\mathrm{V}_{\text {ref }}$ decreases. Accordingly, the total unadjusted error, which includes the zero code error, will also vary in terms of LSBs over the $\mathrm{V}_{\text {REF }}$ range. As a result, total unadjusted error is specified for a fixed reference voltage of +10 V .

RELATIVE ACCURACY

Relative Accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after allowing for zero code error and full-scale error and is normally expressed in LSBs or as a percentage of full-scale reading.

DIFFERENTIAL NONLINEARITY

Differential N onlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB max over the operating temperature range ensures monotonicity.

DIGITAL FEEDTHROUGH

Digital F eedthrough is the glitch impulse transferred to the output of the DAC due to a change in its digital input code. It is specified in nV secs and is measured at $\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$.

DIGITAL CROSSTALK

Digital C rosstalk is the glitch impulse transferred to the output of one converter (not addressed) due to a change in the digital input code to another addressed converter. It is specified in nV secs and is measured at $\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$.

AC FEEDTHROUGH

AC Feedthrough is the proportion of reference input signal which appears at the output of a converter when that DAC is loaded with all 0 s .

CHANNEL-TO-CHANNEL ISOLATION

C hannel-to-channel isolation is the proportion of input signal from the reference of one DAC (loaded with all 1s) which appears at the output of one of the other three DACs (loaded with all Os) The figure given is the worst case for the three other outputs and is expressed as a ratio in dB s.

FULL-SCALE ERROR

Full-Scale Error is defined as:
M easured Value - Zero Code Error - Ideal Value

Typical Performance Characteristics- AD7225

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}$ unless otherwise noted.

Figure 1. Channel-to-Channel Matching

Figure 3. Differential Nonlinearity vs. $V_{\text {REF }}$

Figure 5. Zero Code Error vs. Temperature

Figure 2. Relative Accuracy vs. $V_{\text {REF }}$

Figure 4. Power Supply Current vs. Temperature

Figure 6. Broadband Noise

CIRCUIT INFORMATION
 D/A SECTION

The AD 7225 contains four, identical, 8-bit voltage mode digital-to-analog converters. E ach D/A converter has a separate reference input. The output voltages from the converters have the same polarity as the reference voltages, allowing single supply operation. A novel DAC switch pair arrangement on the AD 7225 allows a reference voltage range from +2 V to +12.5 V on each reference input.
Each DAC consists of a highly stable, thin-film, R-2R ladder and eight high speed NM OS, single-pole, double-throw switches. The simplified circuit diagram for channel A is shown in Figure 7. N ote that AGND (Pin 6) is common to all four DACs.

Figure 7. D/A Simplified Circuit Diagram
The input impedance at any of the reference inputs is code dependent and can vary from $11 \mathrm{k} \Omega$ minimum to infinity. The lowest input impedance at any reference input occurs when that D AC is loaded with the digital code 01010101. Therefore, it is important that the reference presents a low output impedance under changing load conditions. The nodal capacitance at the reference terminals is also code dependent and typically varies from 15 pF to 35 pF .
Each $\mathrm{V}_{\text {Out }}$ pin can be considered as a digitally programmable voltage source with an output voltage of:

$$
\mathrm{V}_{\text {OUTX }}=\mathrm{D}_{\mathrm{X}} \cdot \mathrm{~V}_{\text {REFX }}
$$

where D_{x} is fractional representation of the digital input code and can vary from 0 to 255/256.
The output impedance is that of the output buffer amplifier.

OP-AMP SECTION

Each voltage mode D/A converter output is buffered by a unity gain noninverting CM OS amplifier. T his buffer amplifier is capable of developing +10 V across a $2 \mathrm{k} \Omega$ load and can drive capacitive loads of 3300 pF .
The AD 7225 can be operated single or dual supply; operating with dual supplies results in enhanced performance in some parameters which cannot be achieved with single supply operation. In single supply operation ($\mathrm{V}_{S S}=0 \mathrm{~V}=\mathrm{AGND}$) the sink capability of the amplifier, which is normally $400 \mu \mathrm{~A}$, is reduced as the output voltage nears AGND. The full sink capability of $400 \mu \mathrm{~A}$ is maintained over the full output voltage range by tying V_{SS} to -5 V . This is indicated in Figure 8.
Settling-time for negative-going output signals approaching AGND is similarly affected by V_{S}. N egative-going settling-time for single supply operation is longer than for dual supply operation. Positive-going settling-time is not affected by V_{SS}.

Figure 8. Variation of $I_{\text {SINK }}$ with $V_{O U T}$
Additionally, the negative V_{SS} gives more headroom to the output amplifiers which results in better zero code performance and improved slew rate at the output, than can be obtained in the single supply mode.

DIGITAL SECTION

The AD 7225 digital inputs are compatible with either TTL or 5 V CM OS levels. All logic inputs are static protected M OS gates with typical input currents of less than 1 nA . Internal input protection is achieved by an on-chip distributed diode between DGND and each M OS gate. To minimize power supply currents, it is recommended that the digital input voltages be driven as close to the supply rails ($V_{D D}$ and $D G N D$) as practically possible.

INTERFACE LOGIC INFORMATION

The AD 7225 contains two registers per DAC, an input register and a DAC register. Address lines A0 and A1 select which input register will accept data from the input port. When the $\overline{\mathrm{WR}}$ signal is LOW, the input latches of the selected DAC are transparent. T he data is latched into the addressed input register on the rising edge of $\overline{\mathrm{WR}}$. T able I shows the addressing for the input registers on the AD 7225.

Table I. AD7225 Addressing

A1	A0	Selected Input Register
L	L	DAC A Input R egister
L	H	DAC B Input R egister
H	L	DAC C Input R egister
H	H	DAC D Input Register

Only the data held in the DAC register determines the analog output of the converter. The $\overline{\text { LDAC }}$ signal is common to all four DAC s and controls the transfer of information from the input registers to the DAC registers. D ata is latched into all four DAC registers simultaneously on the rising edge of $\overline{\mathrm{LDAC}}$. The $\overline{\text { LDAC }}$ signal is level triggered and therefore the DAC registers may be made transparent by tying LDAC LOW (in this case the outputs of the converters will respond to the data held in their respective input latches). $\overline{\text { LDAC }}$ is an asynchronous signal and is independent of $\overline{\mathrm{WR}}$. This is useful in many applications. H owever, in systems where the asynchronous $\overline{\text { LDAC }}$ can occur during a write cycle (or vice versa) care must be taken to ensure that incorrect data is not latched through to the output. In other words, if $\overline{\text { LDAC }}$ is activated prior to the rising edge of $\overline{\mathrm{WR}}$ (or $\overline{\text { WR }}$ occurs during $\overline{\text { LDAC }}$), then $\overline{\text { LDAC }}$ must stay LOW for t_{6} or longer after WR goes HIGH to ensure correct data is latched through to the output. T able II shows the truth table for AD 7225 operation. Figure 9 shows the input control logic for the part and the write cycle timing diagram is given in Figure 10.

Table II. AD7225 Truth Table

$\overline{\mathbf{W R}}$	$\overline{\text { LDAC }}$	Function
H	H	N o O peration. D evice not selected
L	H	Input R egister of Selected D AC T ransparent
F	H	Input R egister of Selected DAC L atched
H	L	All Four D AC R egisters T ransparent (i.e. Outputs respond to data held in respective input registers)
H	S	Input Registers are L atched All Four D AC Registers L atched L AC Registers and Selected Input R egister
L	T ransparent O utput follows Input D ata for Selected C hannel.	

GROUND MANAGEMENT AND LAYOUT

Since the AD 7225 contains four reference inputs which can be driven from ac sources (see AC REFERENCE SIGNAL section) careful layout and grounding is important to minimize analog crosstalk between the four channels. T he dynamic performance of the four D AC s depends upon the optimum choice of board layout. Figure 11 shows the relationship between input

Figure 11. Channel-to-Channel Isolation

Figure 9. Input Control Logic

Figure 10. Write Cycle Timing Diagram

Figure 12. Suggested PCB Layout for AD7225. Layout Shows Component Side (Top View)
frequency and channel-to-channel isolation. Figure 12 shows a printed circuit board layout which is aimed at minimizing crosstalk and feedthrough. The four input signals are screened by AGND. $\mathrm{V}_{\text {REF }}$ was limited to between 2 V and 3.24 V to avoid slew rate limiting effects from the output amplifier during measurements.

SPECIFICATION RANGES

For the AD 7225 to operate to rated specifications, its input reference voltage must be at least 4 V below the V_{DD} power supply voltage. This voltage differential is the overhead voltage re quired by the output amplifiers.
The AD 7225 is specified to operate over a $V_{D D}$ range from $+12 \mathrm{~V} \pm 5 \%$ to $+15 \mathrm{~V} \pm 10 \%$ (i.e., from +11.4 V to +16.5 V) with a $\mathrm{V}_{5 S}$ of $-5 \mathrm{~V} \pm 10 \%$. Operation is also specified for a single $+15 \mathrm{~V} \pm 5 \% \mathrm{~V}_{D D}$ supply. Applying a $\mathrm{V}_{S S}$ of -5 V results in improved zero code error, improved output sink capability with outputs near AGND and improved negative going settling time.
Performance is specified over a wide range of reference voltages from 2 V to ($\mathrm{V}_{\mathrm{DD}}-4 \mathrm{~V}$) with dual supplies. This allows a range of standard reference generators to be used such as the AD 580, $\mathrm{a}+2.5 \mathrm{~V}$ bandgap reference and the AD 584 , a precision +10 V reference. N ote that an output voltage range of 0 V to +10 V requires a nominal $+15 \mathrm{~V} \pm 5 \%$ power supply voltage.

UNIPOLAR OUTPUT OPERATION

This is the basic mode of operation for each channel of the AD 7225, with the output voltage having the same positive polarity as $\mathrm{V}_{\text {REF }}$. The AD 7225 can be operated single supply ($\mathrm{V}_{\mathrm{SS}}=\mathrm{AGND}$) or with positive/negative supplies (see op-amp section which outlines the advantages of having negative $\mathrm{V}_{5 S}$). C onnections for the unipolar output operation are shown in Figure 13. The voltage at any of the reference inputs must never be negative with respect to DGND. F ailure to observe this precaution may cause parasitic transistor action and possible device destruction. The code table for unipolar output operation is shown in Table III.

Figure 13. Unipolar Output Circuit

Table III. Unipolar Code Table

DAC Latch Contents		
MSB	LSB	Analog Output
1111	1111	$+V_{\text {REF }}\left(\frac{255}{256}\right)$
1000	0001	$+V_{\text {REF }}\left(\frac{129}{256}\right)$
1000	0000	$+V_{\text {REF }}\left(\frac{128}{256}\right)=+\frac{V_{\text {REF }}}{2}$
0111	1111	$+V_{\text {REF }}\left(\frac{127}{256}\right)$
0000	0001	$+V_{\text {REF }}\left(\frac{1}{256}\right)$
0000	0000	$0 V$

Note: 1 LSB $=\left(V_{\text {REF }}\right)\left(2^{-8}\right)=V_{\text {REF }}\left(\frac{1}{256}\right)$

BIPOLAR OUTPUT OPERATION

Each of the DACs of the AD 7225 can be individually configured to provide bipolar output operation. This is possible using one external amplifier and two resistors per channel. Figure 14 shows a circuit used to implement offset binary coding (bipolar operation) with DAC A of the AD 7225. In this case

$$
V_{\text {OUT }}=\left(1+\frac{R 2}{R 1}\right) \cdot\left(D_{A} V_{\text {REF }}\right)-\left(\frac{R 2}{R 1}\right) \cdot\left(V_{\text {REF }}\right)
$$

With R1 = R2

$$
V_{\text {OUT }}=\left(2 D_{A}-1\right) \cdot V_{\text {REF }}
$$

where D_{A} is a fractional representation of the digital word in latch A. ($0 \leq \mathrm{D}_{\mathrm{A}} \leq 255 / 256$)
M ismatch between R1 and R2 causes gain and offset errors and, therefore, these resistors must match and track over temperature. Once again the AD 7225 can be operated in single supply or from positive/negative supplies. T able IV shows the digital code versus output voltage relationship for the circuit of Figure 14 with R1 = R2.

Figure 14. AD7225 Bipolar Output Circuit
Table IV. Bipolar (Offset Binary) Code Table

DAC MSB	LSB	
1111	1111	Analog Output
1000	0001	$+V_{\text {REF }}\left(\frac{127}{128}\right)$
1000	0000	$+V_{\text {REF }}\left(\frac{1}{128}\right)$
0111	1111	$0 V^{2}$
0000	0001	$-V_{\text {REF }}\left(\frac{1}{128}\right)$
0000	0000	$-V_{\text {REF }}\left(\frac{127}{128}\right)$

AGND BIAS

The AD 7225 AGND pin can be biased above system GND (AD 7225 DGND) to provide an offset "zero" analog output voltage level. Figure 15 shows a circuit configuration to achieve this for channel A of the AD 7225. The output voltage, $\mathrm{V}_{\text {OUT }} \mathrm{A}$, can be expressed as:
$V_{\text {OUT }} A=V_{\text {BIAS }}+D_{A}\left(V_{\text {IN }}\right)$
where D_{A} is a fractional representation of the digital word in DAC latch A. $\left(0 \leq D_{A} \leq 255 / 256\right)$.

Figure 15. AGND Bias Circuit

For a given $V_{I N}$, increasing AGND above system GND will reduce the effective $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {REF }}$ which must be at least 4 V to ensure specified operation. N ote that because the AGND pin is common to all four DAC s, this method biases up the output voltages of all the DAC s in the AD 7225. N ote that $\mathrm{V}_{D D}$ and $\mathrm{V}_{\text {SS }}$ of the AD 7225 should be referenced to DGND.

AC REFERENCE SIGNAL

In some applications it may be desirable to have ac reference signals. T he AD 7225 has multiplying capability within the upper ($\mathrm{V}_{\mathrm{DD}}-4 \mathrm{~V}$) and lower (2 V) limits of reference voltage when operated with dual supplies. Therefore ac signals need to be ac coupled and biased up before being applied to the reference inputs. Figure 16 shows a sine wave signal applied to $\mathrm{V}_{\text {REF }} \mathrm{A}$. For input signal frequencies up to 50 kHz the output distortion typically remains less than 0.1%. The typical 3 dB bandwidth figure for small signal inputs is 800 kHz .

Figure 16. Applying an AC Signal to the AD7225

APPLICATIONS

PROGRAMMABLE TRANSVERSAL FILTER

A discrete-time filter may be described by either multiplication in the frequency domain or convolution in the time domain i.e.

$$
Y(\omega)=H(\omega) X(\omega) \text { or } \quad y_{n}=\sum_{k=1}^{N} h_{k \times n-k+1}
$$

The convolution sum may be implemented using the special structure known as the transversal filter (Figure 17). Basically, it consists of an N -stage delay line with N taps weighted by N coefficients, the resulting products being accumulated to form the output. The tap weights or coefficients h_{k} are actually the nonzero elements of the impulse response and therefore determine the filter transfer function. A particular filter frequency response is realized by setting the coefficients to the appropriate values. This property leads to the implementation of transversal filters whose frequency response is programmable.

Figure 17. Transversal Filter

Figure 18. Programmable Transversal Filter

A 4-tap programmable transversal filter may be implemented using the AD 7225 (Figure 18). The input signal is first sampled and converted to allow the tapped delay line function to be provided by the Am29520. The multiplication of delayed input samples by fixed, programmable up weights is accomplished by the AD 7225, the four coefficients or reference inputs being set by the digital codes stored in the AD 7226. The resultant products are accumulated to yield the convolution sum output sample which is held by the AD 585.

Figure 19. Predicted (Theoretical) Response

Figure 20. Actual Response
Low pass, bandpass and high pass filters may be synthesized using this arrangement. The particular up weights needed for any desired transfer function may be obtained using the standard Remez Exchange Algorithm. Figure 19 shows the theoretical low pass frequency response produced by a 4-tap transversal
filter with the coefficients indicated. Although the theoretical prediction does not take into account the quantization of the input samples and the truncation of the coefficients, nevertheless, there exists a good correlation with the actual performance of the transversal filter (Figure 20).

DIGITAL WORD MULTIPLICATION

Since each DAC of the AD 7225 has a separate reference input, the output of one DAC can be used as the reference input for another. T his means that multiplication of digital words can be performed (with the result given in analog form). F or example, if the output from DACA is applied to $\mathrm{V}_{\text {REF }} B$ then the output from DACB, $\mathrm{V}_{\text {OUT }} B$, can be expressed as:

$$
V_{\text {OUT }} B=D_{A} \cdot D_{B} \cdot V_{\text {REF }} A
$$

where D_{A} and D_{B} are the fractional representations of the digital words in DAC latches A and B respectively.
If $D_{A}=D_{B}=D$ then the result is $D^{2} \cdot V_{\text {REF }} A$
In this manner, the four DACs can be used on their own or in conjunction with an external summing amplifier to generate complex waveforms. Figure 21 shows one such application. In this case the output waveform, Y, is represented by:
$Y=-\left(x^{4}+2 x^{3}+3 x^{2}+2 x+4\right) \cdot V_{\text {IN }}$
where x is the digital code which is applied to all four DAC latches.

Figure 21. Complex Waveform Generation

MICROPROCESSOR INTERFACE

Figure 22. AD7225 to 8085A/8088 Interface, Double-Buffered Mode

Figure 23. AD7225 to 6809/6502 Interface, Single-Buffered Mode

Figure 24. AD7225 to Z-80 Interface, Double-Buffered Mode

Figure 25. AD7225 to 68008 Interface, Single-Buffered Mode

Vss GENERATION

Operating the AD 7225 from dual supplies results in enhanced performance over single supply operation on a number of parameters as previously outlined. Some applications may require this enhanced performance, but may only have a single power supply rail available. The circuit of Figure 26 shows a method of generating a negative voltage using one CD 4049, operated from a V_{DD} of +15 V . T wo inverters of the hex inverter chip are used as an oscillator. The other four inverters are in parallel and used as buffers for higher output current. T he square-wave output is level translated to a negative-going signal, then rectified and filtered. The circuit configuration shown will provide an output voltage of -5.1 V for current loadings in the range 0.5 mA to 9 mA . This will satisfy the AD $7225 \mathrm{I}_{\mathrm{SS}}$ requirement over the commercial operating temperature range.

Figure 26. $V_{S S}$ Generation Circuit

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

28-Terminal Leadless Ceramic Chip Carrier (E-28A)

NOTES

1. THIS DIMENSION CONTROLS THE OVERALL PACKAGE THICKNESS
2. APPLIES TO ALL FOUR SIDES.
3. ALL TERMINALS ARE GOLD PLATED.

28-Lead PLCC (P-28A)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

