DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUITS μ PC1490, μ PC1491

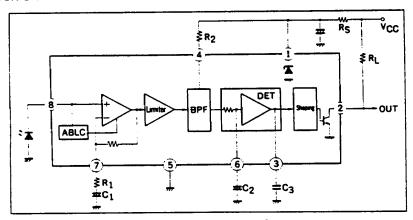
REMOTE CONTROL PREAMPLIFIER

DESCRIPTION

The μ PC1490 and μ PC1491 are bipolar integrated circuit intended for application in infrared remote controls. The μ PC1490 and μ PC1491 contain a high-gain amplifier, a limiter amplifier, a band-pass filter, a detector and a pulse

The μ PC1490's output polarity is active "Low" and the μ PC1491's output polarity is active "High".

FEATURES


- On-chip band-pass filter: Frequency range 30 to 60 kHz.
- High gain pre-amplifier: 86 dB TYP.
- Detector for PCM demodulation
- Low current consumption
- Minimum external components
- Open collector output: Easy interface to all microcomputer remote control decoders.

TTL and CMOS compatible output.

ORDERING INFORMATION

Part Number	Package	Output Data	
µРС1490НА	8 pin PLASTIC slim SIP	active "L"	
μPC1490G	8 pin PLASTIC SOP		
μPC1491HA	8 pin PLASTIC slim SIP	active "H"	
μPC1491G	8 pin PLASTIC SOP	active in	

BLOCK DIAGRAM

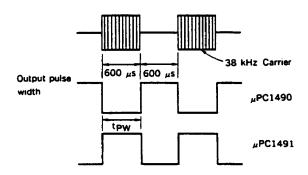
NEC cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

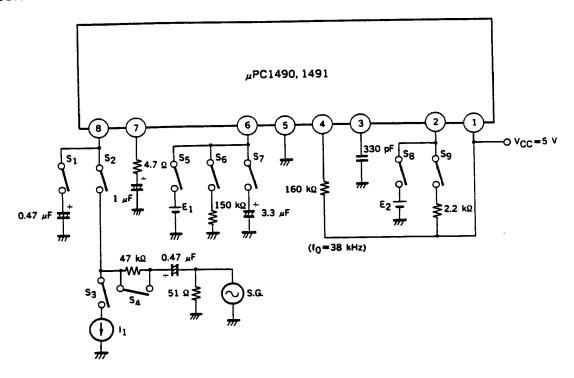
Supply Voltage	Vcc	5.6 *	V	*A _s = 0 Ω
Output Voltage	V _{out}	15	V	
input Voltage	VIN	5.0	V _{p-p}	
Supply Current	Icc	6.0	mA	
Output Current	lout	2.5	mA	
Power Dissipation	P_{D}	270	mW	
Operating Temperature	Topt	-20 to +75	°C	
Storage Temperature	T_{stg}	-40 to +125	°C	

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Power Supply Voltage	Vcc	4.5	5.0	5.5	٧	R _s = 0 Ω
Power Supply Voltage	Vcc'	11	12	13	V	R _s = 1.5 kΩ
Operating Frequency	fo	30		60	kHz	


ELECTRICAL CHARACTERISTICS ($T_a = 25$ °C, $V_{CC} = 5.0$ V)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	ON-SW	TEST PIN	TEST CONDITIONS
		1	1.6	2.5	mA	1, 7	Vcc	μPC1490
Power Supply Current	Icc		1.9	2.8	mA	1, 7	Vcc	μPC1491
Input Pin Voltage 1	VIN1	2.0	2.5	3.1	٧	7	8	
input Pin Voltage 2	· VIN2	0.6	0.9	1.7	V	2, 3, 7	8	I ₁ = -100 μA
Voltage Gain	Α _υ	74	86	89	dB	2, 4, 6	6	38 kHz CW, υ _i = 30 μV _{p-p}
Frequency Response	ΑυΩ	4.0	10		dB	2, 4, 6	6	28, 35, 41, 48 kHz CW υ _i = 30 μV _{p-p} , Note 1
input impedance	rin	27	40	55	kΩ	2, 7	8	38 kHz CW, Note 2 v; = 0.2 V _{p-p}
Output Pulse Width 1	tPW1	440	·	770	μς	2,4,7,9	2	38 kHz Burst, υ _i = 60 μV _{p-p} , Note 3
Output Pulse Width 2	tPW2	440		770	μs	2,4,7,9	2	$V_{CC} = 4 \text{ V}$, 38 kHz Burst, $v_i = 50 \text{ mV}_{p-p}$, Note 3
Output Voltage	VOL		0.2	0.4	٧	1, 5, 9	2	μPC1490HA: E ₁ = 1.0 V μPC1491HA: E ₁ = 2.5 V
Output Leak Current	юн		ı	2.0	μΑ	1, 5, 8	2	E ₂ = 15 V, μPC1490: E ₁ = 2.5 V μPC1491: E ₁ = 1.0 V


Note 1: Voltage gain difference $A_{\nu Q} = A_{\nu} (35 \text{ kHz}) - A_{\nu} (28 \text{ kHz})$ $A_{\nu Q} = A_{\nu} (41 \text{ kHz}) - A_{\nu} (48 \text{ kHz})$

Note 2: $r_{in} = \frac{47}{v_i/v_x - 1}$ (k Ω), v_x : Input voltage, v_i : SG output voltage

Note 3: Input burst

TEST CIRCUIT

PIN DESIGNATION

•

PIN No.	SYMBOL	NAME & FUNCTION
1	Vcc	Power Supply
2	OUT	Output
3	CI	Integral Capacitor
4	fo	Band-pass Filter Center Frequency Adjust
5	GND	Ground
6	CD	Detector Capacitor
7	IN-	Input —
8	IN ⁺	Input +

PIN FUNCTION

Power Supply (V_{CC}:Pin1, GND:Pin5)

Normal operation voltage is 5 V \pm 10 %.

In case of using a 12 V \pm 1 V power supply, insert a 1.5 k Ω \pm 5 % series resister between V_{CC} and power supply. The internal zener diode regulates the V_{CC} voltage to about 5.9 V. Do not supply the circuit current more than 6.0 mA.

Input (IN⁺:Pin8, IN⁻:Pin7)

The input impedance is 40 k Ω TYP.

The infrared receiver diode can be directly connected to the input.

This input has ABLC (Automatic Bias Level Control) circuit and it keeps the amplifier properly biased from IR inputs.

The voltage gain of the input amplifier is determined by the external impedance R₁ and C₁ at Pin7.

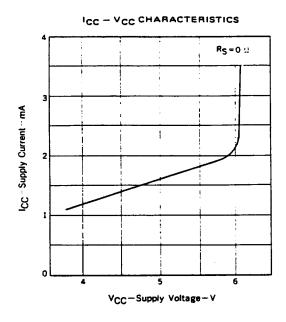
Band-pass Filter Center Frequency Adjust (f₀:Pin4)

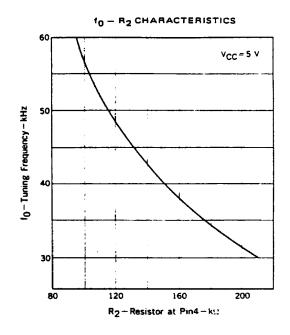
The tuning frequency of band-pass filter is determined by internal capacitors and the external resistor R_2 . The tuning frequency ranges from 30 kHz to 60 kHz.

Detector Capacitor (C_D:Pin6)

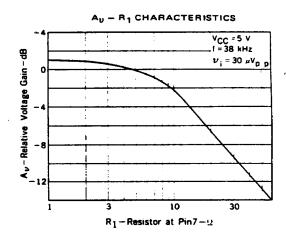
The detector consists of a filter and a comparator. The external capacitor C_2 at Pin 6 is used for the filter.

Integral Capacitor (C₁:Pin3)

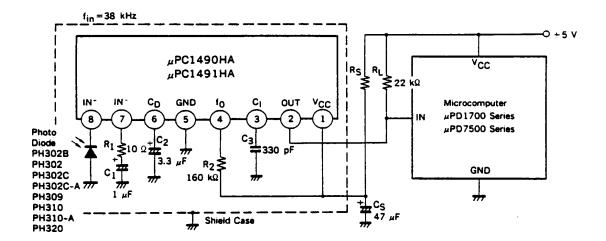

The external capacitor C₃ at Pin 3 filters the carrier from the pulses.

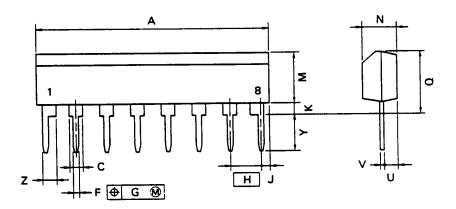

Output (OUT:Pin2)


The output is open collector transistor, can directly drives a TTL or a CMOS. And the break-down voltage of the output is over 15 V, so it is easy to interface to all microcomputer remote control decoders.


The $\mu PC1490$ is active "Low" output. The $\mu PC1491$ is active "High" output.

TYPICAL CHARACTERISTICS (Ta = 25 °C)



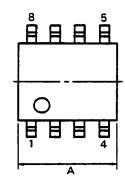


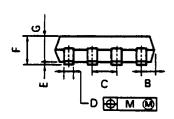
APPLICATION

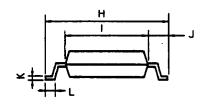
6

8 PIN PLASTIC SLIM SIP

NOTE


Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.


P8HA-2548


ITEM	MILLIMETERS	INCHES
A	20.32 MAX.	0.8 MAX.
С	1.1 MIN.	0.043 MIN.
F	0.5 *0.1	0.02 *888
G	0.25	0.01
н	2.54	0.1
J	1.27 MAX.	0.05 MAX.
K	0.51 MIN.	0.02 MIN.
М	5.08 MAX.	0.2 MAX.
N	2.8:02	0.11 8888
a	5.75 MAX.	0.227 MAX.
U	1.5 MAX.	0.059 MAX.
V	0.25:838	0.01 '8885
Υ	3.2:05	0.126 · 0 02
Z	1.1 MIN.	0.043 MIN.

 λ_{ij} λ

8PIN PLASTIC MINI FLAT (225 mil)

S8GM-50-225B

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	5.70 MAX.	0.225 MAX.
8	0.94 MAX.	0.037 MAX.
U	1.27 (T.P.)	0.050 (T.P.)
D	0.40 -8:58	0.016 - 0.003
E	0.1 ^{±0.1}	0.004 = 0.004
F	1.8 MAX.	0.071 MAX.
G	1.49	0.059
н	6.5 *0.3	0.256 * 0.012
1	4.4	0.173
J	1.1	0.043
К	0.15-8:38	0.006-8.882
L	0.6 ±0.2	0.024-8:008
М	0.12	0.005

IC-1808 March 1988M Printed in Japan