256-Position SP///2C Selectable Digital Potentiometer

Preliminary Technical Data

FEATURES

- 256 Position
- End-to-End Resistance 5k, 10k, 50k, 100k Ω
- Compact uSOIC-10 ($3 \times 4.9 \mathrm{~mm}$) Package
- Pin Selectable I ${ }^{2} \mathrm{C}$ or SPI Compatible Interface
- Extra Package address decode pin AO
- Full Read/write of wiper register
- Power ON Reset to Midscale
- Single Supply +2.7V to +5.5 V
- Low Temperature Coefficient 35 ppm $/{ }^{\circ} \mathrm{C}$
- Low power, $I_{D D}=5 \mu \mathrm{~A}$
- Wide Operating Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Applications

- Mechanical Potentiometer Replacement in new designs
- Transducer Adjustment of pressure, temperature, position, chemical and optical sensors
- RF Amplifier biasing
- Automotive Electronics Adjustment
- Gain Control and Offset Adjustment

GENERAL DESCRIPTION

The AD5161 provides a compact $3 \times 4.9 \mathrm{~mm}$ packaged solution for 256 position adjustment applications. This device performs the same electronic adjustment function as a mechanical potentiometer or a variable resistor. Available in four different end-to-end resistance values ($5 \mathrm{k}, 10 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k} \Omega$) these low temperature coefficient devices are ideal for high accuracy and stability variable resistance adjustments.
The wiper settings are controllable through a pin selectable SPI or I^{2} C compatible digital interface, which can also be used to read back the present wiper register control word. When the SPI mode is used the device can be daisy-chained (SDO to SDI) allowing several parts to share the three micro controller lines. A command bit is available to reset the wiper position to center value, and another

Notes:

1. The terms digital potentiometers, VR, and RDAC are used interchangeably.
command bit causes the wiper to be positioned into shutdown mode.
Operating from a 2.7 to 5.5 volt power supply consuming less than 5 uA allows for usage in portable battery operated applications.

FUNCTIONAL DIAGRAM

PIN CONFIGURATION

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Symbol \& Conditions \& Min \& Typ \({ }^{1}\) \& Max \& Units \\
\hline \multicolumn{7}{|l|}{SPI INTERFACE TIMING CHARACTERISTICS applies to all parts (Notes 6,10)} \\
\hline \begin{tabular}{l}
Input Clock Pulse Width \\
Data Setup Time \\
Data Hold Time \(\overline{\mathrm{CS}}\) Setup Time \(\overline{\mathrm{CS}}\) High Pulse Width CLK Fall to \(\overline{\mathrm{CS}}\) Fall Hold Time CLK Fall to \(\overline{\mathrm{CS}}\) Rise Hold Time \(\overline{\mathrm{CS}}\) Rise to Clock Rise Setup
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{t}_{\mathrm{CH}}, \mathrm{t}_{\mathrm{CL}}\) \\
\(t_{D S}\) \\
\(t_{D H}\) \\
\(\mathrm{t}_{\mathrm{CSs}}\) \\
\(\mathrm{t}_{\mathrm{CSW}}\) \\
\(\mathrm{t}_{\mathrm{CSHO}}\) \\
\(\mathrm{t}_{\mathrm{CSH}}\) \\
\(t_{\mathrm{CS}} 1\)
\end{tabular} \& Clock level high or low \& \[
\begin{gathered}
20 \\
5 \\
5 \\
15 \\
40 \\
0 \\
0 \\
10
\end{gathered}
\] \& \& \& ns
ns
ns
ns
ns
ns
ns
ns \\
\hline \multicolumn{7}{|l|}{\({ }^{12} \mathrm{C}\) INTERFACE TIMING CHARACTERISTICS applies to all parts(Notes 6,12)} \\
\hline SCL Clock Frequency \(t_{\text {BUF }}\) Bus free time between STOP \& START \(\mathrm{t}_{\mathrm{HD} ; \text { STA }}\) Hold Time (repeated START) tow Low Period of SCL Clock \(\mathrm{t}_{\text {HIGH }}\) High Period of SCL Clock \({ }^{\text {SU }}\);STA Setup Time For START Condition \(t_{\text {HD; DAT }}\) Data Hold Time \(\mathrm{t}_{\text {SU;DAT }}\) Data Setup Time \(t_{F}\) Fall Time of both SDA \& SCL signals \(t_{R}\) Rise Time of both SDA \& SCL signals \(\mathrm{t}_{\mathrm{su}}\);STo Setup time for STOP Condition \& \begin{tabular}{l}
\(\mathrm{f}_{\mathrm{SCL}}\) \\
t1 \\
t2 \\
t3 \\
t4 \\
t5 \\
t6 \\
t7 \\
t8 \\
t9 \\
t10
\end{tabular} \& After this period the first clock pulse is generated \& \[
\begin{aligned}
\& 1.3 \\
\& 0.6 \\
\& 1.3 \\
\& 0.6 \\
\& 0.6 \\
\& 100
\end{aligned}
\] \& \& 400

50
0.9

300
300 \& KHz
$\mu \mathrm{s}$
$\mu \mathrm{s}$
$\mu \mathrm{s}$
$\mu \mathrm{s}$
$\mu \mathrm{s}$
$\mu \mathrm{s}$
ns
ns
ns
ns
$\mu \mathrm{s}$

\hline
\end{tabular}

NOTES:

1. Typicals represent average readings at $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$.
2. Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.
3. $\quad V_{A B}=V_{D D}$, Wiper $\left(V_{W}\right)=$ No connect
4. INL and DNL are measured at V_{W} with the RDAC configured as a potentiometer divider similar to a voltage output D / A converter. $V A=V_{D D}$ and $V_{B}=0 V$.

DNL specification limits of ± 1 LSB maximum are Guaranteed Monotonic operating conditions.
5. Resistor terminals A, B, W have no limitations on polarity with respect to each other.
6. Guaranteed by design and not subject to production test.
7. Measured at the A terminal. A terminal is open circuited in shutdown mode.
8. $P_{D I S S}$ is calculated from ($I_{D D} \times V_{D D}$). CMOS logic level inputs result in minimum power dissipation
9. All dynamic characteristics use $V_{D D}=+5 \mathrm{~V}$.
10. See timing diagram for location of measured values. All input control voltages are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2 \mathrm{~ns}(10 \%$ to 90% of $+3 \mathrm{~V})$ and timed from a voltage level of 1.5 V . Switching characteristics are measured using $\mathrm{V}_{\text {LOGIC }}=+5 \mathrm{~V}$.
11. The AD5161 contains 2532 transistors. Die Size: 30.7 mil $\times 76.8$ mil, 2358 sq. mil.
12. See timing diagram for location of measured values.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5161 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$ ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)
$V_{D D}$ to GND .. - $0.3,+7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$ to $\mathrm{GND}^{\text {.. } \mathrm{V}_{\mathrm{DD}}}$

Digital Inputs \& Output Voltage to GND.............. $0 \mathrm{~V},+7 \mathrm{~V}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature ($\mathrm{T}_{\mathrm{J} \text { max }}$).............. $+150^{\circ} \mathrm{C}$
Storage Temperature............................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Thermal Resistance ${ }^{3} \theta_{\mathrm{JA}}$,
μ SOIC-10.. $200^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent
damage to the device. This is a stress rating; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance
3. Package Power Dissipation $\left(\mathrm{T}_{\mathrm{JMax}}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$

ORDERING GUIDE

Model\#	R (Ω)	Package Description	Package Option	Brand
AD5161BRM5	5 K	μ SOIC-10	RM-10	D0C
AD5161BRM10	10 K	μ SOIC-10	RM-10	D0D
AD5161BRM50	50 K	μ SOIC-10	RM-10	D0E
AD5161BRM100	100 K	μ SOIC-10	RM-10	D0F

256 Position Digital Potentiometer

AD5161 SPI Interface

TABLE 1: AD5161 Serial-Data Word Format

B7	B6	B5	B4	B3	B2	B1	B0
D7	D6	D5	D4	D3	D2	D1	D0
MSB							LSB
2^{7}							2^{0}

Figure 1A. AD5161 Timing Diagram $\left(V_{A}=5 V, V_{B}=0 V, V_{W}=\right.$ $V_{\text {OUT }}$)

Figure 1B. Detail Timing Diagram $\left(V_{A}=5 V, V_{B}=0 V, V_{W}=V_{\text {out }}\right)$

256 Position Digital Potentiometer $1^{2} \mathrm{C}$ Interface

Write Mode:

Read Mode:

$\mathbf{S}=$ Start Condition
$\mathbf{P}=$ Stop Condition
$\mathbf{A}=$ Acknowledge
$\mathbf{X}=$ Don't Care
$\mathbf{W}=$ Write
$\mathbf{R}=$ Read

RS = Reset wiper to Midscale 80_{H}
SD = Shutdown connects wiper to B terminal and open circuits A terminal. It does not change contents of wiper register.
D7,D6,D5,D4,D3,D2,D1,D0 = Data Bits

Figure 2. Detail Timing Diagram

Figure 2. Writing to the RDAC Register

Figure 3. Reading Data from a Previously Selected RDAC Register in Write Mode

TABLE 2: AD5161 PIN Descriptions

Pin	Name	Description
1	A	A Terminal
2	B	B Terminal
3	CS/AO	Chip Select Input, Active Low. When CS returns high, data will be loaded into the DAC register / Programmable address bit 0 for multiple package decoding
4	SDO	Serial Clock Input, positive edge triggered
5	SDI/SDA	Serial Data Input /
6	CLK/SCL	Serial Data Input/Output Serial Clock Input, positive edge triggered
7	GND	B Terminal
8	SPI/ $/{ }^{2} \mathrm{C}$	Digital Interface Select (SPI/I ${ }^{2} \mathrm{C}$ Select); SPI when DIS='0', $I^{2} \mathrm{C}$ when DIS='1'
9	$V_{\text {DD }}$	Positive Power Supply
10	W	W Terminal

PIN CONFIGURATION

OUTLINE DIMENSIONS
Dimensions shown in inches and (millimeters)

10-Lead μ SOIC
(RM-10)

