

Stanford Microdevices' SGA-5386 is a high performance cascadeable 50-ohm amplifier designed for operation at voltages as low as 3.6V. This RFIC uses the latest Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) process featuring 1 micron emitters with F_T up to 65 GHz.

This circuit uses a darlington pair topology with resistive feedback for broadband performance as well as stability over its entire temperature range. Internally matched to 50 ohm impedance, the SGA-5386 requires only DC blocking and bypass capacitors for external components.

Electrical Specifications at Ta = 25C

SGA-5386

DC-3200 MHz Silicon Germanium HBT Cascadeable Gain Block

Product Features

- DC-3200 MHz Operation
- Single Voltage Supply
- High Output Intercept: +31dBm typ. at 850 MHz
- Low Current Draw: 60mA at 3.6V typ.
- Low Noise Figure: 3.5dB typ. at 850 MHz

Applications

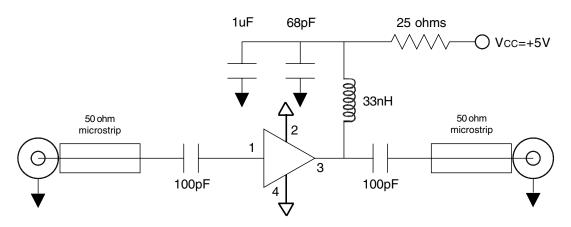
- Oscillator Amplifiers
- PA for Low Power Applications
- IF/ RF Buffer Amplifier
- Drivers for CATV Amplifiers

Symbol	Parameters: Test Conditions: $Z_0 = 50$ Ohms, f = DC-3200MHz		Units	Min.	Тур.	Max.
P _{1dB}	Output Power at 1dB Compression	f = 850 MHz f = 1950 MHz	dBm dBm		17.0 14.7	
S ₂₁	Small Signal Gain	f = DC-1000 MHz f = 1000-2000 MHz f = 2000-5000 MHz	dB dB dB	15.0	17.2 16.6 15.5	
S ₁₂	Reverse Isolation	f = DC-1000 MHz f = 1000-2000 MHz f = 2000-5000 MHz	dB dB dB		20.8 21.2 21.2	
VSWR	Input VSWR	f = DC-5000 MHz	-		1.25:1	
VSWR	Output VSWR	f = DC-5000 MHz	-		1.25:1	
IP ₃	Third Order Intercept Point	f = 850 MHz f = 1950 MHz	dBm dBm		31.0 29.0	
NF	Noise Figure	f = DC-1000 MHz f = 1000-2400 MHz	dB dB		3.5 4.0	
T _D	Group Delay	f = 1000 MHz pS			112.0	
V _D	Device Voltage		v	3.1	3.6	4.1
I _D	Device Current		mA		60.0	

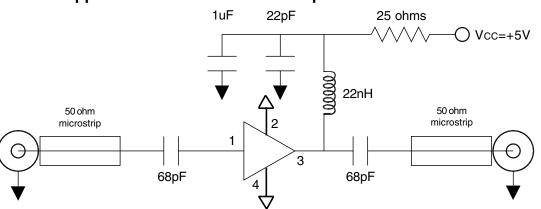
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.

Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.

Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

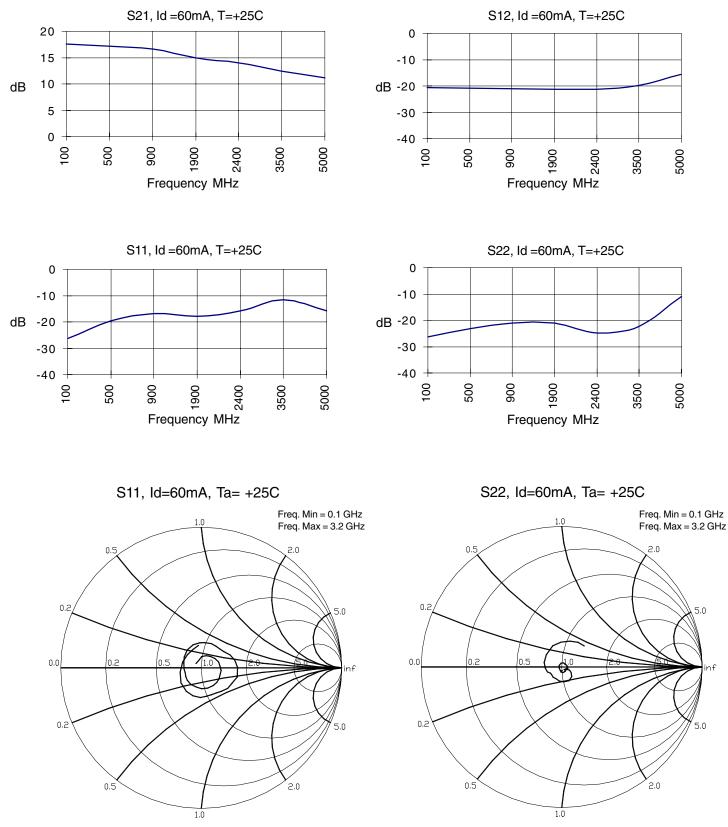

	Specification			Test		
Parameter	Min	Тур.	Max.	Unit	Condition	
Bandwidth					T= 25C	
Frequency Range	DC		3200	MHz		
Device Bias					T= 25C	
Operating Voltage		3.6		V		
Operating Current		60.0		mA		
500 MHz					T= 25C	
Gain		17.2		dB		
Noise Figure		3.4		dB		
Output IP3		32.0		dBm		
Output P1dB		17.0		dBm		
Input Return Loss		19.6		dB		
Isolation		20.8		dB		
850 MHz					T= 25C	
Gain		16.6		dB		
Noise Figure		3.5		dB		
Output IP3		32.0		dBm		
Output P1dB		17.0		dBm		
Input Return Loss		16.9		dB		
Isolation		21.1		dB		
1950 MHz					T= 25C	
Gain		14.9		dB		
Noise Figure		4.0		dB		
Output IP3		29.0		dBm		
Output P1dB		14.7		dBm		
Input Return Loss		18.0		dB		
Isolation		21.3		dB		
2400 MHz					T= 25C	
Gain		14.0		dB		
Noise Figure		4.1		dB		
Output IP3		27.0		dBm		
Output P1dB		13.6		dBm		
Input Return Loss		15.8		dB		
Isolation		21.2		dB		

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

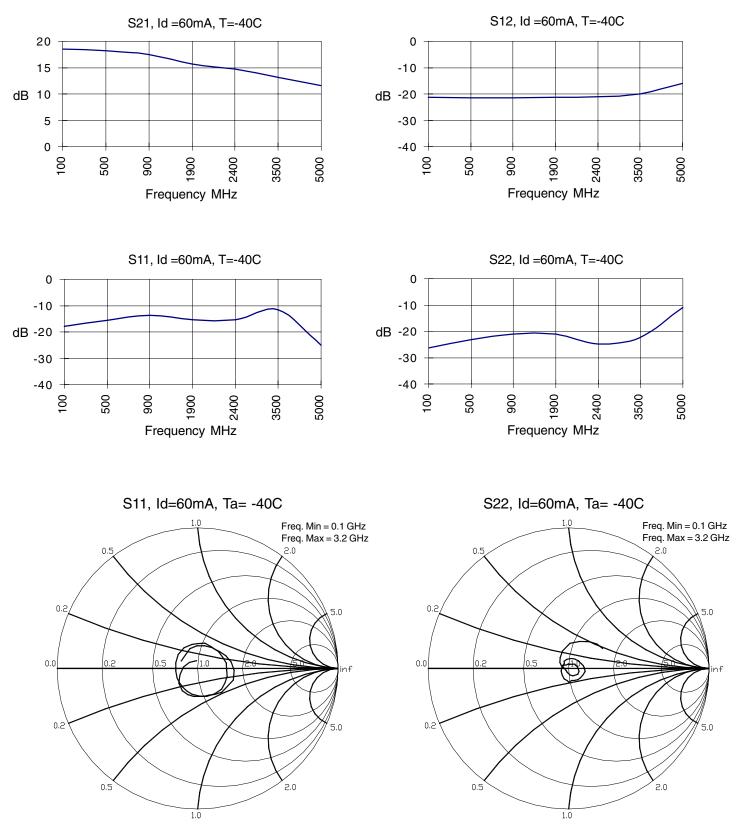


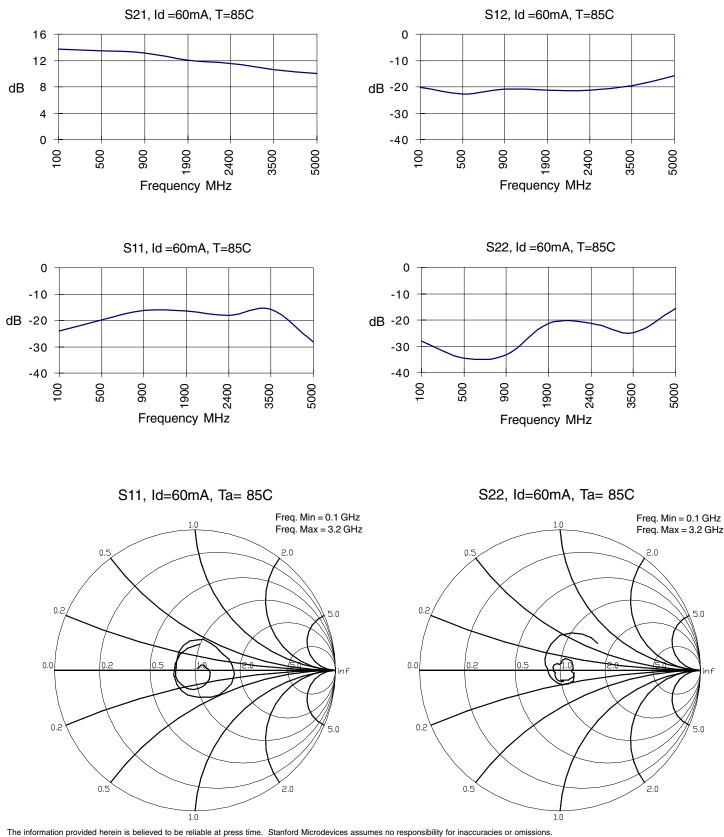
Pin #	Function	Description	Device Schematic
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	
2	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.	
3		RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.	
4	GND	Sames as Pin 2	

Application Schematic for +5V Operation at 900 MHz



Application Schematic for +5V Operation at 1900 MHz


The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.


The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

Absolute Maximum Ratings

Parameter	Value	Unit
Supply Current	120	mA
Operating Temperature	-40 to +85	С
Maximum Input Power	+10	dBm
Storage Temperature Range	-40 to +85	С
Operating Junction Temperature	+150	С

Caution:

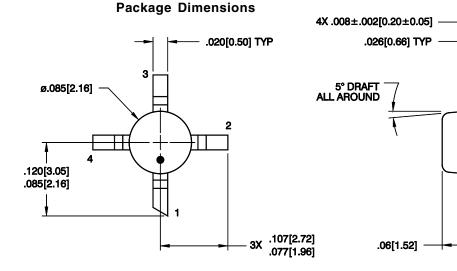
Operation of this device above any one of these parameters may cause permanent damage. Appropriate

precautions in handling, packaging and testing devices must be observed.

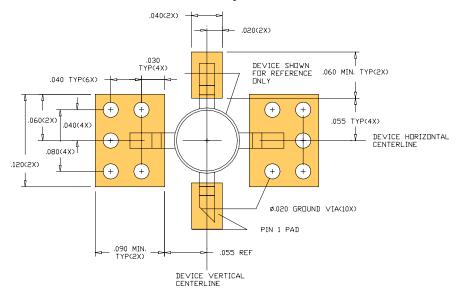
Thermal Resistance (Lead-Junction):

97° C/W

Preliminary SGA-5386 DC-3200 MHz 3.5V SiGe Amplifier


Part Number Ordering Information

Part Number	Reel Size	Devices/Reel		
SGA-5386-TR1	7"	1000		
SGA-5386-TR2	13"	3000		


Recommended Bias Resistor Values					
Supply Voltage(Vs)	4V	5V	7.5V	9V	12V
Rbias (Ohms)	8	25	67	92	142

For 7.5V operation or higher, a resistor with a power handling capability of 1/2W or greater is recommended.

Pin Designation1RF in2GND3RF out and Bias4GND

PCB Pad Layout

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.