

Product Description

Stanford Microdevices' SGA-1263 is a Silicon Germanium HBT Heterostructure Bipolar Transistor (SiGe HBT) amplifier that offers excellent isolation and flat gain response for applications to 4 GHz.

This RFIC is a 2-stage design that provides high isolation of up to 40dB at 2 GHz and is fabricated using the latest SiGe HBT 50 GHz F_T process, featuring 1 micron emitters with Vceo > 7V.

These unconditionally stable amplifiers have less than 1dB gain drift over 125°C operating range (-40°C to +85°C) and are ideal for use as buffer amplifiers in oscillator applications covering cellular, ISM and narrowband PCS bands.

SGA-1263

DC-4000 MHz Silicon Germanium HBT Cascadeable Gain Block

Product Features

- DC-4000 MHz Operation
- Single Supply Voltage
- Excellent Isolation, >50 dB at 900 MHz
- 50 Ohms In/Out, Broadband Match for Operation from DC-4 GHz
- Unconditionally Stable

Applications

- Buffer Amplifier for Oscillator Applications
- Broadband Gain Blocks
- IF Amp

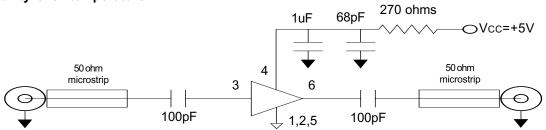
Symbol	Parameters: Test Conditions: Z ₀ = 50 Ohms, Id = 8 mA, T = 25°C		Units	Min.	Тур.	Max.
P _{1dB}	Output Power at 1dB Compression	f = 850 MHz f = 1950 MHz	dBm dBm		-7.8 -7.4	
S ₂₁	Small Signal Gain	f = DC - 1000 MHz f = 1000 - 2000 MHz f = 2000 - 4000 MHz	dB dB dB	14.3	15.9 15.2 12.3	
S ₁₂	Reverse Isolation	f = DC - 1000 MHz f = 1000 - 2000 MHz f = 2000 - 4000 MHz	dB dB dB		56.3 40.6 30.8	
S ₁₁	Input VSWR	f = DC - 2400 MHz f = 2400 - 4000 MHz	•		1.8:1 1.3:1	
S ₂₂	Output VSWR	f = DC - 2400 MHz f = 2400 - 4000 MHz	,		1.8:1 1.9:1	
IP ₃	Third Order Intercept Point Power out per Tone = -20 dBm	f = 850 MHz f = 1950 MHz	dBm dBm		2.6 2.8	
NF	Noise Figure	f = DC - 1000 MHz f = 1000 - 2400 MHz	dB dB		2.7 2.9	
T _D	Group Delay	f = 1000 MHz	pS		82	
V _D	Device Voltage		V	2.5	2.8	3.1

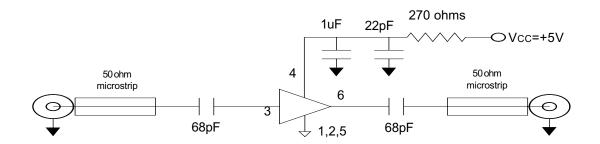
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices for use in life-support devices and/or systems.

Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

Phone: (800) SMI-MMIC

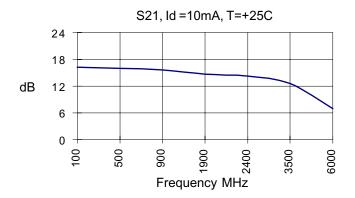
Specification					Test
Parameter	Min	Тур.	Max.	Unit	Condition
Bandwidth					T= 25C
Frequency Range	DC		4000	MHz	
Device Bias					T= 25C
Operating Voltage		2.8		V	
Operating Current		8		mA	
500 MHz					T= 25C
Gain		16.0		dB	
Noise Figure		2.7		dB	
Output IP3		4.0		dBm	
Output P1dB		-6.9		dBm	
Input Return Loss		8.5		dB	
Isolation		61.6		dB	
850 MHz					T= 25C
Gain		15.7		dB	
Noise Figure		2.7		dB	
Output IP3		2.6		dBm	
Output P1dB		-7.8		dBm	
Input Return Loss		8.9		dB	
Isolation		48.4		dB	
1950 MHz					T= 25C
Gain		14.7		dB	
Noise Figure		3.0		dB	
Output IP3		2.8		dBm	
Output P1dB		-7.4		dBm	
Input Return Loss		8.8		dB	
Isolation		35.6		dB	
2400 MHz					T= 25C
Gain		14.2		dB	
Noise Figure		2.8		dB	
Output IP3		0.2		dBm	
Output P1dB		-7.0		dBm	
Input Return Loss		8.4		dB	
Isolation		33.6		dB	

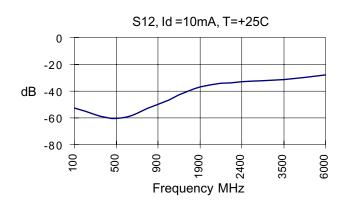

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

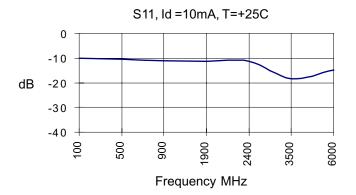

Pin #	Function	Description	Device Schematic
1	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.	VCC
2	GND	Sames as Pin 1	RF DUT
3	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	RF IN
4	Vcc	Supply Connection. This pin should be bypassed with a suitable capacitor(s).	
5	GND	Sames as Pin 1	
6	RF OUT	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.	

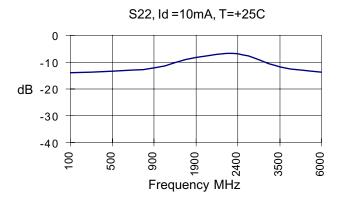
Application Schematic for +5V Operation at 900 MHz

Note: A bias resistor is needed for stability over temperature

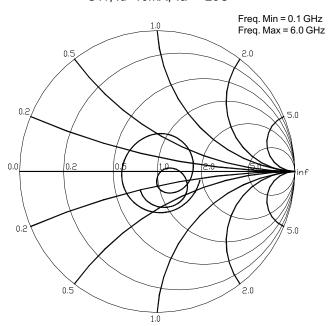

Application Schematic for +5V Operation at 1900 MHz

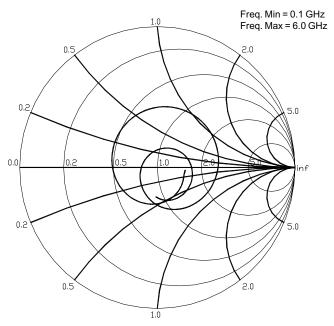


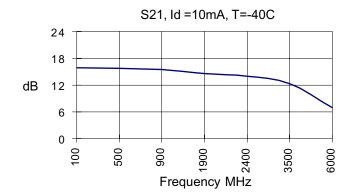

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

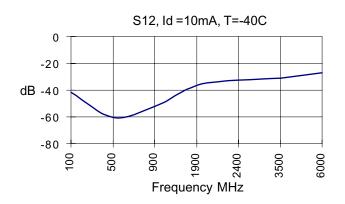


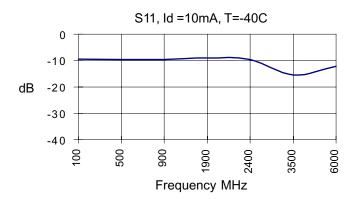


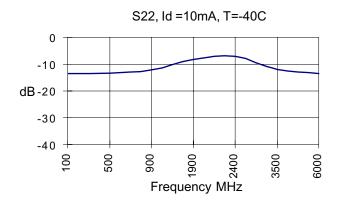


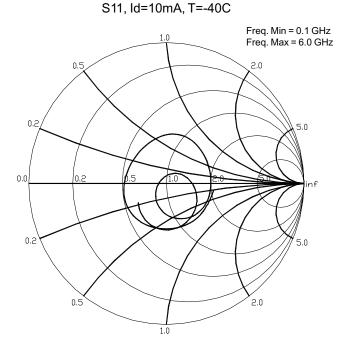


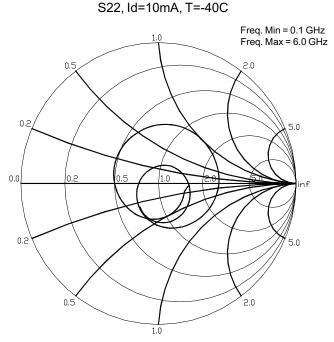

S22, Id=10mA, Ta= +25C

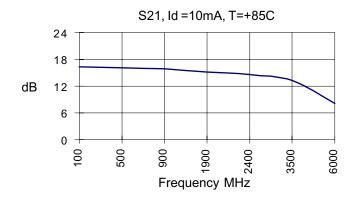


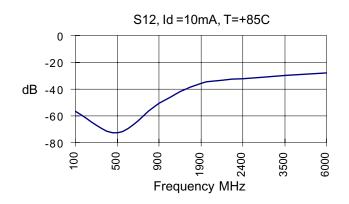

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

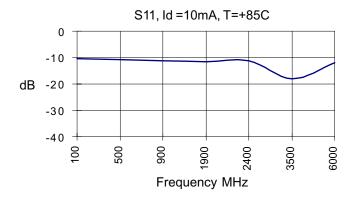


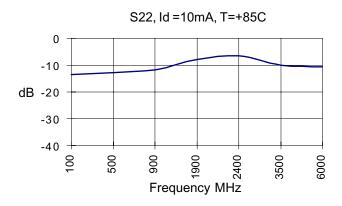


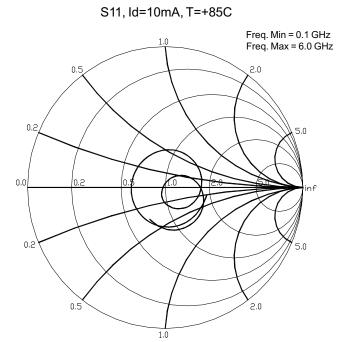


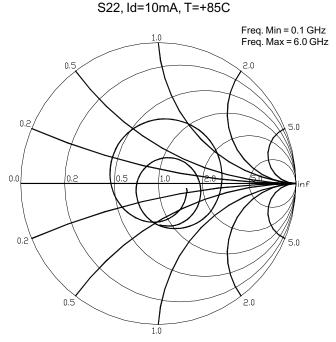





The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

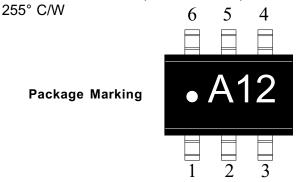






The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

Absolute Maximum Ratings


Parameter	Value	Unit
Supply Current	20	mA
Operating Temperature	-40 to +85	С
Maximum Input Power	-12	dBm
Storage Temperature Range	-40 to +85	С
Operating Junction Temperature	+125	С

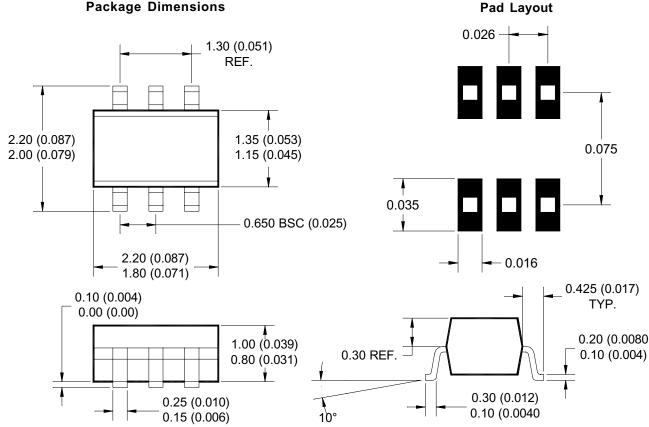
Caution:

Operation of this device above any one of these parameters may cause permanent damage. Appropriate precautions in handling, packaging and testing devices must be observed.

Thermal Resistance (Lead-Junction):

Part Number Ordering Information

SGA-1263 DC-4000 MHz 2.8V SiGe Amplifier


Part Number	Reel Size	Devices/Reel		
SGA-1263-TR1	7"	3000		

Recommended Bias Resistor Values					
Supply Voltage(Vs)	3.6V	5V	7.5V	9V	12V
Rbias (Ohms)	100	275	588	775	1150

Pin Designation				
1 GND				
2 GND				
3	RF in			
4	4 Vcc			
5 GND				
6	RF out			

Note: Pin 1 is on lower left when you can read package marking

Package Dimensions

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.