

OGY 325MHz,140V/µs Rail-to-Rail Input and Output Low Distortion, Low Noise Precision Op Amp

June 2000

FEATURES

■ Gain Bandwidth Product: 325MHz

Slew Rate: 140V/µs

Wide Supply Range: 2.5V to 12V
 Large Output Current: 85mA
 Low Distortion, 5MHz: -80dBc
 Low Voltage Noise: 3.5nV/√Hz

■ Input Common Mode Range Includes Both Rails

Output Swings Rail-to-Rail

■ Input Offset Voltage (Rail-to-Rail): 550µV Max

Common Mode Rejection: 106dB Typ
 Power Supply Rejection: 105dB Typ
 Open-Loop Gain: 300V/mV Typ

Power Down PinSO-8 Package

■ Operating Temperature Range –40°C to 85°C

APPLICATIONS

Active Filters

■ Rail-to-Rail Buffer Amplifiers

Driving A/D Converters

■ Low Voltage Signal Processing

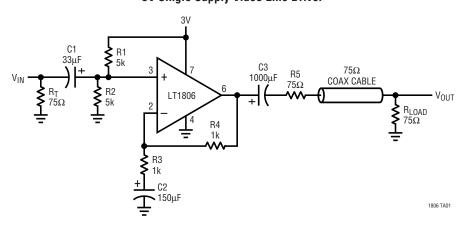
Video Line Driver

DESCRIPTION

The LT®1806 is a rail-to-rail input and output op amp that features a 325MHz gain bandwidth product, a 140V/µs slew rate and a 85mA output current to fit the need for low voltage, high performance signal conditioning systems.

The LT1806 has a very low distortion of -80 dBc at 5 MHz, a low input referred noise voltage of $3.5 nV/\sqrt{Hz}$ and a maximum offset voltage of $550 \mu V$ that allows it to be used in high performance data acquisition systems.

The LT1806 has an input range that includes both supply rails and an output that swings within 20mV of either supply rail to maximize the signal dynamic range in low supply applications.

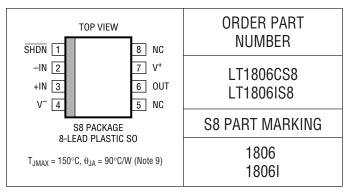

The LT1806 maintains its performance for supplies from 2.5V to 12V and is specified at 3V, 5V and \pm 5V supplies. The inputs can be driven beyond the supplies without damage or phase reversal of the output.

The LT1806 is available in an 8-pin SO package with the standard op amp pinout. This device can be used as a plugin replacement for many op amps to improve input/output range and performance.

17, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

3V Single Supply Video Line Driver



ABSOLUTE MAXIMUM RATINGS

(Note 1)

Total Supply Voltage (V ⁺ to V ⁻) 12	.6V
Input Voltage (Note 2) ±	-Vs
Input Current (Note 2) ±10	mĀ
Output Short-Circuit Duration (Note 3) Indefin	nite
Operating Temperature Range (Note 4)40°C to 85	5°C
Specified Temperature Range (Note 5)40°C to 85	5°C
Junction Temperature150)°C
Storage Temperature Range65°C to 150)°C
Lead Temperature (Soldering, 10 sec)300)°C

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$. $V_S = 5V$, OV; $V_S = 3V$, OV; $V_{\overline{SHDN}} = open$; $V_{CM} = V_{OUT} = half$ supply unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	V _{CM} = V ⁺		100	550	μV
		V _{CM} = V ⁻		100	550	μV
ΔV_{0S}	Input Offset Voltage Shift	$V_{CM} = V^- \text{ to } V^+$		50	500	μV
I_{B}	Input Bias Current	$V_{CM} = V^+$		1_	4	μΑ
		V _{CM} = V ⁻	-13	-5		μΑ
ΔI_B	Input Bias Current Shift	$V_{CM} = V^- \text{ to } V^+$		6	17	μΑ
I_{0S}	Input Offset Current	$V_{CM} = V^+$		0.03	0.6	μА
		V _{CM} = V ⁻		0.05	1.5	μΑ
ΔI_{0S}	Input Offset Current Shift	$V_{CM} = V^- \text{ to } V^+$		0.08	2.1	μΑ
	Input Noise Voltage	0.1Hz to 10Hz		40		nV _{P-P}
en	Input Noise Voltage Density	f = 10kHz		3.5		nV/√Hz
i _n	Input Noise Current Density	f = 10kHz		4		pA/√Hz
C _{IN}	Input Capacitance			2		pF
A _{VOL}	Large Signal Voltage Gain	$V_S = 5V$, $V_0 = 0.5V$ to 4.5V, $R_L = 1k$	90	220		V/mV
		$V_S = 5V$, $V_0 = 1V$ to 4V, $R_L = 100$	10	22		V/mV
		$V_S = 3V$, $V_0 = 0.5V$ to 2.5V, $R_L = 1k$	75	150		V/mV
CMRR	Common Mode Rejection Ratio	$V_S = 5V$, $V_{CM} = V^- to V^+$	80	100		dB
		$V_S = 3V$, $V_{CM} = V^-$ to V^+	75	95	141	dB
	Input Common Mode Range		V-		V+	V
PSRR	Power Supply Rejection Ratio	$V_S = 2.5V \text{ to } 10V, V_{CM} = 0V$	91	105		dB
	Minimum Supply Voltage (Note 6)			2.3	2.5	V
V_{0L}	Output Voltage Swing LOW (Note 7)	No Load		6	35	mV
		I _{SINK} = 5mA		45	130	mV
		I _{SINK} = 25mA		170	400	mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	No Load		12	50	mV
		I _{SOURCE} = 5mA		85 350	180 700	mV mV
	Chart Circuit Correct	I _{SOURCE} = 25mA	105		700	
I _{SC}	Short-Circuit Current	$V_S = 5V$ $V_S = 3V$	±35 ±30	±70 ±60		mA mA
	Supply Current	42 - 04		9	13	mA
Is	Supply Guiletti			9	10	IIIA

 $\textbf{ELECTRICAL CHARACTERISTICS} \\ T_A = 25^{\circ}\text{C. } V_S = 5\text{V, 0V; } V_S = 3\text{V, 0V; } V_{\overline{SHDN}} = \text{open; } V_{CM} = V_{OUT} = \text{half supply unless otherwise noted.}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Disable Supply Current	$V_S = 5V$, $V_{\overline{SHDN}} = 0V$		0.30	0.9	mA
		$V_S = 3V$, $V_{\overline{SHDN}} = 0V$		0.16	0.7	mA
GBW	Gain Bandwidth Product	Frequency = 2MHz		325		MHz
SR	Slew Rate	$V_S = 5V$, $A_V = -1$, $R_L = 1k$, $V_0 = 4V_{P-P}$		130		V/µs
THD	Total Harmonic Distortion	$V_S = 5V$, $A_V = 1$, $R_L = 1k$, $V_O = 2V_{P-P}$, $f_C = 5MHz$		-78		dB
t _S	Settling Time	0.01%, V _S = 5V, V _{STEP} = 2V, A _V = 1, R _L = 1k		60		ns
ΔG	Differential Gain (NTSC)	$V_S = 5V$, $A_V = 2$, $R_L = 150$		0.015		%
$\Delta \theta$	Differential Phase (NTSC)	$V_S = 5V$, $A_V = 2$, $R_L = 150$		0.05		Deg

The ullet denotes specifications which apply over the 0°C < T_A < 70°C temperature range. $V_S = 5V$, 0V; $V_S = 3V$, 0V; $V_{\overline{SHDN}} = open$; $V_{CM} = V_{OUT} = half$ supply unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	$V_{CM} = V^+$ $V_{CM} = V^-$	•		200 200	700 700	μV μV
V _{OS} TC	Input Offset Voltage Drift (Note 8)	$V_{CM} = V^+$ $V_{CM} = V^-$	•		1.5 1.5	5 5	μV/°C μV/°C
ΔV_{0S}	Input Offset Voltage Shift	V _{CM} = V ⁻ to V ⁺	•		100	700	μV
I _B	Input Bias Current	$V_{CM} = V^+ - 0.1V$ $V_{CM} = V^- + 0.2V$	•	-14	1 -5	5	μA μA
Δl_{B}	Input Bias Current Shift	$V_{CM} = V^- + 0.2V \text{ to } V^+ - 0.1V$	•		6	19	μΑ
I _{OS}	Input Offset Current	$V_{CM} = V^{+} - 0.1V$ $V_{CM} = V^{-} + 0.2V$	•		0.03 0.05	0.75 1.8	μA μA
ΔI_{0S}	Input Offset Current Shift	$V_{CM} = V^- + 0.2V \text{ to } V^+ - 0.1V$	•		0.08	2.55	μΑ
A _{VOL}	Large Signal Voltage Gain	$V_S = 5V$, $V_0 = 0.5V$ to 4.5V, $R_L = 1k\Omega$ $V_S = 5V$, $V_0 = 1V$ to 4V, $R_L = 100\Omega$ $V_S = 3V$, $V_0 = 0.5V$ to 2.5V, $R_L = 1k\Omega$	•	75 9 65	175 20 140		V/mV V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_S = 5V$, $V_{CM} = V^- \text{ to } V^+$ $V_S = 3V$, $V_{CM} = V^- \text{ to } V^+$	•	77 72	94 89		dB dB
	Input Common Mode Range		•	V-		V+	V
PSRR	Power Supply Rejection Ratio	$V_S = 2.5V \text{ to } 10V, V_{CM} = 0V$	•	89	105		dB
	Minimum Supply Voltage (Note 6)		•		2.3	2.5	V
V _{0L}	Output Voltage Swing LOW (Note 7)	No Load I _{SINK} = 5mA I _{SINK} = 25mA	•		8 50 180	60 150 450	mV mV mV
V _{OH}	Output Voltage Swing HIGH (Note 7)	No Load I _{SOURCE} = 5mA I _{SOURCE} = 25mA	•		30 110 370	80 220 750	mV mV mV
I _{SC}	Short-Circuit Current	V _S = 5V V _S = 3V		±30 ±25	±65 ±55		mA mA
Is	Supply Current		•		10	14	mA
	Disable Supply Current	$V_S = 5V$, $V_{\overline{SHDN}} = 0V$ $V_S = 3V$, $V_{\overline{SHDN}} = 0V$	•		0.3 0.18	1.1 0.9	mA mA
GBW	Gain Bandwidth Product	Frequency = 2MHz	•		300		MHz
SR	Slew Rate	$V_S = 5V$, $A_V = -1$, $R_L = 1k$, $V_0 = 4V_{P-P}$	•		100		V/µs

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the $-40^{\circ}\text{C} < T_A < 85^{\circ}\text{C}$ temperature range. $V_S = 5V$, 0V; $V_S = 3V$, 0V; $V_{\overline{SHDN}} = \text{open}$; $V_{CM} = V_{OUT} = \text{half supply unless otherwise noted.}$ (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	V _{CM} = V ⁺	•		200	800	μV
		V _{CM} = V ⁻	•		200	800	μV
V _{OS} TC	Input Offset Voltage Drift (Note 8)	$V_{CM} = V^+$	•		1.5	5	μV/°C
		V _{CM} = V ⁻	•		1.5	5	μV/°C
ΔV_{OS}	Input Offset Voltage Shift	$V_{CM} = V^-$	•		100	800	μV
I_{B}	Input Bias Current	$V_{CM} = V^+ - 0.1V$	•		1	6	μΑ
		$V_{CM} = V^- + 0.2V$	•	-16	-5		μΑ
ΔI_B	Input Bias Current Shift	$V_{CM} = V^- + 0.2V \text{ to } V^+ - 0.1V$	•		6	22	μΑ
I _{OS}	Input Offset Current	$V_{CM} = V^+ - 0.1V$	•		0.02	0.9	μΑ
		$V_{CM} = V^- + 0.2V$	•		0.05	2.1	μΑ
ΔI_{0S}	Input Offset Current Shift	$V_{CM} = V^- + 0.2V \text{ to } V^+ - 0.1V$	•		0.07	3	μΑ
A _{VOL}	Large Signal Voltage Gain	$V_S = 5V$, $V_0 = 0.5V$ to 4.5V, $R_L = 1k\Omega$	•	60	140		V/mV
		$V_S = 5V$, $V_0 = 1V$ to $4V$, $R_L = 100\Omega$	•	7	16		V/mV
		$V_S = 3V$, $V_0 = 0.5V$ to 2.5V, $R_L = 1k\Omega$	•	50	100		V/mV
CMRR	Common Mode Rejection Ratio	$V_S = 5V$, $V_{CM} = V^- \text{ to } V^+$	•	75	94		dB
		$V_S = 3V$, $V_{CM} = V^- \text{ to } V^+$	•	71	89		dB
	Input Common Mode Range		•	V-		V+	V
PSRR	Power Supply Rejection Ratio	$V_S = 2.5V \text{ to } 10V, V_{CM} = 0V$	•	87	105		dB
	Minimum Supply Voltage (Note 6)		•		2.3	2.5	V
V _{OL}	Output Voltage Swing LOW (Note 7)	No Load	•		10	70	mV
		I _{SINK} = 5mA	•		50	160	mV
		I _{SINK} = 20mA,	•		170	400	mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	No Load	•		300	100	mV
		I _{SOURCE} = 5mA	•		110	240	mV
		I _{SOURCE} = 20mA	•		310	650	mV
I _{SC}	Short-Circuit Current	$V_S = 5V$		±22 ±20	±45 ±40		mA mA
	0	V _S = 3V	•	±20		4.0	
I _S	Supply Current		•		11	16	mA
	Disable Supply Current	$V_S = 5V, V_{\overline{SHDN}} = 0V$	•		0.4	1.2	mA
		$V_S = 3V$, $V_{\overline{SHDN}} = 0V$	•		0.2	1	mA_
GBW	Gain Bandwidth Product	Frequency = 2MHz	•		250		MHz
SR	Slew Rate	$V_S = 5V$, $A_V = -1$, $R_L = 1k$, $V_0 = 4V_{P-P}$	•		80		V/µV

ELECTRICAL CHARACTERISTICS $T_A=25^{\circ}C.~V_S=\pm5V,~V_{\overline{SHDN}}=open;~V_{CM}=0V,~V_{OUT}=0V~unless~otherwise~noted.$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	$V_{CM} = V^+$ $V_{CM} = V^-$		100 100	650 650	μV μV
ΔV_{0S}	Input Offset Voltage Shift	$V_{CM} = V^- \text{ to } V^+$		50	600	μV
I _B	Input Bias Current	$V_{CM} = V^+$ $V_{CM} = V^-$	-14	1 -5	5	μA μA
ΔI_B	Input Bias Current Shift	$V_{CM} = V^- \text{ to } V^+$		6	19	μА
los	Input Offset Current	$V_{CM} = V^+$ $V_{CM} = V^-$		0.03 0.04	0.7 1.6	μA μA
ΔI_{0S}	Input Offset Current Shift	$V_{CM} = V^- \text{ to } V^+$		0.07	2.3	μΑ
	Input Noise Voltage	0.1Hz to 10Hz		40		nV _{P-P}
e _n	Input Noise Voltage Density	f = 10kHz		3.5		nV/√Hz
i _n	Input Noise Current Density	f = 10kHz		5		pA/√Hz
C _{IN}	Input Capacitance	f = 100kHz		2		pF
A _{VOL}	Large Signal Voltage Gain	$V_0 = -4V \text{ to } 4V, R_L = 1k\Omega$ $V_0 = -2.5V \text{ to } 2.5V, R_L = 100\Omega$	120 12	300 27		V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = V^- \text{ to } V^+$	84	106		dB
	Input Common Mode Range		V-		V ⁺	V
PSRR	Power Supply Rejection Ratio	V ⁺ = 2.5V to 10V, V _{CM} = 0V	91	105		dB
V_{0L}	Output Voltage Swing LOW (Note 7)	No Load I _{SINK} = 5mA I _{SINK} = 25mA		10 45 180	60 140 450	mV mV mV
V _{OH}	Output Voltage Swing HIGH (Note 7)	No Load I _{SOURCE} = 5mA I _{SOURCE} = 25mA		20 90 360	70 200 700	mV mV mV
I _{SC}	Short-Circuit Current		±40	±85		mA
Is	Supply Current			11	16	mA
	Disable Supply Current	V _{SHDN} = 0V		0.4	1.2	mA
GBW	Gain Bandwidth Product	Frequency = 2MHz	180	325		MHz
SR	Slew Rate	$A_V = -1$, $R_L = 1k$, $V_0 = \pm 4V$, Measure at $V_0 = \pm 2V$	70	140		V/µs
THD	Total Harmonic Distortion	$A_V = 1$, $R_L = 1k$, $V_0 = 2V_{P-P}$, $f_C = 5MHz$		-80		dB
t _S	Settling Time	0.01%, V _{STEP} = 5V, A _V = 1, R _L = 1k		85		ns
ΔG	Differential Gain (NTSC)	A _V = 2, R _L = 150		0.01		%
Δθ	Differential Phase (NTSC)	A _V = 2, R _L = 150		0.01		Deg

ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the $0^{\circ}C < T_A < 70^{\circ}C$ temperature range. $V_S = \pm 5V$, $V_{\overline{SHDN}} = open$; $V_{CM} = 0V$, $V_{OUT} = 0V$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	V _{CM} = V ⁺ V _{CM} = V ⁻	•		200 200	800 800	μV μV
V _{OS} TC	Input Offset Voltage Drift (Note 8)	$V_{CM} = V^+$ $V_{CM} = V^-$	•		1.5 1.5	5 5	μV/°C μV/°C
ΔV_{OS}	Input Offset Voltage Shift	V _{CM} = V ⁻ to V ⁺	•		100	800	μV
I_{B}	Input Bias Current	$V_{CM} = V^{+} - 0.1V$ $V_{CM} = V^{-} + 0.2V$	•	-15	1 -6	6	μA μA
ΔI_{B}	Input Bias Current Shift	$V_{CM} = V^- + 0.2V \text{ to } V^+ - 0.1V$	•		7	21	μА
I _{OS}	Input Offset Current	$V_{CM} = V^{+} - 0.1V$ $V_{CM} = V^{-} + 0.2V$	•		0.03 0.04	0.9 1.9	μA μA
ΔI_{0S}	Input Offset Current Shift	$V_{CM} = V^- + 0.2V \text{ to } V^+ - 0.1V$	•		0.07	2.8	μА
A _{VOL}	Large Signal Voltage Gain	$V_0 = -4V \text{ to } 4V, R_L = 1k\Omega$ $V_0 = -2.5V \text{ to } 2.5V, RL = 100\Omega$	•	100 10	250 25		V/mV V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = V ⁻ to V ⁺	•	81	100		dB
	Input Common Mode Range		•	٧-		V+	V
PSRR	Power Supply Rejection Ratio	V ⁺ = 2.5V to 10V, V _{CM} = 0V	•	89	105		dB
$\overline{V_{0L}}$	Output Voltage Swing LOW (Note 7)	No Load I _{SINK} = 5mA I _{SINK} = 25mA	•		10 45 200	100 160 550	mV mV mV
V _{OH}	Output Voltage Swing HIGH (Note 7)	No Load I _{SOURCE} = 5mA I _{SOURCE} = 25mA	•		40 110 320	120 240 750	mV mV mV
I _{SC}	Short-Circuit Current		•	±35	±75		mA
Is	Supply Current		•		14	20	mA
	Disable Supply Current	V _{SHDN} = 0V	•		0.4	1.4	mA
GBW	Gain Bandwidth Product	Frequency = 2MHz	•	150	300		MHz
SR	Slew Rate	$A_V = -1$, $R_L = 1k$, $V_0 = \pm 4V$, Measure at $V_0 = \pm 2V$	•	60	120		V/µs

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the $-40^{\circ}\text{C} < \text{T}_{A} < 85^{\circ}\text{C}$ temperature range. $V_S = \pm 5V$, $V_{\overline{S}HDN} = \text{open}$; $V_{CM} = 0V$, $V_{OUT} = 0V$ unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{0S}	Input Offset Voltage	$V_{CM} = V^+$ $V_{CM} = V^-$	•		200 200	900 900	μV μV
V _{OS} TC	Input Offset Voltage Drift (Note 8)	$V_{CM} = V^+$ $V_{CM} = V^-$	•		1.5 1.5	5 5	μV/°C μV/°C
ΔV_{0S}	Input Offset Voltage Shift	V _{CM} = V ⁻ to V ⁺	•		100	900	μV
I _B	Input Bias Current	$V_{CM} = V^+ - 0.1V$ $V_{CM} = V^- + 0.2V$	•	-16	1.2 -5	7	μA μA
ΔI_B	Input Bias Current Shift	$V_{CM} = V^- + 0.2V \text{ to } V^+ - 0.1V$	•		6.2	23	μΑ
I _{OS}	Input Offset Current	$V_{CM} = V^{+} - 0.1V$ $V_{CM} = V^{-} + 0.2V$	•		0.03 0.04	1 2.2	μA μA
ΔI_{0S}	Input Offset Current Shift	$V_{CM} = V^- + 0.2V \text{ to } V^+ - 0.1V$	•		0.07	3.2	μА
A _{VOL}	Large Signal Voltage Gain	$V_0 = -4V \text{ to } 4V, R_L = 1k\Omega$ $V_0 = -2V \text{ to } 2V, RL = 100\Omega$	•	80 8	175 17		V/mV V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = V ⁻ to V ⁺	•	80	100		dB
	Input Common Mode Range		•	V-		V+	V
PSRR	Power Supply Rejection Ratio	V ⁺ = 2.5V to 10V, V _{CM} = 0V	•	87	105		dB
V _{OL}	Output Voltage Swing LOW (Note 7)	No Load I _{SINK} = 5mA I _{SINK} = 20mA	•		20 60 200	120 170 500	mV mV mV
V _{OH}	Output Voltage Swing HIGH (Note 7)	No Load I _{SOURCE} = 5mA I _{SOURCE} = 20mA	•		50 115 360	140 260 700	mV mV mV
I _{SC}	Short-Circuit Current		•	±25	±55		mA
Is	Supply Current		•		15	22	mA
	Disable Supply Current	V _{SHDN} = 0V	•		0.45	1.5	mA
GBW	Gain Bandwidth Product	Frequency = 2MHz	•	125	250		MHz
SR	Slew Rate	$A_V = -1$, $R_L = 1k$, $V_0 = \pm 4V$, Measure at $V_0 = \pm 2V$	•	50	100		V/µs

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.

Note 2: The inputs are protected by back-to-back diodes. If the differential input voltage exceeds 1.4V, the input current should be limited to less than 10mA.

Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.

Note 4: The LT1806C/LT1806I are guaranteed functional over the temperature range of -40° C and 85°C.

Note 5: The LT1806C is guaranteed to meet specified performance from 0°C to 70°C. The LT1806C is designed, characterized and expected to

meet specified performance from -40° C to 85° C but is not tested or QA sampled at these temperatures. The LT1806I is guaranteed to meet specified performance from -40° C to 85° C.

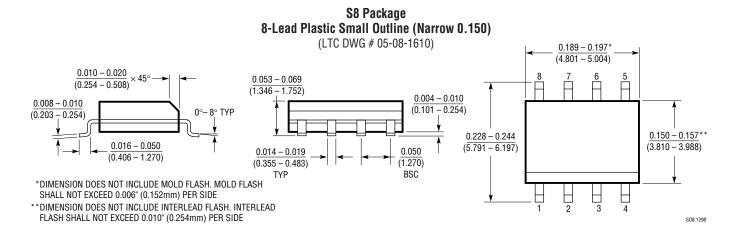
Note 6: Minimum supply voltage is guaranteed by power supply rejection ratio test

Note 7: Output Voltage swings are measured between the output and power supply rails.

Note 8: This parameter is not 100% tested.

Note 9: Thermal resistance varies depending upon the amount of PC board metal attached to Pin 4 of the device. θ_{JA} is specified for a 2500mm² test board covered with 2 oz copper on both sides.

APPLICATIONS INFORMATION


Single Supply Video Line Driver

The LT1806 is a wideband rail-to-rail op amp with high output current that allows it to drive video signals in low supply applications. The figure on the front page depicts a single supply video line driver with AC coupling to minimize the quiescent power dissipation. Resistors R1 and R2 are used to level-shift the input and output to provide the largest signal swing. The gain of two is set up with R3 and R4 to restore the signal at V_{OUT} which is

attenuated by 6dB due to the matching of the 75Ω line with the back-terminated resistor, R5. The back termination will eliminate any reflection of the signal that comes from the load. The input termination resistor, R_T, is optional—it is used only if matching of the incoming line is necessary. The values of C1, C2 and C3 are selected to minimize the droop of the luminance signal. In some less stringent requirements, the value of capacitors could be reduced.

PACKAGE DESCRIPTION

Dimensions in inches (millimeters) unless otherwise noted.

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1395	400MHz Current Feedback Amplifier	800V/µs Slew Rate, Shutdown
LT1399	Triple 300MHz Current Feedback Amplifier	0.1dB Gain Flatness to 150MHz, Shutdown
LT1809	180MHz Rail-to-Rail Amplifier	350V/μs Slew Rate, Shutdown