

Packane Dimensinns

Selection Guide

Package Description	Device HLMP.	Luminous Intensity $\mathrm{lv}(\mathrm{mcd})$ at 20 mA		Max.	$\begin{aligned} & 2 \theta_{1 / 2}{ }^{[1]} \\ & \text { Degree } \end{aligned}$	Package Outline
		Min.	Typ.			
T-1 3/4 Red Tinted Diffused	D101	35.2	70.0	-	65	A
	D101-J 00xx	35.2	70.0	-	65	A
	D101-J K0xx	35.2	70.0	112.8	65	A
T-1 3/4 Red Untinted Non-diffused	D105	138.0	240.0	-	24	B
	D105-M 00xx	138.0	240.0	-	24	B
	D105-N OOxx	200.0	290.0	580.0	24	B
T-1 Red Tinted Diffused	K101	22.0	45.0	-	60	C
	K101-100xx	22.0	45.0	-	60	C
	K101-IJ 0xx	22.0	45.0	70.4	60	C
T-1 Red Untinted Non-diffused	K105	35.2	65.0	-	45	C
	K105-J 00xx	35.2	65.0	-	45	C
	K105-KL0xx	56.4	110.0	180.4	45	C

Note:

1. $\theta_{1 / 2}$ is the off axis angle from lamp centerline where the luminous intensity is $1 / 2$ the on-axis value.

Part Numbering System

HLMP - xxxx-xxxyx

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Value
Peak Forward Current $[1,2]$	300 mA
Average Forw ard Current ${ }^{[2]}$	20 mA
DC Current ${ }^{[3]}$	30 mA
Power Dissipation	87 mW
Reverse Voltage ($\left.I_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5 V
Transient Forw ard Current (10 $\mu \mathrm{s}$ Pulse ${ }^{[4]}$	500 mA
LED J unction Temperature	$110^{\circ} \mathrm{C}$
Operating Temperature Range	-20 to $+100^{\circ} \mathrm{C}$
Storage Temperature Range	$-55 \mathrm{to}+100^{\circ} \mathrm{C}$
W ave Soldering Temperature $[1.59 \mathrm{~mm}(0.063 \mathrm{in}$.$) from body]$	$250^{\circ} \mathrm{C}$ for 3 seconds
Lead Solder Dipping Temperature $[1.59 \mathrm{~mm}(0.063 \mathrm{in}$.$) from body]$	$260^{\circ} \mathrm{C}$ for 5 seconds

Notes:

1. Maximum $I_{\text {PEAK }}$ at $f=1 \mathrm{kHz}, \mathrm{DF}=6.7 \%$.
2. Refer to Figure 6 to establish pulsed operating conditions.
3. Derate linearly as shown in Figure 5.
4. The transient peak current is the maximum non-recurring peak current the device can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute M aximum Peak Forward Current.

Electrical/ Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Min.	Typ.	Max.	Unit	Test Condition
V_{F}	Forw ard Voltage		1.8	2.2	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
V_{R}	Reverse Breakdown Voltage	5.0	15.0		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
λ_{p}	Peak W avelength		645		nm	M easurement at Peak
$\lambda_{\text {d }}$	Dominant W avelength		637		nm	Note 1
$\Delta \lambda^{1 / 2}$	Spectral Line Halfwidth		20		nm	
τ_{s}	Speed of Response		30		ns	Exponential Time Constant, e-t/ T_{S}
C	Capacitance		30		pF	$V_{F}=0, f=1 \mathrm{MHz}$
$R \theta_{\text {J.PIN }}$	Thermal Resistance		$\begin{aligned} & \hline 260[3] \\ & 210[4] \\ & 290[5] \end{aligned}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$	J unction to Cathode Lead
η_{V}	Luminous Efficacy		80		Im/ W	Note 2

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the color of the device.
2. The radiant intensity, I_{e}, in watts per steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where I_{V} is the luminous intensity in candelas and η_{V} is luminous efficacy in lumens/ watt.
3. HLM P-D101.
4. HLM P-D105.
5. HLM P-K101/-K105.

Figure 1. Relative intensity vs. w avelength.

Figure 3. Relative luminous intensity vs. dc forw ard current.

Figure 5. M aximum forw ard dc current vs. ambient temperature. Derating based on $\mathrm{T}_{\mathrm{J}} \mathrm{MAX} .=110^{\circ} \mathrm{C}$.

Figure 2. Forw ard current vs. forw ard voltage.

Figure 4. Relative efficiency vs. peak forw ard current.

Figure 6. M aximum tolerable peak current vs. peak duration ($I_{\text {PEAK }}$ MAX. determined from temperature derated $I_{D C}$ MAX.).

Figure 7. Relative luminous intensity vs. angular displacement. HLM P-D101.

Figure 9. Relative luminous intensity vs. angular displacement. HLM P-D105.

Figure 8. Relative luminous intensity vs. angular displacement. HLM P-K101.

Figure 10. Relative luminous intensity vs. angular displacement. HLM P-K105.

Intensity Bin Limits

Color	Bin	Intensity Range (mcd) M in.	
Red	I	24.8	39.6
	J	39.6	63.4
	K	63.4	101.5
	L	101.5	162.4
	M	162.4	234.6
	N	234.6	340.0
	O	340.0	540.0
	P	540.0	850.0
	Q	850.0	1200.0
	R	1200.0	1700.0
	S	1700.0	2400.0
	T	2400.0	3400.0
	U	3400.0	4900.0
	V	4900.0	7100.0
	W	7100.0	10200.0
	X	10200.0	14800.0
	Y	14800.0	21400.0
	21400.0	30900.0	

M aximum tolerance for each bin limit is $\pm 18 \%$.

Mechanical Option Matrix

Mechanical Option Code	Definition
00	Bulk Packaging, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
01	Tape \& Reel, crimped leads, minimum increment $1300 \mathrm{pcs}(\mathrm{T}-1 \mathrm{3/4)/1800pcs(T-1)}$
02	Tape \& Reel, straight leads, minimum increment $1300 \mathrm{pcs}(\mathrm{T}-13 / 4) / 1800 \mathrm{pcs}(\mathrm{T}-1)$
A1	Right Angle Housing, uneven leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
A2	Right Angle Housing, even leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
B1	Right Angle Housing, uneven leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
B2	Right Angle Housing, even leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
DD	Ammo Pack, straight leads in 2K increment
UQ	Ammo Pack, horizontal leads in 2K increment

Note:

All categories are established for classification of products. Products may not be available in all categories. Please contact your local Agilent representative for further clarification/ information.
ww w.agilent.com/ semiconductors
For product information and a complete list of distributors, please go to our web site.
For technical assistance call:
Americas/ Canada: +1 (800) 235-0312 or
(916) 788-6763

Europe: +49 (0) 644192460
China: 108006500017
Hong Kong: (+65) 67562394
India, Australia, New Zealand: (+65) 67551939
J apan: (+81 3) 3335-8152 (Domestic/ Interna-
tional), or 0120-61-1280 (Domestic Only)
Korea: (+65) 67551989
Singapore, M alaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 67552044
Taiwan: (+65) 67551843
Data subject to change.
Copyright © 2004 Agilent Technologies, Inc.
Obsoletes 5968-1440E
November 12, 2004
5988-2230EN

