NI PXI-5670

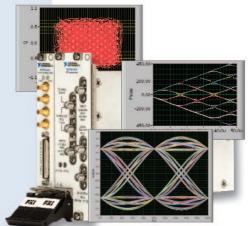
- 250 kHz to 2.7 GHz
- 16-bit resolution, 100 MS/s arbitrary waveform generation (400 MS/s interpolated)
- 8, 32 or 256 MB memory
- 22 MHz real-time bandwidth
- High-stability time base (10 MHz OCXO)
- ±20 ppb frequency stability
- ±50 ppb frequency accuracy
- •-145 dBm to +13 dBm output power

Operating Systems

•Windows 2000/NT/XP

Recommended Software

- LabVIEW
- · LabWindows/CVI


Application Software (included)

Modulation Toolkit for LabVIEW

Driver Software (included)

• NI-RFSG

Calibration Certificate Included

NEW

Overview

The National Instruments PXI-5670 is a 2.7 GHz RF vector signal generator module with the power and flexibility needed for product development applications from design through manufacturing. The NI PXI-5670 provides true 16-bit resolution arbitrary waveform generation at 100 MS/s (400 MS/s interpolated), up to 256 MB of memory, and 22 MHz real-time bandwidth. The PXI-5670 can generate custom and standard modulation formats such as AM, FM, PM, ASK, FSK, PSK, MSK, and QAM. Engineers now have a highly precise and flexible vector signal generator with the performance required for rapid prototyping and automated test.

The Modulation Toolkit for LabVIEW accompanies the PXI-5670, providing functions and tools for signal generation, analysis, visualization, and processing of custom and standard digital and analog modulation formats.

The combined functionality of the PXI-5670 and the Modulation Toolkit deliver a highly flexible and powerful solution for scientific research, consumer electronics, communications, aerospace/defense, and semiconductor test applications as well as for emerging areas including software-defined radio, radio-frequency identification (RFID), and wireless sensor networks.

Hardware

The PXI-5670 provides vector signal generation from 250 kHz to 2.7 GHz over a wide range of signal levels from -145 dBm to +13 dBm in a compact, 3 slot 3U module. It follows industry-standard plug and play specifications for the PXI bus and can be seamlessly integrated with compliant systems.

The PXI-5670 features an onboard ultrahigh-stability oven-controlled crystal oscillator (OCXO), which provides frequency stability of ± 20 ppb and frequency accuracy of ± 50 ppb. These

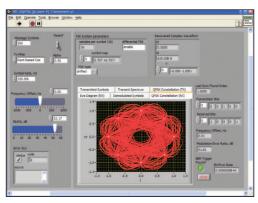


Figure 1. Modulation Toolkit for LabVIEW Displaying $\pi/4$ DQPSK

specifications make it useful for a range of automation applications. A sophisticated calibration scheme is implemented in the PXI-5670 to ensure power level accuracy over varying temperatures from 0 to 55°C. This feature is important to many applications, especially in manufacturing environments where the stable operation over varying temperature ranges is critical.

Software

The PXI-5670 is shipped with the NI-RFSG instrument driver and the Modulation Toolkit for LabVIEW. NI-RFSG is a fully functional instrument driver, compatible with a variety of application software environments such as NI LabVIEW 7 Express, LabWindows/CVI, and C. NI-RFSG features easy-to-use functions for configuring the timing and synchronization, CW tone, and arbitrary waveform generation capabilities of the PXI-5670. Also included are a number of interactive, instructional examples and interactive online help that can help jump-start your application test development.

Visualization and Analysis

• 2D- and 3D-eye diagrams

Modulation Impairments

• Trellis diagrams

 Multitone • DC offset

· Fading profile

· Frequency offset

· Quadrature skew

· IQ gain imbalance

noise (AWGN)

• Additive white Gaussian

Constellation plot

The Modulation Toolkit for LabVIEW provides functions for signal generation, analysis, and visualization of custom and standard analog and digital modulation. With the Modulation Toolkit, you can also develop and analyze custom modulation formats and generate these with the PXI-5670. Some of the standard measurement functions include EVM (error vector magnitude), MER (modulation error ratio), and ρ (rho). Functions are also available for injecting impairments including IQ Gain Imbalance, Quadrature Skew, and AWGN (additive white Gaussian noise). Visualization functions include trellis, constellation, and 2D- and 3D-eye diagrams. This hardware and software combination gives you access to customizable functionality not available in traditional instrumentation.

Modulation Toolkit Functions*

Modulation/Demodulation

- 4, 8, 16, 32, 64, 128, 256-QAM
- 2, 4, 8, 16-FSK
- · MSK and GMSK
- 8, 16, 64-PSK
- BPSK, QPSK, OQPSK, DQPSK, π/4DQPSK
- · AM, FM, PM

Modulation Analysis Functions

- ρ (rho)
- DC offset
- · Phase error
- · Quadrature skew
- · IQ gain imbalance
- Bit error rate (BER)
- · Frequency deviation
- · Burst timing measurements
- Modulation error ratio (MER)
- Error vector magnitude (EVM)
- *A modulation toolkit datasheet is available separately.

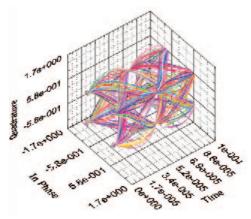


Figure 2. A 3D IQ plot created by the Modulation Toolkit visually separates the I and Q components for this PSK modulated signal.

Figure 3. RF test system - PXI-5670 and PXI-5660

Memory

The deep memory of up to 256 MB in the PXI-5670 offers extended playback time for complex modulated signals. With this deep memory, you can build and output longer and more complex waveforms with a duration of up to 1.28 seconds to address research and testing needs for simulation of signal transmission in real-world conditions.

Option Playback Time		Frequency Resolution*	
8 MB	40 ms	25 Hz	
32 MB	160 ms	6.2 Hz	
256 MB	1.28 s	0.6 Hz	
* Frequency resolution does not refer to accuracy			

Superior Flexibility

Providing customers with a flexible platform is necessary to meet the needs of today's complex, rapidly evolving systems. The PXI-5670 consists of two components - the NI PXI-5610 2.7 GHz RF upconverter and the NI PXI-5421 arbitrary waveform generator, a high-spectral-purity baseband signal generator. The PXI-5610 and the PXI-5421 work together to provide vector signal generation from 250 kHz to 2.7 GHz. Because of the flexible hardware and software, and with access to low-level driver functionality, the PXI-5610 and the PXI-5421 can also be used independently for RF upconversion and arbitrary waveform sequencing. For advanced applications, combine additional modular instruments in the same PXI chassis with the PXI-5670 and take advantage of the tight synchronization between PXI modules. For example, combine the PXI-5660 RF Vector Signal Analyzer with the PXI-5670 to build an RF communications test system with complete modulation and demodulation capabilities.

Calibration

The PXI-5610 and the PXI-5421 are calibrated separately by National Instruments and are shipped with NIST-traceable and ISO-9002-certified calibration certificates. Temperature variations are calibrated and corrected during normal operation resulting in very high stability and repeatability.

Specifications -

Valid over specified Operating Environment (0 to 55 °C) unless otherwise stated.

•		
Ger	nei	raı

Frequency Characteristics	
Frequency range	250 kHz to 2.7 GH
Frequency minimum (performance below	
250 kHz not guaranteed)	9 kHz
Real-time bandwidth (Digital vector	
modulation bandwidth)	22 MHz
Locking range	5 Hz minimum
Warm-up time (typical)	30 minutes
Frequency Resolution (dependent on NI PXI-54)	21 memory)
8 MB	25 Hz
32 MB	6.2 Hz

Tuning Speed

	Sine wave, 50 Hz resolution	
	Thermal correction disabled	35 ms typical
	Thermal correction enabled	50 ms max
1	1 MS record, phase continuity off	
	Digital IF equalization off	340 ms typical 370 ms max
	Digital IF equalization on	950 ms typical 1.6 s max

Note The NI PXI-5670 tuning speed and tuning resolution depend on resampling done by the PC. This means that fine resolution tuning speed is dependent on the speed and memory of the computer. Specifications below are the result of using an NI PXI 8186 Pentium IV controller 2.2 GHz with 512 MB RAM with the Windows XP operating system and NI-RFSG phase continuity disabled.

Internal Frequency Reference

Frequency	10 MHz
Temperature stability	±20 ppb max (referenced to 25 °C)
Aging	
Per year	±100 ppb
Per day	±1 ppb
Initial achievable accuracy	±50 ppb
Lock time for the 5610	
to ext frequency reference	5 s max
Locking range	5 Hz minimum
Reference Input	50 $Ω$ SMA female
Input amplitude	-5 to +16 dBm
Input frequency range	10 MHz ± 0.5 ppm
Reference Output	50 $Ω$ SMA female
Signal	Square wave
Output Frequency	10 MHz
Output Amplitude	6.7 dBm into 50 Ω load, fundamental frequency
	(1+ 0.1 Vpp sine wave)

Spectral purity

Phase Noise

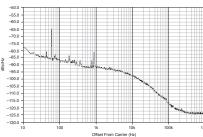


Figure 1. Typical Phase Noise at 1 GHz with Real-Time Bandwidth <10 MHz

Real-time bandwidth <10 MHz

Offset Frequency Carrier Frequency = 1 GHz		Carrier Frequency = 2 GHz
100 Hz	–82 dBc/Hz maximum	-79 dBc/Hz maximum
1 kHz	-87 dBc/Hz maximum	-85 dBc/Hz maximum
10 kHz	–93 dBc/Hz maximum	-92 dBc/Hz maximum
100 kHz	-114 dBc/Hz maximum	-111 dBc/Hz maximum

Real-time	bandwidth	>10 MHz
-----------	-----------	---------

	Offset Frequency	Carrier Frequency = 1 GHz	Carrier Frequency = 2 GHz
	100 Hz	-72 dBc/Hz maximum	-70 dBc/Hz maximum
	1 kHz	-75 dBc/Hz maximum	-72 dBc/Hz maximum
	10 kHz	-100 dBc/Hz maximum	–98 dBc/Hz maximum
	100 kHz	-120 dBc/Hz maximum	-119 dBc/Hz maximum

4.5 Hz rms maximum (continuous wave, 300 Hz to 3 kHz integration bandwidth)

Spurious Responses

≤ -45 dBc
<-86 dBc typical
m
<-80 dBc typical
100 MHz
-105 dBm typical
-80 dBc maximum

(6400 MHz - RF output frequency) -64 dBc typical, -58 dBc maximum Close-in Spurious Responses (Carrier-Modulated)

	oparious riesponse		
Real-Time Bandwidth	Offset from Carrier	Maximum Power (dBc)	
<10 MHz	<100 Hz	<-50	
	100 Hz to 10 kHz	<-60	
>10 MHz	<400 Hz	<-40	
	100 Hz to 2 kHz	-50	

RF Output Characteristics

Output power range	-145 dBm to +13 dBm minimun
Amplitude resolution	
PXI-5670	0.02 dB minimum
PXI-5610	1 dB typical
Amplitude settling time PXI-5610	
<0.1 dB within 150 ms maximum	
< 0.01 dB within 300 ms maximum	

Level Accuracy

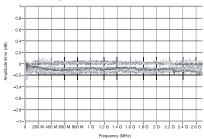


Figure 2. Typical Output Power Level Accuracy from -45 dBm to +10 dBm

Output Power Range

Output Frequency	+7 to -30 dBm	-30 to -80 dBm	-80 to -127 dBm ¹	<-127 dBm (typical) 1
250 kHz to 10 MHz (typical)	±1.2 dB	±1.3 dB	±1.5 dB	±2 dB
10 MHz to 2.7 GHz	±0.7 dB	±0.8 dB	±1 dB	±1.5 dB
25 °C ±10 °C.				

Accuracy degrades by < 0.03 dB per °C over full temperature range

Accuracy degrades by 0.1 dB per dB above +7 dBm power levels, and by 0.15 dB per dB above +10 dBm power levels

¹ At nonsystem spur frequencies with attenuator hold mode. Refer to the Spurious Responses section for more information.

Voltage Standing Wave Ratio (VSWR)

10 MHz to 2.3 GHz

Output 1 dB Gain Compression Point (minimum)

Output Frequency (GHz)	15 to 35 °C (dBm)	0 to 55 °C (dBm)
Up to 2.0	17	16
2.0 to 2.5	15.5	14
2.5 to 2.7	14.5	13

Noise density (0 dBm output)

Output Power Level (dBm)	15 to 35 °C (dBm/Hz)	0 to 55 °C (dBmHz)
0	-120	-115
-20	-140	-135

Specifications

Typical Noise Floor at 2 GHz

Output Power Level (dBm)	Typical Noise Floor (dBm/Hz)
-57	-158
-50	-157
-40	-154
-30	-147
-20	-140
-10	-130
0	-120
10	-110

Vector modulation bandwidth flatness	±0.5 dB typical
	±0.5 ub typical
Group delay variation (within the vector	
modulation bandwidth)	±20 ns typical
Group delay	
PXI-5421	750 ns typical
PXI-5610	1200 ns typica
Overload protection on RF output	
Maximum reverse RF power	4 W maximum
Maximum DC input	±50 VDC

Local Oscillator Output

Frequency range	3.2 to 5.9 GHz
Output power	-22 dBm (typical)
VSWB	1.5:1 maximum

Phase noise - Local Oscillator

Carrier Frequency

Offset Frequency (kHz)	3.2 GHz	4.2 GHz	5.2 GHz
1	-89 dBc/Hz	-88 dBc/Hz	-85 dBc/Hz
10	-98 dBc/Hz	-98 dBc/Hz	-95 dBc/Hz
100	-120 dBc/Hz	-120 dBc/Hz	-120 dBc/Hz

Modulation

Digital Modulation

QPSK, 16-QAM, 64-QAM (root raised cosine Filter, alpha = 0.25, carrier frequency = 1 GHz, 2,000 symbol PRBS, equalization: ON)

Symbol Rate	EVM (%)	MER (dB)
200 kS/s	0.7	39
1 MS/s	0.8	38
2.56 MS/s	1.0	36
5.12 MS/s	1.8	35
10 MS/s	2.5	32

Power Requirements

Typical	+3.3 VDC	+5 VDC	+12 VDC	-12 VDC	Total Power
PXI-5610	150 mA	2.6 A	900 mA	60 mA	25.0 W
PXI-5421	1.9 A	2.0 A	460 mA	10 mA	21.9 W

Calibration

Self-calibration	
PXI-5610	Correction for YIG offset and gain
PXI-5421	Correction for DC gain offset and timing error
External calibration interval	
PXI-5610	1 year
PXI-5421	2 years

Physical

PXI-5610 (2 slots)	10 by 16 cm (3.9 by 6.3 in.)
PXI-5421 (1 slot)	10 by 16 cm (3.9 by 6.3 in.)

Environmenta

Environmental	
Operating Environment	
Operating temperature	0 to +55 °C (Meets IEC-60068-2-1 and IEC-60068-2-2)1
Relative humidity	10 to 90%, noncondensing (Meets IEC 60068-2-56)
Altitude (indoor use only)	0 to 2,000 m (at 25 °C ambient temperature)
Storage Environment	
Ambient temperature	-20 to 70 °C (Meets IEC-60068-2-1 and IEC-60068-2-2.)
Relative humidity	5 to 95%, noncondensing (Meets IEC-60068-2-56.)
Shock and Vibration	
Nonoperational shock	30 g peak, half-sine, 11 ms pulse (Meets
	IEC-60068-2-27. Test profile developed in accordance
	with MIL-PRF-28800F.)
Random vibration Non-operating	5 to 500 Hz, 2.4 g _{rms} (Meets IEC-60068-2-64.
	Non-operating test profile exceeds the requirements
	of MIL-PRF-2880F, Class B)

 1 When installed in the NI PXI-101x or PXI-1000B chassis, the PXI-5421 operating temperature is 0 to +45 $^\circ$ C

Certifications and Compliances

CE Mark Complianc

Safety

This product is designed to meet the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 3111-1, UL 61010B-1
- CAN/CSA C22.2 No. 1010.1

Electromagnetic Compatibility

Emissions	EN 55011 Class A at 10 m FCC Part 15A above 1 GHz
Immunity	EN 61326:1997 + A2:2001, Table 1
EMC/EMI	CE, C-Tick and FCC Part 15 (Class A) Compliant

Ordering Information

8 MB memory	778768-01
32 MB memory	778768-02
256 MB memory	778768-03

Includes PXI-5610, PXI-5421, NI-RFSG, Modulation Toolkit for LabVIEW, cables, and calibration certificates.

BUY ONLINE!

Visit ni.com/info and enter pxi5670.

NI Services and Support

NI has the services and support to meet your needs around the globe and through the application life cycle – from planning and development through deployment and ongoing maintenance. We offer services and service levels to meet customer requirements in research, design, validation, and manufacturing. Visit ni.com/services.

Training and Certification

NI training is the fastest, most certain route to productivity with our products. NI training can shorten your learning curve, save development time, and reduce maintenance costs over the application life cycle. We schedule instructor-led courses in cities worldwide, or we can hold a course at your facility. We also offer a professional certification program that identifies individuals who have high levels of skill and knowledge on using NI products. Visit ni.com/training.

Professional Services

Our Professional Services Team

is comprised of NI applications engineers, NI Consulting Services, and a worldwide NI Alliance Partner Program of more than 600

independent consultants and integrators. Services range from startup assistance to turnkey system integration. Visit **ni.com/alliance**.

OEM Support

We offer design-in consulting and product integration assistance if you want to use our products for OEM applications. For information about special pricing and services for OEM customers, visit ni.com/oem.

Local Sales and Technical Support

In offices worldwide, our staff is local to the country, giving you access to engineers who speak your language. NI delivers industry-leading technical support through online knowledge bases, our applications engineers, and access to 14,000 measurement and automation professionals within NI Developer Exchange forums. Find immediate answers to your questions at ni.com/support.

We also offer service programs that provide automatic upgrades to your application development environment and higher levels of technical support. Visit ni.com/ssp.

Hardware Services NI Factory Installation Services

NI Factory Installation Services (FIS) is the fastest and easiest way to use your PXI or PXI/SCXI™ combination systems right out of the box. Trained NI technicians install the software and hardware and configure the system to your specifications. NI extends the standard warranty by one year on hardware components (controllers, chassis, modules) purchased with FIS. To use FIS, simply configure your system online with ni.com/pxiadvisor.

Calibration Services

NI recognizes the need to maintain properly calibrated devices for high-accuracy measurements. We provide manual calibration procedures, services to recalibrate your products, and automated calibration software specifically designed for use by metrology laboratories. Visit ni.com/calibration.

Repair and Extended Warranty

NI provides complete repair services for our products. Express repair and advance replacement services are also available. We offer extended warranties to help you meet project life-cycle requirements. Visit ni.com/services.

ni.com • (800) 433-3488

National Instruments • Tel: (512) 683-0100 • Fax: (512) 683-9300 • info@ni.com

© 2004 National Instruments Corporation. All rights reserved. Product and company names listed are trademarks or trade names of their respective companies.